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Part I

Quantum Mechanics and
Quantum Bits





1 Experiments with light

At the beginning of the 20th century a major change of paradigm took place

in our understanding of the laws of physics. This revolution was triggered by a

host of experimental discoveries which lead to a major revision of our concepts

of particle, wave and measurements of observables such as for example position,

velocity, magnetic moment. The quantum theory that emerged is today the best

tested theory of physical phenomena. The classical laws of physics are seen as a

limiting case of quantum laws, that are valid when quantum effects can be ne-

glected. This is the case for a wide range of phenomena which roughly speaking

are macroscopic phenomena for which Newton’s (or perhaps relativistic) laws

of motion and Maxwell equations are adequate. Quantum effects cannot be ne-

glected when we want to describe microscopic phenomena. Note however that

macroscopic quantum phenomena also exist and the borderline between classical

and quantum behaviours is a deep, subtle and not totally solved problem. In

any case, quantum theory explains the chemical bond (is thus at the basis of

chemistry) it explains the structure of the atom and the periodic table of ele-

ments, and is the basis for nuclear, particle and high energy physics. Quantum

mechanics is also necessary to explain many properties of condensed matter for

example metals, semi-conductors, magnets, superconductors, superfluids. Quan-

tum mechanics is necessary to explain the interaction of matter and light.

Quantum mechanics was largely discovered by studying the interaction of mat-

ter with light. The early experiments of the 20th century, and some of the

late 19th century, forced physicist to revise completely their views on the in-

timate nature of light and matter. It was gradually realised that light has both

particle-like and wave-like behaviours. Similarly particles (e.g. the electron) have

both particle-like and wave-like behaviours. Today we view these constituents of

matter as entities called “quantum fields”, a notion that encompasses both be-

haviours. Wave and particle behaviours are two different manifestations of the

quantum fields.

The laws of physics are expressed in mathematical language. It is thus not

so surprising that these conceptual revolutions were couched in a mathematical

formalism that departs quite radically from the one of classical physics. For

example observable and measurable quantities, such as position and velocity of

an electron orbiting an atom, are represented by “matrices” or “linear operators”.

The mathematical formalism of quantum mechanics has posed, and still does,
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new interesting problems in functional analysis, geometry, group theory Today

quantum information theory also offers new mathematical challenges of its own.

The development of quantum mechanics in its modern form spans a period

of at least 25-30 years between 1900 and 1930’s. It is the achievement of many

experimental and theoretical physicists. This was a golden age of discovery in

physics full of surprising developments and it will not be possible to go through

and understand the historical development of quantum mechanics in this course.
1 Starting with chapter 2, the modern formalism of quantum mechanics is pre-

sented. This mathematical formalisation of the physical laws discovered by the

founding fathers (Planck, Einstein, Bohr, Heisenberg, De Broglie, Schroedinger

and others), was first clearly spelled out by Dirac and von Neumann around 1930-

1932 in two influential books, and has remained for the main part unchanged

since then.

Before proceeding directly to the mathematical formalism it is nevertheless

good to motivate it thanks to simple experiments that can be performed with

light. The experiments are presented here as “thought experiments”, but they

can be performed in a real lab. We will gradually introduce some of the basic

ideas of quantum mechanics through the discussion of these experiments. This

is the goal of this chapter.

1.1 Electromagnetic waves

According to Maxwell (1862) and Hertz (1886), light is an electromagnetic wave

of electric E(x, t) and magnetic B(x, t) fields freely oscillating in vacuum. The

solutions of Maxwell equations in empty space are superpositions of monochro-

matic modes of frequency ω. A mode, or plane wave, propagating along the z

axis, is given by

E(x, t) = ReE0 e
i(kz−ωt), B(x, t) =

1

c
ẑ×E(x, t), ω = ck (1.1)

The amplitude vector E0 (thus E and B also) always belongs to the (x, y) ⊥ z

plane,

E0 = E0

cos θeiδx

sin θeiδy

0

 (1.2)

The energy per unit time per unit surface that would be imparted to a material

object by the wave, is given by the norm of the Poynting vector

S = ε0c
2E×B (1.3)

A convenient measure of the intensity I of the wave is given by the average of

its norm, over a period T = 2π
ω ,

I =
1

2
ε0c|E0|2 =

1

2
ε0cE

2
0 (1.4)
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Figure 1.1 Preparation of beam polarized along θ

From (1.1), (1.2) it follows that the tip of the electric (and hence also magnetic)

field vector describes, as a function of time, an ellipse in the (x, y) plane. There

are two degenerate cases of special importance. Linear polarization corresponds

to δx − δy = mπ (m integer) and the tip of the field oscillates in the (x, y)

plane on a line making the angle θ with x (m even/odd). For θ = π
4 (so that

cos θ = sin θ = 1√
2
) and δx − δy = mπ

2 (m odd integer) the polarization is

left/right circular which means that the tip of the field rotates along a circle of

radius E0.

A light beam can be easily prepared in a state of linear polarization with the

help of a filter which transmits only the component of the electric field along

θ. All our subsequent discussion does not rely on a detailed explanation of the

phenomenon and we do not need to know more about it2. Such a device is called

a polarizer with axis θ (figure 1.1).

Analyzer-detector apparatus. Assume that a source of light has been pre-

pared in a state of linear polarization along θ as in figure 1.1.

Ein(x, t) = E0

cos θ

sin θ

0

Re ei(kz−ωt) (1.5)

The intensity of the prepared beam (1.5) is proportional to E2
0 . Suppose now that

this ray is transmitted through a second polarizer at an angle α. This second

polarizer is called the analyzer. The light is then collected by a detector3 and its

intensity measured (see figure 1.2). The electric field of the final beam is obtained

by projecting the incoming electric field on the analyzer axis eα

Eout = (Ein · eα) eα = E0 cos(θ − α)

cosα

sinα

0

Re ei(kz−ωt) (1.6)

and the intensity received in D is proportional to E2
0 cos2(θ−α). To summarize,

when a beam polarized along θ is transmitted through an analyzer at an angle

α, the outgoing beam is polarized along α and the fraction of intensity collected
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Figure 1.2 analyzer-detector measurement apparatus

by the detector (average power per unit surface) is4

Iout

Iin
= cos2(θ − α) (1.7)

In particular if α − θ = 0, π all the light passes through the analyzer, while if

α−θ = ±π2 none of it is transmitted. The analyzer-detector system can be used as

a measurement apparatus to determine the polarization of a wave (assuming we

know a priori that it is linear) by adjusting the angle α such that the collected

intensity varies from 0 to its maximal value. Let us now describe two simple

experiments with electromagnetic waves.

Polarizing beam-splitter experiment. There exist prisms5 that have the

property of splitting a beam in two linearly polarized ones, one is polarized

perpendicular to the incidence plane while the other is polarized parallel to that

plane. In figure 1.3 the incidence plane is (x, z) so one ray has y polarization

while the other one has x polarization. Two detectors Dx and Dy measure the

outgoing intensities of each beam. Note that the polarization degree of freedom

is coupled to the orbital (path of ray) degree of freedom. Before the polarizing

beam-splitter the electric filed is given by (1.5) and has intensity proportional

to E2
0 . After the beam-splitter the x-polarized ray has an electric field

Ex = E0

cos θ

0

0

Re ei(kz−ωt) (1.8)

and the intensity detected at Dx is proportional to E2
0 cos2 θ, while the y-

polarized ray has a field

Ey = E0

 0

sin θ

0

Re ei(kz−ωt) (1.9)

and its intensity measured by Dy is proportional to E2
0 sin2 θ. Both detectors

collect a fraction of the intensity,

Iout,x

Iin
= cos2 θ,

Iout,y

Iin
= sin2 θ (1.10)
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Figure 1.4 decomposition-recombination experiment

In this experiment absorption and reflection by the prism are negligible so that

the sum of the these two fractions equals 1.

Decomposition-recombination experiment. Once we have decomposed light

with a polarizing beam-splitter, we can recombine it with a symmetric prism.

We analyze the recombined beam with an analyzer-detector apparatus (see figure

1.4). Let us carefully review the situation. Before the first beam-splitter we have

one ray with electric field given by (1.5). The first beam-splitter splits the ray

in two parts with electric fields given by (1.8) and (1.9). After the second beam-

splitter the two rays interfere and the electric field of the recombined beam is

the sum of (1.8) and (1.9), which equals (1.5). The fraction of intensity collected

by the analyzer-detector system is

cos2(θ − α) (1.11)

a fact consistent with the first experiment.

1.2 Photons

The works of Planck (1900) on the spectrum of black-body radiation, of Einstein

(1905) on the photoelectric effect and Bohr (1913) on the atomic structure (and

spectral lines), taught us that the interaction of light with matter occurs through

discrete quanta (quantities) of energy and momentum that are absorbed and
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emitted. These quanta are called photons, and each photon carries an energy

~ω and momentum ~k (where ω = ck still holds). If we think of the beam

as a collection of independent photons, its intensity is ~ωcNV where N
V is the

number of photons per unit volume6. Identifying this quantity with (1.4) we find

a relation between the electric field and the number of photons associated to the

electromagnetic wave.

If we diminish sufficiently the intensity of the source we arrive at a situa-

tion where in principle photons are emitted one by one. We will repeat the

experiments with such a single photon source, that prepares them in a state of

polarization θ.

Analyzer-detector apparatus. Let us first discuss how the analyzer-detector

measurement apparatus works. We repeat the experiment of figure 1.2 and collect

photons at the detector D. When a photon hits the detector the later clicks (an

electric pulse is triggered) - we record this event as a 1, otherwise we record 0.

This experiment produces a sequence

1001111000101010011101... (1.12)

that looks random and where the empirical fraction of 1’s is cos2(θ − α). From

this experiment we infer

probability of detecting a photon = cos2(θ − α) (1.13)

In particular if α − θ = 0, π all photons are detected while if α − θ = ±π2 no

photon is detected.

This experiment suggests that photons behave as particles which carry a po-

larization degree of freedom. Indeed if they would behave as waves, then a part

of the wave would be transmitted through the analyzer and some energy would

always be measured in the detector. However the event is discrete, the detec-

tor clicks or does not click. Moreover it seems impossible to predict the precise

polarization outcome for each individual photon: clicks are random. Note that

the statistics of the outcomes seems to satisfy a definite formula (1.13); and this

formula is the one found in the theory of electromagnetic waves (!).

The randomness of the outcome is a fundamental feature of the measurement

process for quantum systems and that it is not at all obvious to reconcile this

fact with our classical intuitions. One could attempt a classical interpretation7

by saying that the photon is a particle-like object that undergoes complicated

but otherwise deterministic collision processes within the analyzer, which result

in a probability cos2(θ − α) of being transmitted. Such attempts do not resist

the tests of other experiments.

Let us now repeat the two previous experiments with photons that are sent

one by one.

Polarizing beam-splitter experiment. Each single photon (polarized at an

angle θ) goes through the prism. We observe that either Dx clicks (the upper

detector register a 1 and the lower a 0) or Dy clicks (the upper detector registers
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a 0 and the upper a 1); but they never click simultaneously. We record two

random complementary sequences with respective fractions of 1 equal to cos2 θ

and sin2 θ. Empirically,

prob detect photon at Dy = sin2 θ, prob detect photon at Dx = cos2 θ (1.14)

The sum is equal to one which means that the photon has certainly passed

through the beam-splitter.

The fact that the detectors never click simultaneously suggest as above that the

photons behave as particles. Indeed, would they behave as waves, both detectors

would collect some energy at the same time.

One may attempt the same (wrong) classical interpretation as above. A photon

is a particle, which due to complicated but otherwise deterministic collisions with

the crystal, is deflected towards the lower path with probability sin2 θ or through

the upper path with probability cos2 θ. This turns out to be incompatible with

the next experiment.

Decomposition-recombination experiment. let us consider again the set-

ting of figure 1.4. When photons are sent one by one we again record a sequence

of random clicks, and we infer from this sequence

prob detect photon at D = cos2(θ − α) (1.15)

This should comes as a great surprise to the reader. Indeed this result is not

consistent with the particle-like picture of a photon, but rather with a wave-like

picture, as we now show.

Theoretical prediction of the particle picture. If a photon takes the lower

path in figure 1.4 its polarization is horizontal before the second beam-splitter

and comes out of it in a horizontal state. Therefore the probability of transmis-

sion of such a lower-path photon through the analyzer is cos2(π2 − α) = sin2 α.

Therefore

prob(D clicks | lower path) = sin2 α (1.16)

If the photon takes the upper path its polarization is vertical just before the

second beam-splitter and comes out in a state of vertical polarization. Therefore

the probability of transmission of such an upper-path photon is cos2(0− α) and

prob(D clicks | upper path) = cos2 α (1.17)

Now, we have

prob(D clicks) =prob(D clicks | lower path)prob(lower path)

+ prob(D clicks | upper path)prob(upper path) (1.18)

Thus because of (1.14), (1.16), (1.17)

prob detect photon at D = sin2 θ sin2 α+ cos2 θ cos2 α (1.19)

This contradicts the experimental result (1.15) and is therefore plain wrong !
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The term that is missing is precisely

2 cos θ cosα sin θ sinα (1.20)

which, in wave theory, appears because of the interference between the x and y

components of the electric field. This suggests that a single photon follows both

paths, just as a wave would do, and interferes with itself just as a wave would

do

Let us summarize. We face the following situation: the decomposition experi-

ment suggests that photons behaves in a particle-like manner, while he recombi-

nation experiment (1.4) suggests that photons behave in a wave-like fashion. As

for most dilemmas, the resolution offered by quantum theory teaches us that both

pictures are two faces of a more subtle reality that goes beyond this dichotomy.

