Homework 7 (due Wednesday, November 9)

Exercise 1. Let $d \geq 1$ and $m>2$ be integers, and let us consider the following process on $S=\{0, \ldots, m-1\}^{d}$: at each step, from state $x \in S$, pick a component of x uniformly at random and change it to another number in $\{0, \ldots, m-1\}$, chosen again uniformly at random.
a) Write down the transition matrix P of this chain. Is this chain is ergodic? What is its stationary distribution? Is the detailed balance equation satisfied?

It turns out that the eigenvectors of P are given by $\left(\phi^{(z)}, z \in S\right.$), where

$$
\phi_{x}^{(z)}=\exp (2 \pi i x \cdot z / m), \quad x \in S,
$$

and $x \cdot z=\sum_{j=1}^{d} x_{j} z_{j}$.
b) Compute the corresponding eigenvalues $\left(\lambda_{z}, z \in S\right)$ of P.

Hint: Express these in terms of $|z|=\sharp\{$ non-zero components of $z\}$.
c) Deduce the value of the spectral gap for $d>2$, as well as a corresponding upper bound on $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}}$.
d) Compare this upper bound to the general lower bound found in class. Do these two bounds match for large m and d ?
e) Through a more careful analysis, find a tighter upper bound on $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}}$ for large m and d.

Exercise 2. Regarding the lazy random walk on $\{0,1\}^{d}$, we saw in class that $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}}$ is arbitrarily close to 1 for

$$
n=\frac{d+1}{4}(\log d-c)
$$

and $c>0$ arbitrarily large. Following the reasoning made in class (but the technique is simpler here!), show that the following distance:

$$
\left\|P_{0}^{n}-\pi\right\|_{2}=\left(\sum_{y \in\{0,1\}^{d}}\left(\frac{p_{0 y}(n)}{\sqrt{\pi_{y}}}-\sqrt{\pi_{y}}\right)^{2}\right)^{1 / 2}
$$

can be made arbitrarily large by taking again $n=\frac{d+1}{4}(\log d-c)$ and $c>0$ arbitrarily large.
$N B$: The above distance is the ℓ^{2}-distance between P_{0}^{n} and π; it has been shown in class to be an upper bound on $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}}$ (with an extra factor 2).