One sometimes refers to this dual behavior of light, and all known forms of

matter, as the “particle-wave duality” or the “complementarity principle”.

1.3 The quantum setting: first encounter

In fact all known forms of matter8 display this particle/wave duality. As we

will now see quantum mechanics offers us a picture which accommodates both

behaviors and superseedes the classical pictures of wave and particle9.

We will illustrate how the rules of quantum theory consistently explain the

three experiments. The situation will be modeled in the simplest possible way

which retains the basic essence of quantum mechanics.

The state of a photon is described by two degrees of freedom, an orbital degree

of freedom and a polarization degree of freedom. Let us first concentrate on po-

larization. The state of polarization is described by a unit vector e perpendicular

to the direction of motion. Following Dirac we call these state vectors kets and

denote them as |e〉. Since the polarization vector lies in the x, y plane it can

be described in a orthonormal basis | l〉, | ↔〉, corresponding to the two linear

states of polarization along x and y

|e〉 = λ| l〉+ µ| ↔〉, |λ|2 + |µ|2 = 1 (1.21)

Here λ and µ are complex numbers. thus a general polarization state is a nor-

malized two component vector belonging to C2. The space C2 is our first and

simplest example of a space of quantum states.

A state of linear polarization along θ corresponds to λ = cos θ and µ = sin θ,

so that (1.21) becomes

|θ〉 = cos θ| l〉+ sin θ| ↔〉 (1.22)

On the other hand for circular polarization the x and y components of the

polarization vector have a π
2 - phase difference. Two basis states with circular
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polarization are,

|L/R〉 =
1√
2

(| l〉 ± i| ↔〉) (1.23)

Given a state vector |Φ〉 its adjoint (also called hermitian conjugate) is obtained

by taking the complex conjugate and transposing |Φ〉
T

. This is denoted as a bra

〈Φ| = |Φ〉
T

(1.24)

The usual inner product (defined over a complex vector space) is called the

bracket

〈Ψ|Φ〉 = (|Ψ〉
T

) · (|Φ〉) (1.25)

As an example consider the inner product between two polarization state vectors.

First the conjugate of a linearly polarized state is

〈α| = 〈l | cosα+ 〈↔ | sinα (1.26)

The inner product with |θ〉 then is

〈α | θ〉 = (〈l | cosα+ 〈↔ | sinα) · (cos θ| l〉+ sin θ| ↔〉)
= cosα cos θ + sinα sin θ

= cos(θ − α) (1.27)

To obtain the second equality one expands the braces into four terms, uses lin-

earity of the bracket and the orthonormality condition,

〈p | p′〉 = δpp′ (1.28)

This trivial calculation has been done in the linear polarization orthonormal

basis {| ↔〉, | l〉}. It is instructive to check that the circularly polarized states

{|L〉, |R〉} form another orthonormal basis of the two dimensional complex vector

space.

Let us now introduce the orbital degree of freedom in the picture. For a freely

moving photon, i.e a photon that does not interact with a material object, the

orbital state is entirely described once we know its momentum k, which has a

direction k/k and a norm k = ω
c . The state vector is now denoted as |k, e〉. This

state freely evolves with time and for a photon of frequency ω the time evolution

simply amounts to a multiplicative phase factor, which does not change the

momentum and the polarization. The photon state at time t is

|Ψk,e(t)〉 = e−iωt|k, e〉 (1.29)

An explanation is in order here about the kets indexed by two degrees of freedom.

We will see in the next chapter that the mathematical rule to combine degrees

of freedom is the tensor product; this means that |k, e〉 = |k〉 ⊗ |e〉 and that the

inner product is

〈k′, e′ | k, e〉 = 〈k′ | k〉 · 〈e′ | e〉 (1.30)
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Figure 1.5 measurement with initial state |Ψ〉 and outcome |Φ〉.

Finally the momentum vectors themselves form an orthonormal basis 〈k′ | k〉 =

δk′,k.

As we will see in the next chapter, in general, the time-evolution of isolated

systems is given by a unitary transformation. In (1.29) the unitary transforma-

tion is simply the multiplication by the phase factor. When the photon interacts

with matter (for example with the analyzer, the beam-splitter) one has in prin-

ciple to describe the unitary evolution of the total system (photon + analyzer

or photon + beam-splitter), which is then more complicated. Here we do not

have to discuss such issues as we consider only the in-going and out-going states

which are those of freely moving photons.

When we make a measurement on a system, the system that is observed can-

not be considered as isolated and the state is modified in a non-unitary way.

Explaining the measurement process is a subject that has been (and sometimes

is still) much debated since the early days of quantum mechanics. An operational

rule, to determine the outcome of a measurement is given by the so-called mea-

surement postulate (Born, Heisenberg, Bohr 1924-1927) in the form advocated

by what has been named the Copenhagen School10 (figure 1.5). Here we give it

in a rough form, and will be more precise in the next chapter.

If a system is initially prepared in the state |Ψ〉 and the outcome of the measure-

ment is a state |Φ〉, the probability of the transition |Ψ〉 → |Φ〉 is

Prob(|Ψ〉 → |Φ〉) = |〈Φ | Ψ〉|2 (1.31)

One cannot predict the outcome of the transition but only its frequency of occur-

rence during repeated identical experiments with identical initial states.

The transition between the initial and final state is also called ”reduction” or

”collapse” of the state. In a more precise formulation of the measurement pos-

tulate, in the next chapter, we will see that the transition probabilities of all

possible outcomes sum to one.

The re-interpretation of the experiments in the next section should make this

rather abstract postulate a bit more “natural”.
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1.4 Quantum interpretation of experiments.

Analyzer-detector apparatus. We assume that the source prepares single

photons in the linearly polarized, freely moving state

|Ψk,θ(t)〉 = e−iωt|k, θ〉 (1.32)

If the measurement apparatus is the analyzer-detector system of figure 1.2, the

measurement postulate tells us that the probability to find the photon in state

|k, α〉 is

|〈k, α | Ψk,θ(t)〉|2 = |〈α | θ〉|2 = cos2(θ − α) (1.33)

This is consistent with the experimentally measured frequency of clicks in D.

Polarizing beam-splitter experiment. Before the beam-splitter the photon

state is (1.32), which is equal to

e−iωt(cos θ|k, l〉+ sin θ|k,↔〉) (1.34)

After the beam-splitter it becomes

e−iωt(cos θ|ku, l〉+ sin θ|kl,↔〉) (1.35)

where ku and kl label the upper and lower paths11. Notice that contrary to (1.34),

in (1.35) we cannot separate the orbital and polarization degrees of freedom into

a tensor product: it can be shown that for (1.35) this is an intrinsic property that

does not depend on the basis. We say that the orbital and polarization degrees

of freedom have been entangled by the beam-splitter. Entangled states depart

fundamentally from the classical picture and retain quantum correlations that

are missing in the classical interpretation. As we will see in this course they play

a very important role in quantum information and computation because they

may offer resources that are non-classical.

Now we consider the two detectors as our measurement apparatus. The mea-

surement postulate tells us that the probability to observe the photon in state

|ku, l〉 is

|〈ku, l| e−iωt(cos θ|ku, l〉+ sin θ|kl,↔〉)|2 = cos2 θ (1.36)

Similarly the probability to observe it in the state |kl,↔〉 is

|〈kl,↔| e−iωt(cos θ|ku, l〉+ sin θ|kl,↔〉)|2 = sin2 θ (1.37)

This is consistent with the experimental fractions of clicks at Dx and Dy.

Recombination experiment. The second polarizing beam-splitter transforms

the entangled state (1.35) back to (1.32). The later state enters the measurement

apparatus constituted by the analyzer-detector system. Therefore the probability

of observing |k, α〉 is simply given by (1.33). This is the experimental frequency of

clicks at D ! The quantum interpretation does not loose track of the interference

term (1.20).
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1.5 Notion of quantum bit

There exist many quantum systems in nature that can be described by state

vectors which belong to the vector space C2, the two dimensional complex vector

space. If we call |0〉 and |1〉 two orthonormal basis states a general state vector

takes the form

|ψ〉 = λ|0〉+ µ|1〉, |λ|2 + |µ|2 = 1 (1.38)

It will often be convenient to identify

|0〉 =

[
1

0

]
(1.39)

and

|1〉 =

[
0

1

]
(1.40)

and in quantum information theory it is customary to call this canonical basis

the computational basis. Of course one can represent the quantum bit |ψ〉 in any

other basis, and one that we will often use one that is obtained by a standard

45 degree real rotation

|+〉 =
1√
2

(|0〉+ |1〉), |−〉 =
1√
2

(|0〉 − |1〉) (1.41)

This basis will be called the Hadamard basis. Since the vector space is complex

we can make more general unitary transformations. For example

|L〉 =
1√
2

(|0〉+ i|1〉), |R〉 =
1√
2

(|0〉 − i|1〉) (1.42)

We have already seen a physical realization of a quantum bit, namely the pho-

ton polarization. If we identify the computational basis with horizontal/vertical

polarized photon states, then the Hadamard basis corresponds to polarized states

at 45 degree angle, and the last basis obtained by a unitary transformation is

physically realized by circularly left/right polarized photons. A physically mean-

ingful parametrization of general polarization state is

|ψ〉 = eiδx cos θ| l〉+ eiδy sin θ| ↔〉 (1.43)

If we rotate our reference frame (around z) by angle β, then the state vector is

obtained from the above expression by θ → θ − β. In particular if the reference

frame is rotated by 2π we recover the same state vector. These states form

ratgher trivial representations of the group of two-dimensional rotations (about

the z-axis say).

Another very common but physically different quantum bit is the spin 1
2 . The

most famous elementary particle (of obvious importance in our everyday life

since it transports electricity, interacts with sunlight ...) that has spin 1
2 is the

electron12. There exist also many composite systems, such as nuclei or atoms

that carry a total spin of 1
2 . A very rough intuitive way of thinking about spin
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Figure 1.6 Bloch sphere. Computational (z), Hadamard (x), circular (y) basis states

is to view the particle (the electron say) as having intrinsic spinning motion. If

the particle spins about the z axis, its spin is (pointing) | ↑〉 or | ↓〉 according

to its direction of rotation. These two states form a basis and the most general

spin state is

|ψ〉 = λ| ↑〉+ µ| ↓〉, |λ|2 + |µ|2 = 1 (1.44)

Spin 1
2 states are two dimensional (complex) representations of the group of

rotations in three dimensions. A meaningful parametrization of the states is

|ψ〉 = ei
φ
2 cos

θ

2
| ↑〉+ e−i

φ
2 sin

θ

2
| ↓〉 (1.45)

These states can be represented by the tip of a vector on the Bloch sphere

(figure 1.6) with the usual spherical coordinates (θ, φ). We have the following

correspondence (up to phase factors):

θ = 0, π | ↑〉, | ↓〉, particle spin along z (1.46)

θ =
π

2
, φ = 0, π | ↑〉 ± | ↓〉, particle spin along x (1.47)

θ =
π

2
, φ = ±π

2
| ↑〉 ± i| ↓〉, particle spin along y (1.48)

The polarization and spin 1
2 quantum bits are different representations of the

rotation group in quantum mechanics (ultimately coming from the representa-

tions of the Lorentz group of relativity).

There exist also other realizations of the quantum bit that have nothing to do

with the representations of the rotation group. An example is given by the ben-

zene molecule C6H6 that can be in the two states that differ in the arrangement
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Figure 1.7 possible arrangements of chemical bonds

of single and double electronic bonds (figure 1.7). But the molecule can also be

found in a resonating state such as

|ψ〉 =
1√
2

(|1〉+ |2〉) (1.49)

What is the difference between a classical bit and a quantum bit ? A classical

bit is an abstraction of a physical quantity that can be reasonably well described

by a two valued quantity. Examples are the charge in a capacitor, a voltage dif-

ference, or the magnetization of a Weiss domain. Classical information theory is

sufficiently universal so that it does not have to account for the detailed physical

properties of the classical bits. The only underlying assumption is that these

exist in two definite values 0 or 1 (let us pretend that noise is absent). Suppose a

classical bit is given to you and that you have no information whatsoever about

its value. To gain information about its value you can observe it (measure the

charge, the voltage difference) and its value is then discovered. By discovered we

mean that it already had the observed value before the measurement, and that

the measurement has not destroyed it.

A quantum bit is also an abstraction of physical as the above examples have

shown. It is well described by a two dimensional complex vector. In the same

spirit than in the classical case, quantum information theory is sufficiently uni-

versal so that many of its aspects are independent of the concrete physical re-

alization. However the important point is that it takes into account the general

underlying laws of quantum mechanics. This means in particular that extracting

information from quantum bits is quite different than in the classical case. Sup-

pose that a quantum bit is given to you in some state |ψ〉 on which you do not

have any information whatsoever. In order to determine |ψ〉, we have to observe

it (agree ?). To perform a measurement we have to select an apparatus, in other

words an orthonormal basis {|b1〉, |b2〉}. The measurement process then reduces

the quantum bit to |b1〉 or to |b2〉. So we have lost the original state (forever)

and have not gained any knowledge (of the initial state) because the final state

depends on our own choice of basis. Note however that if we are given many

copies of |ψ〉 we can measure all of them in the same basis and get a hold of the

probabilities |〈b1 | ψ〉|2, |〈b2 | ψ〉|2.



1.6 A random number generator 19

V

kH

k
V

D

DV

Hincoming photon

outgoing photon 
is in a superposition
of two states k

H
and k

Figure 1.8 semi-transparent mirror

1.6 A random number generator

At this point the reader may well wonder if quantum laws offer any useful re-

source in order to process information. In this course we will see that this is

so. Here we illustrate this with a very simplified model for a random number

generator.

A source sends a beam of photons on a semi-transparent mirror (figure 1.8).

The later splits the beam in two parts, the transmitted and reflected beams. If

the source is classical we observe that the two detectors each collect a fraction of

the incoming intensity of the beam. Assuming that the semi-transparent mirror

is perfect each detector collects half of the intensity.

When the intensity of our source is lowered sufficiently so that it becomes a sin-

gle photon source. Photons go through the mirror one at a time, we observe that

either DH or DV clicks, never the two at the same time. We obtain a sequence of

clicks 01000111010101000110111100 that looks Bernoulli with parameter p = 1
2 .

The interpretation of this experimental setup, in the framework of quantum

mechanics, is as follows. We drop the polarization index as it plays no role here.

A single photon is incoming in the semi-transparent mirror and the state of the

photon after the mirror is,

eiωt
1√
2

(|kH〉+ |kV 〉) (1.50)

This state is a superposition. The outcome of the measurement by the detectors

cannot be predicted. The probability that the photon is observed in state |kH〉
is

|〈kH | eiωt
1√
2

(|kH〉+ |kV 〉)|2 =
1

2
(1.51)

and similarly the probability that it is observed in state kV is

|〈kV | eiωt
1√
2

(|kH〉+ |kV 〉)|2 =
1

2
(1.52)
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Figure 1.9 Hadamard gate as a model for a semi-transparent mirror

So the measurement process produces a perfectly random sequence.

What do we mean by ”perfectly random sequence”? Of course, the sequence is

perfectly random only in principle, because in the real experiment there are im-

perfections, for example, the source is only approximately a single photon source

and the semi-transparent mirror has a small bias etc.... But the point here is

that, according to the standard interpretation of quantum mechanics, the mea-

surement process produces ”true randomness” and not ”pseudo-randomness”:

the clicks are not the result of some underlying deterministic process. This point

has been much debated by the founding fathers of 20-th century physics and no-

tably by Einstein and Bohr. According to Einstein ”God does not play dice”, a

view that Bohr dismissed. Until today, no other theoretical framework has, suc-

cessfully described as many phenomena as quantum theory does, and we have so

far no experiment that forces us to abandon the standard quantum framework.

It is in this sense that we declare the sequence perfectly random.

A slightly more abstract representation in quantum information theory lan-

guage of this experiment is depicted on figure 1.9. We prepare and measure states

in the computational basis |0〉, |1〉. The initial state |0〉 goes through a Hadamard

gate

H =
1√
2

[
1 1

1 −1

]
(1.53)

which produces the state

H|0〉 =
1√
2

(|0〉+ |1〉) (1.54)

When we perform a measurement on this state the outcome is |0〉 with probability

|〈0|H|0〉|2 =
1

2
(1.55)

or |1〉 with probability

|〈1|H|0〉|2 =
1

2
(1.56)

We note that quantum random number generators based on these principles have

been realized and are even commercialized. See for example http://www.idquantique.com/true-

random-number-generator/products-overview.html



2 Mathematical formalism of
quantum mechanics

Quantum mechanics is the best theory that we have to explain the physical phe-

nomena (if we exclude gravity). The elaboration of the theory has been guided by

experimental discoveries, as well as thought experiments and conceptual ideas

of a great generation of physicist. Milestones of the development of quantum

theory are from 1900 to 1930 are: Planck on black body spectrum (1900), Ein-

stein on the photon (1905), Bohr on the atom (1913), De Broglie on the wave

function (1924), Schroedinger on the wave function evolution (1926), Born on

the interpretation of the wave function (1926), Heisenberg on matrix mechanics

(1925), Dirac on relativistic QM (1930). Some never completely accepted their

own ideas, although these still form the best theory that we have today. The

mathematical form of the theory that we find in textbooks has been put for-

ward by Dirac and von Neumann in the 30’s Since then the quantum laws of

physics have been used unchanged1 to successfully describe an impressive range

of phenomena ranging from macroscopic solid state, molecular to atomic, nuclear,

sub-nuclear and particle physics scales.

The arena of QM is Hilbert space so we begin with some mathematical re-

minders on linear algebra in such spaces. Our goal is also to carefully introduce

the reader to Dirac’s bra and ket notation. Then we introduce 5 basic principles

that define QM. We also discuss two genuine quantum notions, namely, entangled

states and the no-cloning theorem.

2.1 Linear algebra in Dirac notation

A Hilbert space H is a vector space over the field of complex numbers C, with

an inner product. For a finite dimensional Hilbert space that is all. For an infi-

nite dimensional Hilbert space we require that it is complete and separable2. In

quantum information theory we will almost always deal with Hilbert spaces of

quantum bits which are discrete by nature, hence our Hilbert spaces are finite

dimensional and we do not have to worry about completeness and separability.

The vectors will be denoted |ψ〉 (pronounced ket psi). The hermitian conjugate

(transpose and complex conjugate) is denoted by 〈ψ| (pronounced bra psi). The

inner product is denoted 〈φ|ψ〉. This is the inner product of the vectors |φ〉 and

|ψ〉 and is called a bracket (for bra-ket). The inner product must satisfy:
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1. Positivity: 〈φ|φ〉 ≥ 0 with equality if and only if |φ〉 = 0.

2. Linearity: 〈φ|(α|ψ1〉+ β|ψ2〉) = α〈φ|ψ1〉+ β〈φ|ψ2〉, α, β ∈ C

3. Skew symmetry: 〈φ|ψ〉 = 〈ψ|φ〉 where the bar denotes complex conjugation.

A ray is an equivalence class of vectors of the form λ|ψ〉 where λ ∈ C and |ψ〉
is a specified vector. This specified vector is a representative of the ray.

Example 1: Qbit or two level system. H = C2 =

{(
α

β

)
with α, β ∈ C

}
.

The inner product is (γ, δ)

(
α

β

)
= γα+ δβ. In Dirac notation we have

(
α

β

)
= α|0〉+ β|1〉

where |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. Moreover

(γ̄, δ̄) = γ̄〈0|+ δ̄〈1|

and

(γ̄〈0|+ δ̄〈1|)(α|0〉+ β|1〉) = γα〈0|0〉+ γβ〈0|1〉+ δα〈1|0〉+ δβ〈1|1〉 = γα+ δ̄β

Example 2: particle in three dimensional space.H = L2(R3) = {f : R3 →
C,

∫
d3x|f(x)|2 < ∞}. The inner product is 〈f |g〉 =

∫
d3xf(x)g(x) and the

induced norm ||f ||2 = 〈f |f〉1/2 =
∫
d3x|f(x)|2. This space plays a fundamental

role in quantum mechanics but we will not need it in this course, since we deal

only with discrete degrees of freedom.

We will need the notion of tensor product. Let H1 and H2 be two Hilbert

spaces with two finite basis. Let the basis of the first space be |i〉1, i = 1, ..., n1,

dimH1 = n1 and that of the second space |j〉2, j = 1, ..., n2, dimH2 = n2. We

can form the tensor product space

H1 ⊗H2

which is simply the new Hilbert space spanned by the basis vectors

|i〉1 ⊗ |j〉2

(also denoted |i, j〉 or |i〉1|j〉2). There are n1n2 such vectors so

dimH1 ⊗H2 = n1n2

A general element of the tensor product space is of the form

|ψ〉 =

n1∑
i=1

n2∑
j=1

cij |i, j〉 =

n1∑
i=1

n2∑
j=1

cij |i〉1 ⊗ |j〉2
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Lastly we have to say what is the inner product in the product space:

〈i′, j′|i, j〉 = (〈i′|1 ⊗ 〈j′|2)(|i〉1 ⊗ |j〉2) = 〈i′|i〉1〈j′|j〉2

Example 3. For one Qbit the Hilbert space is C2. We will see that the Hilbert

space of two Qbits is C2 ⊗ C2. The basis vectors of C2 ⊗ C2 are {|0〉 ⊗ |0〉,
|0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉} or {|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉}. A general state is

|ψ〉 = α00|0, 0〉+ α01|0, 0〉+ α10|0, 0〉+ α11|1, 1〉

We have dim C2 ⊗C2 = 4 and of course C2 ⊗C2 is isomorphic to C4: However

it is important to stress that in QM the meaning of the first representation is

really that two Qbits are involved : in general it is too difficult (meaningless in

some sense) to do physics in a bad representation. Here a few inner products are

〈0, 0|0, 0〉 = 〈0|0〉〈0|0〉 = 1, 〈0, 1|0, 1〉 = 〈0|0〉〈1|1〉 = 1, 〈0, 1|1, 1〉 = 〈0|1〉〈1|1〉 = 0

etc... From these one can compute the inner product of |ψ〉 and |φ〉 = β00|0, 0〉+
β01|0, 0〉 + β10|0, 0〉 + β11|1, 1〉. We find the natural product of C4, 〈φ|ψ〉 =

β00α00 + β01α01 + β10α10 + β11α11. It is often useful to work in the canonical

basis of C4 
1

0

0

0

0

 = |0, 0〉


0

1

0

0

0

 = |0, 1〉


0

0

1

0

0

 = |1, 0〉


0

0

0

0

1

 = |1, 1〉

Once this (conventional) correspondence is fixed we can infer the rules for ten-

soring vectors in their coordinate representation

(
1

0

)
⊗
(

1

0

)
=


1

0

0

0

 ,

(
1

0

)
⊗
(

0

1

)
=


0

1

0

0



(
0

1

)
⊗
(

1

0

)
=


0

0

1

0

 ,

(
0

1

)
⊗
(

0

1

)
=


0

0

0

1


You can see that in this course the convention is that you multiply the first set

of coordinates by the second vector . All these rules generalize to C2 ⊗C2 ⊗C2

etc...

Cauchy-Schwarz inequality. As usual:

|〈φ|ψ〉| ≤ 〈φ|φ〉1/2〈ψ|ψ〉1/2

Closure relation. Let |i〉, i = 1, ..., n be an orthonormal basis of the n-dimensional
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Hilbert space. Any vector |φ〉 can be expanded as

|φ〉 =

n∑
i=1

ci|i〉, ci = 〈i|φ〉

where the components ci are obtained by projecting |φ〉 over the basis vectors.

The above expansion can be rewritten as

|φ〉 =

n∑
i=1

|i〉〈i|φ〉

Note that |i〉〈i| is the projection operator on vector |i〉. We can view
∑n
i=1 |i〉〈i|

as the identity operator acting on |φ〉, thus we have the closure relation

n∑
i=1

|i〉〈i| = I

This turns out to be a very useful identity for doing practical calculations in

Dirac notation. Note that this identity is simply the spectral decomposition of

the identity.

Observables. In QM observable quantities are represented by linear operators

(matrices) on H. Let us briefly review a few important facts. The map A : H →
H, |ψ〉 → A|ψ〉 is linear if

A(α|φ1〉+ β|φ2〉) = α(A|φ1〉) + β(A|φ2〉)

The matrix elements of A in a basis {|i〉, i = 1, ..., n} of H are denoted by 〈i|A|j〉
or Aij . Given A, the adjoint of A is denoted A† and defined by

〈φ|A†|ψ〉 = 〈ψ|A|φ〉

So the adjoint (or hermitian conjugate) is the operator which has transposed

and conjugate matrix elements. We say that A is self-adjoint (or hermitian) if

A = A†. The later type of operators play a very central role in QM because

observable quantities are represented by self-adjoint operators: the reader can

guess that this must be so because any physical measurement is expressed by a

real number (why ?) and self-adjoint operators have real eigenvalues. The reader

can check that (A+B)† = A† +B† and (AB)† = B†A†.

We will also need the following notations for the commutator

[A,B] = AB −BA

and the anticommutator

{A,B} = AB +BA

Projectors in Dirac notation. The linear operator |i〉〈i| = Pi is the projector
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on the basis vector |i〉. To check that Pi is a projector we need to verify that

P †i = Pi and P 2
i = Pi. Here is how one does it in Dirac notation

P †i = (|i〉〈i|)† = (〈i|)†(|i〉)† = |i〉〈i| = Pi

P 2
i = (|i〉〈i|)(|i〉〈i|) = |i〉〈i|i〉〈i| = |i〉〈i| = Pi

Since |i〉 and |j〉 are orthogonal for i 6= j we have PiPj = PjPi = 0. Indeed

PiPj(|i〉〈i|)(|j〉)(〈j|) = |i〉〈i|j〉〈j|) = 0

PjPi(|j〉〈j|)(|i〉〈i|) = |j〉〈j|i〉〈i|) = 0

Note that if |φ〉 is any vector of the Hilbert space, then Pφ = |φ〉〈φ| is the

projector on |φ〉.

Spectral decomposition. Hermitian operators (matrices) on a Hilbert space

have a spectral decomposition or spectral representation,

A =
∑
n

anPn

where an ∈ R are the eigenvalues and Pn the eigenprojectors ofA. The eigenspaces

of A are spanned by the orthonormal eigenvectors |φnj〉 associated to the eigen-

value an:

A|φnj〉 = an|φnj〉, Pn =
∑
j

|φnj〉〈φnj |

The index j takes into account the possible degeneracy of an. From the orthonor-

mality of the eigenvectors one sees that PnPm = PmPn = 0 for n 6= m. Note that

for given n one always has the liberty to rotate the basis {|φnj〉} in the subspace

of Pn. Moreover we have the closure relation

I =
∑
n

Pn =
∑
n,j

|φn,j〉〈φnj |

We will often write the spectral decomposition as

A =
∑
n,j

an|φnj〉〈φnj |

In the non-degenerate case this becomes simply A =
∑
n an|φn〉〈φn|.

2.2 Principles of quantum mechanics

In this paragraph we explain the 5 basic principles of QM. In a nutshell:

• isolated systems are described by states of a Hilbert space,

• they evolve unitarily with time,

• observable quantities are described by hermitian matrices,
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• measurement is a distinct process from time evolution: it is a random projec-

tion,

• systems can be brought together and composed: their Hilbert space is a tensor

product space.

Their meaning, interpretation and soundness has been debated over the first

half of the 20-th century by the founding fathers of QM and by their followers,

specially the measurement postulate.

Principle 1: states. The state of a quantum system - that is isolated from the

rest of the universe - is completely described by a ray in a Hilbert space. We

require that the representative vector |ψ〉 ∈ H is normalized to one, 〈ψ|ψ〉 = 1.

Example 4.

• To describe the polarization of the photon we take H = C2. States are vectors

in C2, |ψ〉 = α|0〉+β|1〉, |α|2 + |β|2 = 1. For a linearly polarized state |θ〉 =

cos θ|0〉+ sin θ|1〉, for a circularly polarized state |θ̃〉 = cos θ|0〉+ i sin θ|1〉,
and for elliptic polarization cos θ|0〉+ eiδ sin θ|1〉.

• The spin 1
2 of an electron (say) is described by the same Hilbert space.

• For a Benzene molecule the Hilbert space is again the same and is spanned

by the two valence bond states (see chapter 1):

|ψ〉 = α|1〉+ β|2〉

• For a particle in R3 we have H = L2(R3) as explained before. These are called

wave functions and are normalized
∫
d3x|ψ(x)|2 = 1.

Remark. If |ψ〉 is a description of a system then eiλ|ψ〉 is an equally good

description. The global phase λ ∈ R is not an observable quantity and can be

fixed arbitrarily. This is why QM states should really be defined as rays. However

the relative phase of states is observable through interference effects. You might

also wonder what is the difference between spin one-half and photon polarization.

In fact photon polarization states and spin one-half states behave very differently

under spatial rotations of the coordinate system (or the lab). Under a rotation of

the reference frame the state of polarization of a photon behaves like a vector. In

particular under a 2π rotation we recover the same state. On the other hand for

spin one-half behaves as a spinor (sometimes called half-vector) under a rotation

of the reference frame. In particular, under a 2π rotation we recover the opposite

state. In QM the representations of the rotation group (and any other group) on

the Hilbert space does not have to satisfy R(2π) = 1, precisely because states

are rays. Therefore a phase is allowed for R(2π)|ψ〉 = eiλ|ψ〉. All these aspects

of QM will not mater too much in this course so we omit more explanations on

what ”spin” and ”photon polarization” really are. A more profound discussion of

these aspects would require to explain the representation theory of the Lorentz

group of special relativity.
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Principle 2: time evolution. An isolated quantum system evolves with time

in a unitary fashion. This means that if |ψ〉 is the state at time 0, the state at

time t is of the form Ut|ψ〉 where Ut is a unitary operator from H → H. Here

unitary means that U†t Ut = UtU
†
t = 1 or equivalently U−1

t = U†t .

Unitary time evolution forms a group (it is a representation of translations

along the time axis) in the sense that

Ut=0 = I, Ut1Ut2 = Ut1+t2

QM tells us how to compute Ut for a given system: one has to solve the Schroedinger

equation or the Heisenberg equations of motion. These are equivalent in fact. The

first one is the quantum mechanical version of the Hamilton-Jacobi equation of

classical mechanics while the second is the quantum version of the Hamilton

equations of motion. In quantum computation (at least in theory) we do not

bother too much about these equations : we optimistically assume that if we

need a specified Ut then somebody (a physicist, an engineer) will be able to con-

struct a device (an electronic or optical device for example) which realizes the

time evolution U . For us a specified time evolution is a gate that will ultimately

be part of a quantum circuit.

It is very important to realize that time evolution is linear: this is quite sur-

prising because in the classical regime one should get back the classical equations

of motion which are generally non-linear3.

Example 5. A semi-transparent mirror decomposes an incident ray into a re-

flected and a transmitted part (see chapter 1). Let H = C2 the Hilbert space

with basis |T 〉, |R〉. The semi-transparent mirror acts in a unitary way

|T 〉 → H → H|T 〉 =
1√
2

(|T 〉+ |R〉)

|R〉 → H → H|R〉 =
1√
2

(|T 〉 − |R〉)

The unitary matrix H is called a Hadamard gate

H =
1√
2

(
1 1

1 −1

)
One checks that HH† = H†H = 1. If we put two semi-transparent mirrors in

series (see exercises)

|ψ〉 → H → H → H2|ψ〉 = |ψ〉

the output is equal to the input because H2 =

(
1 0

0 1

)
. In other words if the

input state is |T 〉 then the output is also |T 〉. If we wish to take more seriously

into account the effect of the perfect mirrors in-between the semi-transparent
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mirrors, we insert between the two Hadamard matrices the gate X =

(
0 1

1 0

)
|ψ〉 = α|T 〉+ β|R〉 → H → X → H → HXH|ψ〉 = α|T 〉 − β|R〉

Principle 3: observable quantities. In quantum mechanics an observable

quantity (energy, magnetic moment, position, momentum,...) is represented by

a linear self-adjoint operator4 on H. For us this just means a hermitian matrix.

Examples 6.

• Position x, momentum p = ~
i
∂
∂x , energy or Hamiltonian p2

2m + V (x). We will

not need these.

• However we will need things like the polarization of a photon. Suppose we

send a photon in a polarized beam-splitter (see chapter 1). If Dy clicks we

record a −1 while if Dx clicks we record a +1. Our observations can be

described by the observable

P = (+1)|x〉〈x|+ (−1)|y〉〈y|

This is the self-adjoint matrix

(
1 0

0 −1

)
(in the |x〉, |y〉 basis).

• General observables in H = C2 can always be represented by 2× 2 hermitian

matrices

A =

(
α β

β γ

)
or in Dirac notation

A = α|0〉〈0|+ β|0〉〈1|+ β|1〉〈0|+ γ|1〉〈1|

All such matrices can be written as linear combinations of

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)
,

The observables (hermitian matrices !) X, Y , Z are called Pauli matrices.

One of their uses is the description of the spin observable for spin 1
2 par-

ticles: this is a ”vector” with 3 components Σ = (X,Y, Z). In the physics

literature the notation is Σ = (σx, σy, σz). Important properties of these

matrices are

X2 = Y 2 = Z2 = I, XY = −Y X, XZ = −ZX, Y Z = −ZY

and

[X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY

This algebra is a special example of spin or Clifford algebras which play an

important role in QM.
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Principle 4: measurement postulate. This is the most disturbing postulate:

it requires a rather big leap of intuition (or stroke of genius) which goes back

to Max Born (one also speaks of the Born interpretation of the wave function).

Let a system be prepared in a state |ψ〉. The system is to be measured with an

apparatus. The apparatus is modeled by a set of orthonormal projectors {Pn}
satisfying

∑
n Pn = I. A single measurement reduces5 the state ψ of the system

to

|φn〉 =
Pn|ψ〉
||Pn|ψ〉||

=
Pn|ψ〉

〈ψ|Pn|ψ〉1/2

For a single measurement there is no way to predict what will be the specific

outcome n: it is random. If the experiment is repeated many times (assuming

this is a reproducible experiment) one finds that the probability (in a frequentist

interpretation of the term) of the outcome n is

Prob(outcome n) = |〈φn|ψ〉|2 = 〈ψ|Pn|ψ〉

Remark 1. Since
∑
j Pj = I and |ψ〉 are normalized we have

∑
j Prob(outcome j) =

1.

Remark 2. When the eigenprojectors are not degenerate these formulas are

slightly simpler. If Pj = |j〉〈j| the probability of the outcome j is

Prob(outcome j) = 〈ψ|Pj |ψ〉 = |〈j|ψ〉|2

and the state just after the measurement is |j〉.

Consequences for the measurement of observables. This is a very im-

portant point because ultimately one really measures physical quantities. The

above measurement apparatus {Pn} gives the value of any observable of the

form A =
∑
j ajPj . The measurement makes |ψ〉 → |φn〉 for some n. Since

A|φn〉 = an|φn〉 the value of A given by the measurement is precisely an when

the outcome is n. In particular we can know simultaneously the value of many

observables, by measuring them with the same appratus, as long as they have

the same eigenspaces. Such observables commute and are sometimes said to be

compatible.

The average value that the measurement, on the state |ψ〉, will yield can be

calculated from the probability distribution above. One finds∑
j

aj〈ψ|Pj |ψ〉 = 〈ψ|A|ψ〉

and the variance is∑
j

a2
j 〈ψ|Pj |ψ〉 − (

∑
j

aj〈ψ|Pj |ψ〉)2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2

In practice one uses the right hand side of these two formulas. That is basically

all that a theorist can predict.
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After a measurement the state vector is reduced |ψ〉 → |φn〉, for some n, and

thus the expectation value in the new state (i.e |φn〉) becomes an and the variance

0. This means that if we repeat the same measurement on the same state we will

get precisely the value an again and again.

We will return to this point when we will consider the Heisenberg uncertainty

principle.

Example 7: measurement of photon polarization. Suppose we want to

measure the observable P = |x〉〈x| − |y〉〈y| For this we use the apparatus con-

stituted of an analyzer oriented along x and a detector. This apparatus is the

physical realization of the measurement basis. If a photon is detected the state

just after the measurement is |x〉 and if a photon is not detected (it has been

absorbed by the analyzer) the state just after the measurement is |y〉. The prob-

abilities of these outcomes are

Prob(outcome + 1) = |〈x|ψ〉|2, Prob(outcome − 1) = |〈y|ψ〉|2

If the initial preparation of the beam is |ψ〉 = cos θ|x〉+sin θ|y〉 these probabilities

are simply cos2 θ and sin2 θ. Suppose that now we rotate the analyzer by an angle

γ. This means that we wish to measure the observable P = |γ〉〈γ| − |γ⊥〉〈γ⊥|.
then we can compute again the probabilities of the outcomes

Prob(outcome + 1) = |〈γ|ψ〉|2 = cos2(θ − γ)

Prob(outcome − 1) = |〈γ⊥|ψ〉|2 = sin2(θ − γ)

Finally let us note that in the first case the measured observable in matrix form

is

P = Z =

(
1 0

0 −1

)
and in the second

P =

(
cos 2γ sin 2γ

sin 2γ − cos 2γ

)
= (cos 2γ)Z + (sin 2γ)X

Uncertainty principle Suppose that we have a system in a state ψ and we

consider two observables A and B. We assume that these have spectral repre-

sentations

A =
∑
j

ajPj , B =
∑
j

bjQj

As discussed previously in a general state |ψ〉 each of these is not fixed but has an

average value 〈ψ|A|ψ〉, 〈ψ|B|ψ〉 and a standard deviation ∆A =

√
〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2,

∆B =

√
〈ψ|B2|ψ〉 − 〈ψ|B|ψ〉2. The Heisenberg uncertainty relation states that

∆A ·∆B ≥ 1

2
〈ψ|[A,B]|ψ〉
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The interpretation of this inequality as first discussed by Heisenberg is that when

[A,B] 6= 0 it is not possible to measure A and B simultaneously with infinite

precision. If we manage to make ∆A = 0 then we will have ∆B = ∞. The

prototypical and most striking example is A = x (position) and B = p = ~
i
∂
∂x

(momentum). In this case ∆x∆p ≥ h
4π and we cannot measure simultaneously

with infinite precision the position and the momentum of a particle: this is not

a technological limitation but ultimately a “God given” limitation.

Note that if [A,B] = 0 then there exist a common basis of the Hilbert space

in which A and B are both diagonal. Then by measuring in this basis, the

measurement postulate tells us that both observables can be determined with

infinite precision. There is no clash with the uncertainty relation because the

right hand side of the inequality vanishes.

There is a related principle called the ”entropic uncertainty principle” which

we now state. Suppose A and B have non degenerate eigenvalues

A =
∑
na

ana |na〉〈na|

B =
∑
mb

bmb |mb〉〈mb|

Set

H(A) = −
∑
na

p(na) ln p(na), H(B) = −
∑
mb

p(mb) ln p(mb)

where

p(na) = |〈na|ψ〉|2, p(mb) = |〈mb|ψ〉|2

We have

H(A) +H(B) ≥ −2 ln
(1 + maxna,mb |〈na|mb〉|

2

)
Principle 5: composite quantum systems. Suppose we have two systems

A and B with Hilbert spaces HA and HB. The Hilbert space of the composite

system AB is given by the tensor product space

HA ⊗HB

The states of AB are vectors |ψ〉 ∈ HA ⊗HB. The previous postulates apply to

the composite system.

This is also a highly non trivial postulate as will be seen from its consequences

throughout the course. In a famous paper Einstein, Podolsky, Rosen were the

first to make a sharp analysis of its consequences. This has ultimately led to Bell

inequalities and to important primitive protocols of quantum information such

as teleportation and dense coding.
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Example 8. Two photons with polarization degrees of freedom have Hilbert

space C2 ⊗C2. Examples of states are |x〉A ⊗ |y〉B or |x〉A ⊗ |y〉B + |θ〉A ⊗ |θ〉B.

N Qbits live in the space

C2 ⊗C2 ⊗C2 ⊗ ...⊗C2︸ ︷︷ ︸
N copies

If |0〉, |1〉 is a canonical basis for C2, a basis for the composite system is given by

|b1〉 ⊗ |b2〉...⊗ |bN 〉 = |b1, ..., bN 〉

where bi = {0, 1}. There are 2N such states and they are in one to one corre-

spondence with the 2N classical bit strings of length N . A general N Qbit state

is a linear superposition of the basis states:

|ψ〉 =
∑

b1,...,bN

cb1,...,bN |b1, ..., bN 〉

where the coefficients cb1...bN satisfy∑
b1,...,bN

|cb1,...,bN |2

2.3 Tensor product versus entangled states

States of a composite system AB lie in HA⊗HB. We say that a state is a tensor

product state (or is not entangled) if it can be written as

|ψ〉 = |φ〉A ⊗ |χ〉B

An entangled state |ψ〉 ∈ HA ⊗ HB is one for which it is impossible to find

|φ〉A ∈ HA and |χ〉B ∈ HB such that ψ is of the tensor product form.

Entangled states have very special correlations between their parts A and B.

These are genuine quantum correlations with no classical counterpart and as

we will see later in the course they play a very important role (for example in

teleportation). These definitions generalize to multipartite systems.

example 9. Two Qbit system with A⊗B = C2⊗C2. Some product states are :

|0〉A⊗ |0〉B = |0, 0〉, |0〉A⊗ |1〉B = |0, 1〉, |1〉A⊗ |0〉B = |1, 0〉, |1〉A⊗ |1〉B = |1, 1〉.
Two less trivial ones are

1√
2

(|0〉A + |1〉B)⊗ |0〉B =
1

2
(|0, 0〉+ |1, 0〉)

and

1√
2

(|0〉A + |1〉B)⊗ 1√
2

(|0〉B − |1〉B) =
1

2
(|0, 0〉 − |0, 1〉+ |1, 0〉 − |1, 1〉)
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In the same space there are also entangled states that simply cannot be written

as a tensor product form. For example,

1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
1√
2

(|0, 0〉+ |1, 1〉)

1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B) =
1√
2

(|0, 0〉 − |1, 1〉)

1√
2

(|1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B) =
1√
2

(|1, 0〉+ |0, 1〉)

1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |0〉B) =
1√
2

(|0, 1〉+ |1, 0〉)

As we will see these four particular states play a special role and are called Bell

states. The reader can check that they form a basis of the 2 Qbit space.

Production of entangled states. Suppose we have a composite system in

an initial tensor product state |φ〉A ⊗ |χ〉B. These could for example be two

electrons in the spin state | ↑〉 ⊗ | ↓〉. If we let them evolve separately and

without interaction, the unitary operator for the time evolution is of the form

UA ⊗ UB and

UA ⊗ UB(| ↑〉 ⊗ | ↓〉) = UA| ↑〉 ⊗ UB| ↓〉

so that the system remains in a tensor product state.

Thus to produce entangled states systems A and B must interact at some

point in time in order to have an evolution UAB 6= UA⊗UB. With an appropriate

interaction we might be able to achieve

UAB(| ↑〉 ⊗ | ↓〉)

All known physical interactions are local: this means that in order to interact (in

a non-negligible way) two systems must be ”close in space-time”. In particular

if we are presented with an entangled state we know that the two parties have

interacted in the past, i.e they have been ”sufficiently close in the past”.

2.4 No cloning theorem

Classical bits can be copied. For example any latex file can be duplicated or any

text can be copied with a (universal) Xerox machine.

Suppose we have a set of quantum states |ψ〉 ∈ H and we want to build a

(universal) ”quantum Xerox machine” to copy |ψ〉. This machine should be able

to copy any state of H. A quantum Xerox machine should be described by some

unitary operator U (this is true for any physical process except measurement).
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The Hilbert space is composite HA ⊗ HB where A is the quantum file to be

copied and B the duplicated file. We start from the state

|ψ〉 ⊗ |blank〉

and we feed it in the Xerox machine

|ψ〉 ⊗ |blank〉 → U → |ψ〉 ⊗ |ψ〉

In mathematical terms the question is: can one find a unitary operator such that

for a reasonably large set of ψ

U(|ψ〉 ⊗ |blank〉) = |ψ〉 ⊗ |ψ〉

The answer is NO and this is sometimes called the ”no cloning theorem”. However

it is possible to copy a set of orthogonal states with an appropriate U depending

on the set.

Proof of no-cloning theorem. Suppose there exists U such that U†U =

UU† = 1 with

U(|φ1〉 ⊗ |blank〉) = |φ1〉 ⊗ |φ1〉

U(|φ2〉 ⊗ |blank〉) = |φ2〉 ⊗ |φ2〉

conjugating the second equation

(〈φ2| ⊗ 〈blank|)U† = 〈φ2| ⊗ 〈φ2|

Taking the inner product with the first equation

〈φ2| ⊗ 〈blank|U†U |φ1〉 ⊗ |blank〉 = (φ2| ⊗ 〈φ2|)(|φ1〉 ⊗ |φ1〉)

which implies

〈φ2|φ1〉〈blank|blank〉 = 〈φ2|φ1〉2

so

〈φ2|φ1〉 = 0 or 〈φ2|φ1〉 = 1

We conclude that we cannot copy states |φ1〉 and |φ2〉 that are not identical or

orthogonal, with the same U . In fact it is possible to copy a given orthogonal

basis . To see this the reader has to construct a unitary operation that does the

job.

Non orthogonal states cannot be perfectly distinguished. There are many

variants and refinements of the no-cloning theorem. let us just show one such

variant. Suppose we have two states |ψ〉 and |φ〉 and we want to build a (unitary)

machine to distinguish them. We seek a U such that

U |ψ〉 ⊗ |a〉 = |ψ〉 ⊗ |v〉

U |φ〉 ⊗ |a〉 = |φ〉 ⊗ |v′〉
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where the outputs |v〉 and |v′〉 give some information about |ψ〉 and |φ〉. Taking

the inner product of these two equations yields

〈φ| ⊗ 〈a|U†U |ψ〉 ⊗ |a〉 = (〈φ| ⊗ 〈v′|)(|ψ〉〉 ⊗ |v〉)

This implies

〈φ|ψ〉〈a|a〉 = 〈φ|ψ〉〈v′|v〉

If |φ〉 is not orthogonal to |ψ〉 we have 〈φ|ψ〉 6= 0 thus

〈v′|v〉 = 〈a|a〉 = 1

Thus |v〉 = |v′〉 so there is no information in |v〉 and |v′〉 distinguishing |ψ〉 and

|φ〉.



3 Quantum key distribution

One of the first applications of quantum mechanics to the field of information

theory has been the 1984 proposal of Bennett and Brassard for a secure protocol

to distribute a secret key that is common to two distant parties. Since then,

there have been a few other similar protocols and a new field has emerged,

called “quantum cryptography”. In this chapter we limit ourself to the original

protocol - now called BB84 - and to a simpler one found by Bennet in 1992. In a

later chapter we will also give another protocol proposed by Ekert in 1991, and

based on entangled Einstein-Podolsky-Rosen pairs of particles.

The general idea of BB84 is as follows. Alice sends a string of classical bits - the

secret key - to Bob by using intermediate quantum mechanical Qbits (in practice

these are photons transmitted in optic fibers). Any attempt by Eve to capture

some information about the key amounts to observe the Qbits, but according

to the postulates of QM this observation will perturb the quantum system. Alice

and Bob are then able to detect this perturbation, thus the presence of Eve, and

abort communication.

The subject is in fact more complicated because in reality the channel (the

optic fiber) is noisy and it is non-trivial to distinguish Eve from noise. Besides

the operations performed by Alice and bob are not perfect. The proof of security

for BB84 is therefore dependent on precise assumptions on the physical set-up.

It involves a combination of non-trivial methods from classical and quantum

information theory and is beyond the scope of this course. Here we will analyze

only two basic attacks from Eve, assuming the channel is not noisy and the

operations of Alice and Bob are perfect.

Quantum cryptography is not only a theoretical idea. It is also a truly experi-

mental subject since the protocols have been implemented and shown to work in

the laboratory (first at IBM in 1989 over a distance of 32 cm) and later outside

the lab on distances of few tens to hundreds of kilometers (Geneva, Los Alamos

...). See [?] for a general review. Nowadays there exist companies proposing com-

mercial systems1. Recent implementations allow the exchange of secret keys over

a distance of 100km (resp. 250km) at a rate of 6000 (resp. 15) bits per second.

require extensive knowledge of optics and will not be discussed here. Recently

the commercial systems have been challenged by a hacking procedure exploiting

the physical limitations of photo-detectors on Bob’s side.

1 Idquantique, MagiQ
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ALICE
BOB

EVE

travelling Qbits

and her polarizers

and his analysers

D

and 
photodetector

in optic fiber

Figure 3.1 Alice and Bob exchange a private key over an optic fiber

Figure 3.2 orientations of polarizer for preparation of photons in Z basis

3.1 Key generation according to BB84

There are four essential phases: the encoding procedure of Alice, the decoding

procedure of Bob, a public discussion between the two parties, and finally the

common secret key generation. Figure 3.1 illustrates the general set-up described

below.

Encoding procedure of Alice. She generates a classical random binary string

x1, ..., xN , xi ∈ {0, 1} that she keeps secret. The common key will be a subset of

these bits. She also generates a second classical random binary string e1, ..., eN ,

ei ∈ {0, 1} that she keeps secret for the moment. Alice then encodes the classical

bits xi into Qbits as follows:

• For ei = 0 she generates a Qbit in the state |xi〉. Concretely this can be done

by sending a beam through a polarizer in the Z basis (figure 3.2){
|0〉, |1〉

}
For xi = 0 (resp. xi = 1) the polarizer is oriented horizontally (resp.

vertically) and so photons are prepared in polarization state |0〉 (resp. |1〉).
A single photon is then selected from the outgoing beam (this of course is

an idealization)

• For ei = 1 she generates a Qbit in the state*2 H|xi〉. Concretely this can be

2 We remind the reader that H is the Hadamard matrix

(
1 1
1 −1

)
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Figure 3.3 orientations of polarizer for preparation of photons in X basis

D

Figure 3.4 analyzer-detector set-up for the measurement of polarization in Z basis

done by sending photons through a polarizer in the X basis (figure 3.3{ 1√
2

(|0〉+ |1〉), 1√
2

(|0〉 − |1〉)
}

For xi = 0 (resp,. xi = 1) the polarizer is rotated to the right (resp.

left) and photons are prepared in polarization state 1√
2
(|0〉 + |1〉) (resp.

1√
2
(|0〉+ |1〉)).

Summarizing, Alice sends a string of Qbits |Aei,xi〉 = Hei |xi〉, i = 1, ..., N

through a channel (in practice the channel is an optical fiber).

Decoding procedure of Bob. Bob generates a random classical binary string

d1, ..., dN , di ∈ {0, 1} that he keeps secret for the moment. He decodes the

received Qbits of Alice as follows:

• If di = 0 he performs a measurement of the received Qbits |Aei,xi〉 in the Z

basis {
|0〉, |1〉

}
.

The photon state after the measurement

|yi〉 ∈ {|0〉, |1〉}.

is recorded in the bit yi. To do this concretely he uses the analyzer-

detector apparatus described in the first chapter: the analyzer is placed

horizontally (figure 3.4); if the detector clicks this means the photons state

has collapsed in the |0〉 state and if the detector does not click, it means

that the photon state has collapsed to |1〉. We stress that, according to the

measurement postulate, these outcomes are truly random. Only Bob knows

about them.
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D

Figure 3.5 analyzer-detector set-up for the measurement of polarization in X basis

• If di = 1 he performs a measurement of the received Qbits |Aei,xi〉 in the X

basis { 1√
2

(|0〉+ |1〉, 1√
2

(|0〉 − |1〉
}
.

The photon sate after the measurement is in

H|yi〉 ∈
{ 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)

}
When the output is H|yi〉, and he records the bit yi.

To do this concretely he uses the analyzer-detector apparatus described

in the first chapter: the analyzer is rotated to the right (figure 3.5) at 45

degrees; if the detector clicks this means the photons state has collapsed

in the H|0〉 state while if the detector does not click it means that the

photon state has collapsed to H|1〉. We stress again that, according to the

measurement postulate, these outcomes are truly random and that only

Bob knows about them.

In summary Bob has decoded the Qbits sent by Alice to a classical binary string

y1, ..., yN . This string is the outcome of measurements of Bob and cannot be

predicted (God does play with dice ... the statistics of the outcomes can however

be calculated according to the measurement postulate).

Public discussion. Alice has at her disposal two binary strings: e1, ..., eN used

to choose the encoding basis, and x1, ..., xN that was mapped to Qbits. Bob

also has two binary strings: d1, ..., dN used to choose a measurement basis and

y1, ..., yN that are his measurement outcomes.

Alice and Bob compare e1, ..., eN and d1, ..., dN over a public channel, but keep

their two other strings x1, ..., xN and y1, ..., yN secret. It important that the public

discussion starts only after Bob has finished his measurements. They can deduce

the following information (and anybody else hearing the public discussion also

can):

• If di = ei, i.e. if they used the same basis, then it must be the case that

yi = xi (the reader should convince himself of that by going through some

examples with polarizer, analyzer pairs - basically if Bob and Alice used

the same basis it is as if they lived in a classical world).

• If di 6= ei, i.e. if they did not use the same basis, then genuine quantum effects
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came into play when Bob did the measurement. According to the measure-

ment postulate: yi 6= xi with probability 1
2 and yi = xi with probability 1

2 .

Let us formally prove this. Bob receives the Qbit

|Aei,xi〉 = Hei |xi〉

and measures in the basis

{Hdi |0〉, Hdi |1〉}.

The outcome will be one of two basis states

Hdi |0〉, with prob |〈0|HdiHei |xi〉|2

or

Hdi |1〉, with prob |〈1|HdiHei |xi〉|2.

The reader can check that for ei 6= di both probabilities are equal to 1
2

(and that for ei = di they are 0 and 1).

Key generation. Bob and Alice erase all bits xi and yi corresponding to i such

that ei 6= di. They keep the remaining sub-strings of x1, ..., xn and y1, ..., yn such

that ei = di. They are assured that these two sub-strings are identical, so this

can potentially constitute the common secret key. The length of this sub-string

is close to N
2 since prob(ei 6= di) = 1

2 . Finally Alice and Bob perform a security

test: according to quantum mechanics for this perfect setting (without noise or

Eve) one must have

prob(xi = yi|ei = di) = 1

Alice and Bob test this by exchanging a small fraction of the common sub-string

over the public channel. If the test succeeds they keep the rest of the common

sub-string secret: they have succeeded in generating a common secret key.

3.2 Attacks from Eve

We assume that Alice has a perfect single-photon source, state preparation is

perfect, there is no channel noise, Bobs analyzer-detector apparatus makes no

detection errors. In summary when Eve is absent communication is error-free,

and any error discovered in the security test would come from Eve. Furthermore

we suppose that Eve may attack by performing operations on one Qbit at a time

on captured photons along the optic fiber and that she has no access to the Alice

and Bob’s labs. We also suppose that Eve has perfect knowledge of the set-up

in Alice and Bob’s labs: she knows that they use X and Z basis (but not the

successive random basis choices), she knows what is their common vertical and

horizontal directions, and the timing of the photons.

We consider two possible attacks : “the measurement” and “unitary” attacks.



3.2 Attacks from Eve 41

Alice Bob

capture and 
measure in
X or Z basis

capture and 
copy with
Ux or Uz 

(process) photon

and forward

(process) photon

and forward

Eve has a copy of Bob and Alice labs

Figure 3.6 Set up of Eve’s lab along the optic fiber

The two attacks consist of two steps. First Eve captures a photon, and second

she forwards the photon to Bob (see figure 3.6). For each attack we will see that

the basic postulates of QM imply that Bob and Alice discover the presence of

Eve. when this is the case they abort the protocol.

Measurement attack. Suppose Eve captures a single photon in the optic fiber.

The captured photon is in one of the the states

|Aei,xi〉 ∈
{
|0〉, |1〉, H|0〉, H|1〉

}
and she tries to measure it. If Eve uses the Z basis her outcome is in {|0〉, |1〉}
and according to it she records a bit yEi ∈ {0, 1}. If she uses the X basis her

outcome is in {H|0〉, H|1〉} and she records a corresponding bit yEi ∈ {0, 1}.
Once she has finished the measurement she sends the photon to Bob in the state

left over by the measurement3. Two possibilities may occur:

• Eve has used the same basis than Alice: then her outcome is yEi = xi and the

photon state received by Bob is the “correct one”.

• Eve uses a different basis than Alice: then her outcome yEi = xi only half of

the time, so she sends the ”correct“ photon state to Bob only half of the

time.

Let us see what Alice and Bob find when they perform the security test. Denote

by EA the event ”Eve uses the same basis than Alice“.

prob(xi = yi|ei = di) = prob(xi = yi|ei = di, EA)prob(EA)

+ prob(xi = yi|ei = di,notEA)prob(notEA)

= 1 · prob(EA) +
1

2
· (1− prob(EA))

=
1

2
(1 + prob(EA))

3 She could also further process this state by a unitary transformation but this will not

improve her performance
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where we used

prob(xi = yi|ei = di, EA) = 1, prob(xi = yi|ei = di,not EA) =
1

2
(3.1)

Assuming that Eve has no information about the basis choices of Alice we take

prob(EA) = 1
2 . Then

prob(xi = yi|ei = di) =
3

4

so that Alice and Bob notice that when they used the same basis about a fourth

of their bits do not agree. They conclude that an eavesdropper is at work and

abort the communication.

Unitary attack. The problem of Eve is that when she makes a measurement

she has no information about the basis that Alice chose. One possible solution

would be to copy the traveling Qbits |Aei,xi〉, then let the original state go to

Bob, and keep the copy. When Alice and Bob enter in the public discussion phase

she learns about the basis of Bob in which to measure the Qbit and thus for i

such that ei = di she gets the same outcome as Bob yEi = yi = xi.

However the no-cloning theorem (which is a consequence of the unitary evo-

lution postulate) guarantees that there does not exist a unitary ”machine“ such

that

U(|Aei,xi〉 ⊗ |blank〉) = |Aei,xi〉 ⊗ |Aei,xi〉

The point here is that |Aei,xi〉 is one of

{|0〉, |1〉, 1√
2

(|0〉+ |1〉), 1√
2

(|0〉 − |1〉)}

which is a set of non-orthogonal states.

Eve could try to use two copy machines: one for copying the two states of the

Z basis and another for copying the two states of the X basis. But this time she

has no way of knowing which machine to use. She will use the wrong machine

half of the time and again Alice and Bob will find that

prob(xi = yi|ei = di) =
3

4

Discussion of security issues. In the above error-free set-up it is relatively

easy to generalize the proof of security in order to take into account any local

operation of Eve on single photons. In a more realistic context one has to take

into account the fact that the system is noisy. For example the optic fiber is

not perfect and the photo-detectors may give false counts. Therefore the string

sequences of Alice and Bob do not match perfectly even when ei = di. For this

reason one adds to the protocol two classical post-processing steps: information

reconciliation and privacy amplification. Both steps are carried on the public

classical channel. The first step is an error correcting phase while the second

allows to reduce the information that Eve might have gained about the key during
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the correction phase. The detailed analysis is non-trivial and the interested reader

may consult the literature [?].

There are various problems that may arise due to physical limitations that do

not quite enter into the framework of the security proofs. Recently a successful

attack was implemented [?] by exploiting the fact that after a photo-detector

click, the detectors enter in a mode were they operate classically. By shining

light on them Eve is able to maintain them in a classical mode and in effect

the Eve-Bob part of the transmission line is in effect classical. In this Eve can

achieve complete control of the key.

3.3 The Bennett 1992 scheme

The analysis of BB84 has shown that the security ultimately relies on the fact

that Alice encodes Qbits in non-orthogonal states. The B92 scheme retains this

very fact and is even simpler than BB84. Below we just sketch the main idea.

There are again four main phases:

Alice encodes. Alice prepares a random binary string e1, ..., eN . She sends to

Bob |Aei〉 = |0〉 if ei = 0 and |Aei〉 = H|0〉 = 1
2 (|0〉+ |1〉) if ei = 1. The encoding

is thus Hei |0〉.

Bob decodes. Bob generates a random binary string d1, ..., dN and measures

the received Qbit according to the value of di in the Z or X basis and obtains

an outcome in {|0〉, |1〉} or in {H|0〉, H|1〉}. He decodes the bit as yi = 0 if the

outcome is |0〉 or H|0〉 and yi = 1 if the outcome is |1〉 or H|1〉.

Public discussion. Bob announces over the public channel the bits yi. Note

that when ei = di we have yi = 0 with probability 1. On the other hand when

ei 6= di we have yi = 0 with probability 1
2 and yi = 1 with probability 1

2 .

Therefore from the public discussion Alice and Bob deduce that, given yi = 1,

surely di = 1− ei.

Key generation. Alice and Bob keep the secret bits (ei, di = 1− ei) for i such

that yi = 1 and discard the rest. The length of this sub-string is about N
2 . they

perform a security test on a fraction of the sub-string on the public channel by

checking that

prob(di = 1− ei|yi = 1) = 1

Again it is not hard to check that this security condition is violated under a

measurement or a unitary attack of Eve. If that is the case Alice and Bob abort

communication.
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Figure 3.7 unforgeable bank note: it buys one Schroedinger cat

3.4 Conjugate coding

In the encoding method of Alice above the two basis that are used correspond

to the basis diagonalizing the two Pauli matrices

Z =

(
1 0

0 −1

)
, X =

(
0 1

1 0

)
(3.2)

These two observables do not commute and are called conjugate observables by

analogy with position and momentum; therefore the two basis are sometimes

called conjugate and the corresponding scheme called conjugate coding.

In fact this scheme was first introduced in 1969 by Wiesner then a gradu-

ate student. Wiesner, basing himself on the principles of QM, indicated how to

”fabricate unforgeable bank notes“. Unfortunately nobody took him seriously,

except for Bennett then also a graduate student, and his paper didn’t get pub-

lished till*4 1983. Bennett was one of the few persons who kept thinking about

such problems and, with Gilles Brassard a computer scientist, had the idea to

reconsider conjugate coding in the context of cryptography.

Let us briefly explain the original idea of Wiesner. One generates a random bi-

nary string e1, ..., e20, and prepares 20 photons in |0〉, |1〉 or 1√
2
(|0〉+|1〉), 1√

2
(|0〉−

|1〉), polarization states using Z or X polarizers. Then one traps the 20 photons

in 20 small cavities inside the bank note. The bank note also contains a readable

serial number which corresponds to the binary string e1, ..., e20. Only the bank

knows what is the mapping between the serial number and the binary string (see

figure 3.7).

Suppose somebody attempts to copy the bank note. Because of the no-cloning

theorem there is no single machine U which copies simultaneously vertical and

diagonal photon polarizations. If one uses two different machines one will make

mistakes (with prob 1 − 2−20) because one doesn’t know when to use a UZ
or a UX . Moreover the bank can check if a bank note has been forged or not.

Indeed from the serial number it deduces the binary string e1, ..., e20 and therefore

4 around 1982 quantum computation came into fashion because of an equally pioneering

work of Feynman
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knows the basis sequence used to prepare the photons. A measurement in the

correct basis (for each little cavity) is done to observe if the photons have the

correct polarization. Note that if the bank note has not been forged it will not be

destroyed by such a procedure. To summarize, one may say that the bank knows

what exact sequence of analyzers to use so that the system behaves classically

for the bank. For any other person that does not possess this information the

system behaves quantum mechanically.



4 Quantum entanglement

In this chapter we study the nature of a special type of correlation displayed by

the entangled states. These correlations have no classical counterpart, in other

words, they cannot be described by classical probability distributions. They are

genuine quantum mechanical correlations built up in the states of composite

quantum systems.

We first take a close look at the so-called Bell states which violate the fa-

mous Bell inequalities1. These states display the essence of entanglement and

the CHSH inequality provides an experimentally testable signature of it. We

then describe three applications: a quantum key distribution protocol (Ekert

1991), quantum teleportation and dense coding. We stress here that all three of

them have been experimentally realized, and form important primitive protocols

for quantum communication.

In quantum information processing one tries to use entanglement as a quantifi-

able resource, much like energy or information, and it would be very convenient

to be able to measure the degree or quantity of entanglement. Finding such a

measure is however non-trivial. We will come back to this point in later chapters.

4.1 Bell states

Production of Bell states. We have seen in chapter 2 that in order to pro-

duce entangled states the Qbits must “interact”, at some point in time. The

prototypical example of entangled states are the Bell states which form a basis

of C2 ⊗ C2. These can be produced from the unitary gate

U = (CNOT )(H ⊗ I) (4.1)

This is a 4×4 matrix equal to the usual matrix product of the two 4×4 matrices

CNOT and H ⊗ I. The Control Not gate provides the interaction between the

two bits. It is defined as the NOT gate acting on the second bit provided the

first one2 equals 1

CNOT |x, y〉 = |x, y ⊕ x〉
1 There is a class of such inequalities named after John Bell who derived the first ones. In

this chapter we derive the more transparent Clauser-Horne-Shimony-Holt (CHSH)

inequality.
2 called the control bit
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Figure 4.1 Quantum circuit producing Bell states.

The matrices H and I are the usual 2× 2 Hadamard and identity matrices. The

circuit representation of the unitary gate U = (CNOT )(H ⊗ I) is depicted in

figure 1.

Let us calculate the action of this circuit on a tensor product state |x〉⊗ |y〉 =

|x, y〉.

(CNOT )(H ⊗ I)|x, y〉 = (CNOT )
1√
2

(
|0〉+ (−1)x|1〉

)
⊗ |y〉

=
1√
2
CNOT |0, y〉+

(−1)x√
2
CNOT |1, y〉

=
1√
2
|0, y〉+

(−1)x√
2
|1, y ⊕ 1〉)

= |Bxy〉

More explicitly we have

|B00〉 =
1√
2

(
|00〉+ |11〉

)
= U |00〉

|B01〉 =
1√
2

(
|01〉+ |10〉

)
= U |01〉

|B10〉 =
1√
2

(
|00〉 − |11〉

)
= U |10〉

|B11〉 =
1√
2

(
|01〉 − |10〉

)
= U |11〉

These four states are a unitary “rotation” of the four canonical basis states of

C2 ⊗ C2 and thus also form a basis, called the Bell basis.

Here the interaction is effected by the CNOT gate: building such a gate in

a laboratory requires bringing two particles supporting the Qbits |x〉 and |y〉
close enough in space and time (interactions are local). Photons do not interact

directly with one another (Maxwell equations are linear) but they can interact

indirectly through their direct interaction with matter (one speaks of non-linear

optics). Localized sources producing pairs of entangled photons are excited atoms

or nuclei, emitting photons when they fall in their ground state. Electron spin

can also be entangled because the combination of the Coulomb interaction with
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Figure 4.2 Alice and Bob share an entangled pair.

the Pauli principle can produce special magnetic correlations. In fact this kind

of entanglement is very common place: in a hydrogen molecule the spin part of

the chemical valence bond*3 between two hydrogen atoms is the state

|B11〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

The reader should check that

|B00〉 =
1√
2

(
|00〉+ |11〉

)
=

1√
2

(
|γγ〉+ |γ⊥γ⊥〉

)
(4.2)

where |γ〉 is any state of C2. This has remarkable consequences as the following

discussion will show. For the sake of the argument we suppose that Alice has

captured one photon in her lab and Bob has captured the other photon in his

lab (figure 2). Irrespective how remote the two labs are, it is always true that

the two photons have come from a common localized source. Now we look at

the outcome of several simple measurements that Alice and Bob might do each

in their own lab. We are assuming that they cannot communicate the outcomes

of these measurements. We will consider the three specific situations where: Al-

ice measures first/Bob measures after; Bob measures first/Alice measures after;

Alice and Bob measure simultaneously4.

• Alice measures first and Bob after. The “measurement apparatus” of Alice is

formed by the projectors {|α〉〈α|⊗I, |α⊥〉〈α⊥|⊗I} so that, according to the

measurement postulate, the Bell state collapses on one of the projections

(remember we have to normalize after projecting)

|α〉〈α| ⊗ I|B00〉 =
1√
2
|αα〉 → |α〉 ⊗ |α〉, with prob

1

2

|α⊥〉〈α⊥| ⊗ I|B00〉 =
1√
2
|α⊥α⊥〉 → |α⊥〉 ⊗ α⊥〉, with prob

1

2

3 the anti-symmetry of the spin part allows the orbital part to be in the symmetric

energetically favorable state (Heitler-London theory)
4 For definiteness we have in mind a Galilean picture of space-time. However the discussion

is essentially the same for a relativistic picture for space-time.
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Therefore Alice observes her photon in the collapsed state |α〉 or |α⊥〉. Bob,

on his side, does not know anything, and doesn’t even know that Alice has

performed measurements ! In order for him to learn something he can try

to perform a measurement on his photon. But he has to choose a basis

{|β〉, |β⊥〉}. Given that his photon is in the state |α〉, his photon collapses

to |β〉 with prob cos2(α − β) or to |β⊥〉 with prob sin2(α − β). Similarly,

given that his photon is in the state α⊥ we get the same result with cos2

and sin2 interchanged. The fact that Bob does not know the initial state of

his photon or that he does not even known what Alice has done should not

bother you: the point is that he does a specific experiment (measurement

in the β, β⊥ basis) and finds a net outcome. The net outcome in Bob’s lab

is that the photon is in the state |β〉 with prob 1
2 or |β⊥〉 with prob 1

2 .

• Bob measures first and Alice after. The same discussion shows that, if Bob

performs measurements first (in the β, β⊥ basis) while Alice sleeps and

Alice measures after (in the (α, α⊥ basis) the net outcome of each party is

the same.

• Bob and Alice measure simultaneously. You might think (?) that if both parties

perform simultaneous local measurements the whole scenario is different.

Let us try. Suppose Alice and Bob perform simultaneous measurements in

the basis

{|α, β〉, |α, β⊥〉, |α⊥, β〉, |α⊥, β⊥〉}

The Bell state

|B00〉 =
1√
2

(|00〉+ |11〉) =
1√
2

(|γγ〉+ |γ⊥γ⊥〉)

will collapse to one of the four basis states. So Alice will be in possession of a

photon in state |α〉 or |α⊥〉 and Bob in possession of a photon in the state |β〉
or |β⊥〉. The situation is exactly the same than in the previous situations !

It is very instructive to compute the probabilities of the respective collapsed

states (which are nothing else than the basis states). One finds that these

are5

1

2
cos2(α− β),

1

2
sin2(α− β),

1

2
sin2(α− β),

1

2
cos2(α− β)

Alice finds that the probability of her outcomes |α〉 (resp |α⊥〉)

1

2
cos2(α− β) +

1

2
sin2(α− β) =

1

2

(for both cases) as in the previous scenarios; and the same holds true for

Bob. Therefore the conclusions that Alice and Bob infer from their simulta-

neous local measurements are the same than in the non-simultaneous cases

above.

5 fortunately independent of γ
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Figure 4.3 Galilean space-time: B is in the future of A (left); B and A are
simultaneous (right). Minkowski space-time: the slopes of the light-cones equal 1/c (in
natural relativistic units the speed of light is c = 1 as on the picture). B is in the
future light cone of A (left); B and A are space-like separated and cannot be causally
related. Note that for c→ +∞ the slope of the light cone vanishes and one recovers
the Galilean picture.

To summarize the situation, we see that when Alice and/or Bob perform suc-

cessive or simultaneous local measurements on their photons, whatever is their

choice of basis they find the photon in one of the two chosen basis states with

probability 1
2 . In other words the entropy of the probability distribution of their

local outcomes is maximal (it equals ln 2 bits) and they may infer that their

photon is in a “maximally disordered state“. In fact if they don’t know that the

source produced an entangled pair or if nobody tells them that the two photons

are entangled they have no way of even noticing that the pair is entangled. It

seems that we have no way of knowing if we are entangled to some distant parts

in the universe, just by performing local experiments in our part of the universe.

We will see in the next section that Alice and Bob can assert that their photons

are entangled if they are allowed to communicate. Here by communicate we mean

the perfect or approximate transmission of a message.

Let us also point out that here we have discussed the situation having in

mind a Galilean picture of space-time. In other words the meaning of the words

”before”, ”simultaneous” and ”after” is the ”usual” one. However this is only

an approximation and one might question if a proper account of Minkowskian

space-time (see figure 4.3) would change our conclusions. According to the theory

of special relativity these words are relative to each observer’s frame of reference.

What has an absolute meaning is the space-time interval which may be space-like,

time-like (or zero). If the local measurement events (events are points in space-

time) of Alice and Bob are separated by a space-like vector there cannot possibly

be a causal connection between the events, and in particular it is guaranteed

that Alice and Bob cannot establish a classical communication link during the

experiment. On the other hand if the measurement events are separated by a

time-like vector it is conceivable that there is a causal connection between the

events, however unless Alice and Bob set up such a communication link, there
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Figure 4.4 Experimental set up

is no reason to believe that there is a causal connection between the outcomes

since they are exactly the same as in the case of space-like separation.

4.2 Bell inequalities and Aspect experiment

We saw in the last section that if there is no communication between Alice

and Bob they can only infer that the photons are in a maximally disordered

state. In this section we will see that by doing repeated measurements and by

communicating the results afterwards, Alice and Bob can assert if the state

produced by the source is entangled or not.

The procedure that we are going to describe was initially invented by John

Bell, and motivated by a famous paper of Einstein-Podolsky-Rosen. The later

claimed that the entangled states do not provide a ”complete“ description of the

correlations present in the system, and where seeking a ”classical“ theory of these

correlations. Bell’s approach to the problem is to try to decide if the correlations

in a real pair of entangled photons (produced by an excited atomic source say)

can be described or cannot be described by a classical theory. The general idea

is that if a pair of photons is described by a classical theory then appropriate

correlation functions of the measurements of Alice and Bob satisfy very special

constraints. These constraints are violated if the pair is described by a quantum

mechanical Bell state. We will see that Bell’s approach is able to discriminate

between a huge set of classical theories and QM. Famous experiments of Aspect-

Grangier-Roger have shown that standard QM wins!

The experimental protocol. A source S produces, at each instant of time

n, a pair of photons. We do not have any prejudice as to what is the state or

the description of the pair. One photon flies to Alice’s lab and the other flies to

Bob’s lab. In each lab our two protagonists operate independently: they do not

communicate and do not care what the other one does.

• At each time instant n, Alice randomly uses analyzers

{|α〉, |α⊥〉} or {|α′〉, |α′⊥〉}
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to measure the polarization of her photon. When she records a click in the

detector she sets an = +1 or a′n = +1 and when the detector does not

click she sets an = −1 or a′n = −1. She keeps track of her choices for the

analyzer at each n.

• At each time instant n, Bob randomly uses analyzers

{|β〉, |β⊥〉} or {|β′〉, |β′⊥〉}

to measure the polarization of his photon. When he records a click in the

detector he sets bn = +1 or b′n = 1 and when the detector does not click

he sets bn = −1 or b′n = −1. He keeps track of his choices of analyzers for

each n.

• Now there is a classical communication phase. Alice and Bob meet and discuss

all their measurements. They classify them according to the four experimen-

tal setups. At each time instant n the possible arrangements of analyzers

were

1 = (α, β), 2 = (α, β′), 3 = (α′, β), 4 = (α′, β′)

For each arrangement they compute the following empirical averages

1

N1

∑
n1

an1bn1 ,
1

N2

∑
n2

an2b
′
n2
,

1

N3

∑
n1

a′n3
bn3 ,

1

N4

∑
n4

a′n4
b′n4

Then they compute the following correlation function

Xexp =
1

N1

∑
n1

an1
bn1

+
1

N2

∑
n2

an2
b′n2
− 1

N3

∑
n1

a′n3
bn3

+
1

N4

∑
n4

a′n4
b′n4

Prediction of classical theories. We assume that the quantities that Alice

and Bob measure correspond to well defined observables A, A′, B, B′ that have

simultaneous definite values a, a′, b, b′ independently of any measurement. Ba-

sically, this is analogous to saying that a particle has a definite position and

velocity (here analogous to a and a′) even when these quantities are not ob-

served or measured. Furthermore, we assume that the outcomes of Alice and

Bob can be modeled by a joint probability distribution6

Pclass(a, a
′, b, b′)

Here by a, b, a′ and b′ we mean the random variables modeling the measurement

outcomes. The expectation with respect to Pclass is denoted by Eclass. The

corresponding theoretical prediction for each empirical average above is

Eclass[ab], Eclass[ab
′], Eclass[a

′b], Eclass(a
′b′)

and using only the linearity of expectation

Xclass = Eclass[ab+ ab′ − a′b+ a′b′]

6 This assumption follows from ”local realism“ as explained in the next paragraph.
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Notice that

ab+ ab′ − a′b+ a′b′ = a(b+ b′) + a′(b′ − b)

and that

−2 ≤ a(b+ b′) + a′(b′ − b) ≤ 2

Indeed if b = b′ then only the first term survives which leads to the inequality;

while if b 6= b′ only the second term survives which again leads to the inequality.

Thus we have for the expectation,

−2 ≤ Xclass ≤ 2

This is one of the simplest Bell type inequalities which was derived by Clauser-

Horne-Shimony-Holt and is called the CHSH inequality.

In order to derive this result we haven’t assumed anything about the state of

preparation of the source. We have only assumed that the experimental results

can be cast into a joint probability distribution. In fact this is not a priory so

obvious. There are four experimental arrangements so that when Alice and Bob

meet they have four histograms that can be fitted to 4 probability distributions:

P1(a, b), P2(a′, b), P3(a, b′), P4(a′, b′)

Are these the marginals of a common Pclass(a, a
′, b, b′) ? It is not a priory clear

that, in this experiment, nature gives us histograms that are marginals of a

common joint distribution. In fact this is not always the case. Indeed any of us

can construct four probability distributions that are not marginals of a common

one, and this is an outcome of our brains (viewed as a physical systems). So why

is the assumption leading to the CHSH inequality very reasonable ? We answer

this question below, but do not attempt to provide the most general argument.

Let us admit that the laws of physics are ”local”. By this we mean that when

Alice (resp. Bob) perform measurements that are space-like separated Alice’s

experimental outcomes (resp. Bob’s) depend only on her own local choice of

analyzers. As far as we know, this is an assumption that underlies all the known

(i.e. experimentally verified) fundamental laws of physics.

Furthermore let us suppose, following our classical intuition, or following Ein-

stein, that the outcomes of experiments should be well defined preexisting func-

tions of the system state and the experimental set-up. This is sometimes called

”realism“.

Moreover the results of the measurement in Alice’s and Bob’s labs should only

depend on the ”local“ set-up of the experiment. In particular the measurements

of alice and Bob do not influence each other.

In mathematical terms ”local realism“ means that there should be a function,

such that

a = fA(α;λ), a′ = fA(α′;λ), b = fB(β;λ), b′ = fB(β′;λ)

Here λ is a set of variables accounting for the state of the system and whatever is
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needed to compute the experimental outcome. It has become customary to call

them ”hidden variables”.

More generaly one can deal with random measurement results modelled by

probability distributions: pA(a|α, λ), pA(a′|α′, λ), pB(b|β, λ), pB(b′|β′, λ). The

previous model corresponds to have pA(a|α, λ) = δ(a − fA(α, λ). The conclu-

sions are however the same (this is interesting because it shows that it is not

determinism that is at stake here).

The hidden variables may be random or deterministic7 and their set of values

is described by a probability distribution h(λ). According to ”local realism“ the

histograms of Alice and Bob are modeled by

P1(a, b) =

∫
dλh(λ)pA(a|α, λ)pB(b|β, λ)

P2(a, b′) =

∫
dλh(λ)pA(a|α, λ)pB(b′|β′, λ)

P3(a′, b) =

∫
dλh(λ)pA(a′|α′, λ)pB(b|β, λ)

P4(a′, b′) =

∫
dλh(λ)pA(a′|α′, λ)pB(b′|β′, λ)

Evidently these are the marginals of a joint probability distribution

Pclass(a, a
′, b, b′) =

∫
dλh(λ)pA(a|α, λ)pA(a′|α′, λ)pB(b|β, λ)pB(b′|β′, λ)

Prediction of QM for a Bell state. First of all we notice that according to

the quantum formalism the measurements of Alice and Bob are measurements

of the 4 observables (hermitian matrices)

A = (+1)|α〉〈α|+ (−1)|α⊥〉〈α⊥|, A′ = (+1)|α′〉〈α′|+ (−1)|α′⊥〉〈α′⊥|

and

B = (+1)|β〉〈β|+ (−1)|β⊥〉〈β⊥|, B′ = (+1)|β′〉〈β′|+ (−1)|β′⊥〉〈β′⊥|

At each time instant n the state of the photon pair is described by some ket

|Ψ〉 ∈ C2⊗C2. The quantum mechanical prediction for the four empirical averages

of Alice and Bob is

〈Ψ|A⊗B|Ψ〉, 〈Ψ|A⊗B′|Ψ〉, 〈Ψ|A′ ⊗B|Ψ〉, 〈Ψ|A′ ⊗B′|Ψ〉

and for the correlation function

XQM = 〈Ψ|A⊗B|Ψ〉+ 〈Ψ|A⊗B′|Ψ〉 − 〈Ψ|A′ ⊗B|Ψ〉+ 〈Ψ|A′ ⊗B′|Ψ〉

Now let us compute this quantity for the Bell state

|Ψ〉 = |B00〉
7 in this case the distribution is simply a Dirac h(λ) = δ(λ− λ0)
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Figure 4.5 Optimal choice of analyzer orientation

The first average is best computed by expressing the Bell state as 1√
2
(|αα〉 +

|α⊥α⊥〉).

〈B00|A⊗B|B00〉 =
1

2
〈αα|A⊗B|αα〉+

1

2
〈α⊥α⊥|A⊗B|α⊥α⊥〉

+
1

2
〈αα|A⊗B|α⊥α⊥〉+

1

2
〈α⊥α⊥|A⊗B|αα〉

=
1

2
〈α|A|α〉〈α|B|α〉+

1

2
〈α⊥|A|α⊥〉〈α⊥|B|α⊥〉

=
1

2
· 1 ·

(
|〈α|β〉|2 − |〈α|β⊥〉|2

)
+

1

2
· (−1) ·

(
|〈α⊥|β〉|2 − |〈α⊥|β⊥〉|2

)
=

1

2

(
cos2(α− β)− sin2(α− β)

)
− 1

2

(
sin2(α− β)− cos2(α− β)

)
= cos2(α− β)− sin2(α− β) = cos 2(α− β)

Performing similar calculations for the other averages we find

XQM = cos 2(α− β) + cos 2(α− β′)− cos 2(α′ − β) + cos 2(α′ − β′)

This quantity is maximized for the following choice of angles (and all global

rotations of this choice of course, figure 4),

α = 0, α′ = −π
4
, β =

π

8
, β′ = −π

8

and equals

XQM = cos
π

4
+ cos

π

4
− cos

3π

4
+ cos

π

4
= 2
√

2

We see that the CHSH inequality is violated ! For the three other Bell states on

finds the same result. In the exercises you will show that this is the maximum

possible violation over all quantum states of C2⊗C2. In this sense the Bell states

are maximally entangled.



56 Quantum entanglement

QM predicts that the four histograms of Bob and Alice are

P1(a, b) =
1

4
(1 + ab cos 2(α− β))

P2(a, b′) =
1

4
(1 + ab′ cos 2(α− β′))

P3(a′, b) =
1

4
(1 + a′b cos 2(α′ − β))

P4(a′, b′) =
1

4
(1 + a′b′ cos 2(α′ − β′))

For example: P2(+1,−1) = |〈α, β′⊥|B00〉|2 = 1
4 (1 − cos 2(α − β)). There are

special choices of the angles α, β, α′, β′ for which these are not the marginals

of a common distribution Pclass(a, b, a
′, b′) otherwise we would have |X| ≤ 2:

this is just a mathematical fact8. Now, nature produces these four histograms

in an experiment satisfying locality in the sense that all analyzer choices of

Alice and Bob are independent. But she plays a very subtle magic trick with

us: the correlations that are built up in Bell’s states are non-local in the sense

that correlations are present in the measurement outcomes even though the

measurements on the photons are purely local. Alice and Bob cannot notice

these non local correlations by purely local means in their own lab. They have

to meet or to communicate by exchanging matter.

Experiments. In a famous set of experiments performed in the 80’s Aspect-

Grangier-Roger showed that experiment agrees with QM and not with classical

theories. The difficulty of these experiments is that, one wants to rotate the

analyzers of Alice and Bob fast enough so that the measurement events are

separated by a space-like interval. Otherwise, one may always argue that some

form of classical communication or interaction conspires to make up the results

(on speaks of locality loophole). This is the challenge that the Aspect experiments

were the first to address, as compared with other slightly earlier experiments.

This locality loophole has been since then conclusively settled by more recent

experiments9. There are other issues, that one has to address in principle, such

as the efficiency of coincident detections (called detection loophole). So far there

are no experiments that completly address all loopholes at the same time.

The Aspect experiments tell us that we have to abandon the ”local realism“.

More concretly we have to abndon the assumption that there exist a joint dis-

tribution Pclass(a, b, a
′, b′) describing the outcomes of all measurements.

8 In some sense they are the marginals of a quantum state
9 see the review by Anton Zeilinger ”Experiment and the foundations of quantum physics“,

in Reviews of Modern Physics 71, S288-S297 (1999)
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Figure 4.6 Alice and Bob’s random choices of analyzers

4.3 Ekert protocol for QKD

A nice application of the CHSH inequality is a protocol for the generation of a

secret key by two parties. We assume that a localized source of EPR particles

delivers entangled Qbits to Alice and Bob at each time instant n in the state

|B00〉 =
1

2
(|00〉+ |11〉) =

1

2
(|θθ〉+ |θ⊥θ⊥〉)

Moreover they have also established a noiseless communication channel.

The protocol:

• Alice has analyzers oriented in directions a1, a2, a3 and records the results of

measurements, at each time instant, for the observables

A(a) = (+1)|a〉〈a|+ (−1)|a⊥〉〈a⊥|

where she chooses a randomly among a1, a2, a3 (figure 5).

• Bob has three analyzers oriented along b1, b2, b3 and records the results of

measurements, at each time instant, for the observables

B(b) = (+1)|b〉〈b|+ (−1)|b⊥〉〈b⊥|

where he chooses b randomly among b1, b2, b3 (figure 5).

• Alice and Bob start a public discussion over the communication channel: they

inform each other on what vectors they used at each time instant.

• They do a security check to ensure that no eavesdropper is present. Alice and

Bob select the time instants when the basis choices were

(a3,b3), (a3,b1), (a1,b1), (a1,b3)

Note that these are the same four analyzer arrangements used for the Bell

inequalities (figure 6). For such configurations and only for such ones they

exchange their measurement results. Each party computes an empirical

correlation coefficient

Xexp = Av[an(a3)bn(b3)] + Av[an(a3)bn(b1)]

− Av[an(a1)bn(b3)] +Av[an(a1)bn(b1)]
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b_3=pi/8
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b_1=−pi/8
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Figure 4.7 CHSH configuration

where Av is the empirical average. In a perfect world they should find

Xexp = 2
√

2. We will see later that when an eavesdropper is present they

will certainly find Xexp ≤ 2 because the effect of the eavesdropper is to

destroy the entanglement of the EPR pair and the system then behaves

”classically“. The security check thus consists in checking that

Xexp > 2

If the test passes they conclude there is no eavesdropper and generate the

key, if not they stop communication.

• The key generation process is as follows. For every time n such that they used

the same basis - that is (a3,b2) or (a2,b1) - they know for sure that

an = bn = 1, or an = bn = −1

(one can also check that in this case 〈B00|A ⊗ B|B00〉 = cos 2 ˆ(a,b) = 1).

Thus they have a common subsequence of ±1’s that they keep secret and

forms their shared secret key.

Attacks from Eve. Let us consider the simplest measurement attack in which

Eve captures each photon of the EPR pair and makes a measurement (figure

7). Then she sends each photon (in the resulting state) to Alice and Bob. She

measures Alice’s photon in the basis {ea, e⊥a } and Bob’s photon in the basis

{eb, e⊥b }. Her strategy for the successive choices of basis at each time instant is

described by a probability distribution

ρ(ea, eb) ≥ 0,

∫ ∫
d2ead

2eb ρ(ea, eb) = 1

After Eve’s measurement the pair of photons is left in one of the four tensor

product states

|ea, eb〉, |ea, e⊥b 〉, |e⊥a , eb〉, |e⊥a , e⊥b 〉
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ALICE
BOB

EVE

|B>

e_a e_b

a_1, a_2, a_3 b_1,b_2,b_3

Figure 4.8 Eve collapses the pair in a tensor product state

with corresponding probabilities

|〈ea, eb|B00〉|2 =
1

2
cos2 ̂(ea, eb), |〈ea, e⊥b |B00〉|2 =

1

2
sin2 ̂(ea, eb)

|〈e⊥a , eb|B00〉|2 =
1

2
sin2 ̂(ea, eb), |〈e⊥a , e⊥b |B00〉|2 =

1

2
cos2 ̂(ea, eb)

Let us compute the correlation coefficient that Alice and Bob would find during

the security test. Given Eve’s choice (ea, eb) we have

X(ea, eb) = 1
2 cos2 ̂(ea, eb)S(ea, eb) + 1

2 sin2 ̂(ea, e⊥b )S(ea, e
⊥
b )

+ 1
2 sin2 ̂(e⊥a , eb)S(e⊥a , eb) + 1

2 cos2 ̂(e⊥a , e
⊥
b )S(e⊥a , e

⊥
b )

where S(v,w) is the correlation coefficient for a pair of photons in the state

|v,w〉 resulting from Eve’s measurement,

S(v,w) = 〈v,w|A(a3)⊗B(b3)+A(a3)⊗B(b1)−A(a1)⊗B(b3)+A(a1)⊗B(b1)|v,w〉

The average correlation coefficient found by Alice and Bob when Eve operates is

X =

∫ ∫
d2ead

2eb ρ(ea, eb)X(ea, eb)

We leave it as an exercise to check that |S(v,w)| ≤ 2. This is not too surprising

since |v,w〉 is a tensor product state. This immediately leads to,

|X| ≤ 2.

Thus Alice and Bob notice the presence of Eve. Note that Eve could manipulate

(unitarily) the pair after her measurements in order to send other photon states

to Alice and Bob. However if she re-entangles the photons she behaves as a new

source for Alice and Bob, and she gets no information from their measurements!

Finally let us note that if Eve copies the EPR pair (this can be done with

a machine that copies the four orthogonal Bell states) and waits for the public

discussion before doing the measurements, she gets no information about the

secret key. Indeed her measurements operate on a different pair and thus she
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gets the same result than Alice and Bob only half of the time. This is equivalent

to flip a coin at each time instant and cannot yield information.

Experiments. see in Review of Modern Physics 74 p 145-190 (2002) the ex-

tensive article ”Quantum cryptography“ by N. Gisin, G. Ribordy, W. Tittel, H.

Zbinden.

4.4 Quantum teleportation

Suppose that Alice and Bob are spatially separated and that Alice possesses a

Qbit state,

|Φ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1

The state (i.e α and β) is not necessarily known to Alice and is not known to

Bob. They also share an EPR pair

|B00〉 =
1√
2

(|00〉+ |11〉)

and have at their disposal a classical communication channel.

We are going to explain that by sending only two classical bits of information

over the classical channel, Alice can teleport the state to Bob. Here teleportation

means that |Φ〉 is destroyed in Alice’s lab and is reconstructed in Bob’s lab. Note

that destruction of |Φ〉 in Alice’s lab is to be expected because of the no-cloning

theorem. After the teleportation process, Bob knows that he possesses the state

|Φ〉 but still does not know the state itself (i.e he does not know α and β). We

stress that the teleportation process involves physical transport of matter in the

classical communication phase between Alice and Bob. Of course this classical

communication phase cannot happen at speeds greater than that of light, so

that the whole teleportation process does not violate the principles of relativity.

We also note that the material support of the state (e.g. photon polarization,

electron spin) |Φ〉 = α|0〉+ β|1〉 is not necessarily the same in Alice’s and Bob’s

lab.

Teleportation can be summarized by the following ”law“

teleporting 1 Qbit = sending 2 Cbits + sharing 1 EPR pair

and can be thought of, as some form of communication between Alice and Bob

which share a classical channel and an ”EPR like channel“. The quantum state

|Φ〉 in Alice’s lab is erased on her side and reproduced in Bob’s lab - the infor-

mation contained in α and β has not been communicated.

The protocol.

• A source produces an EPR pair of particles in the Bell state |B00〉23. One

particle, called particle 2 is sent to Alice and one particle , called particle 3
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is sent to Bob. The Hilbert space of the entangled system 23 is H2⊗H3 =

C2 ⊗ C2.

• Alice prepare a particle, called 1, in the state |Φ〉1 = α|0〉+ |β〉. The Hilbert

space of particle 1 is H1 = C2.

• The total Hilbert space of the composite system 123 is H1 ⊗ H2 ⊗ H3 =

C2 ⊗ C2 ⊗ C2 and the total state is

|Ψ〉 = |Φ〉1 ⊗ |B00〉23

At this point a short calculation will facilitate the subsequent discussion

|Ψ〉 =
α√
2
|000〉+

β√
2
|100〉+

α√
2
|011〉+

β√
2
|111〉

• Alice makes a local measurement in her lab, i.e on partiles 12. She uses an

apparatus that has measurement basis of H1 ⊗H2

{|B00〉12, |B01〉12, |B10〉12, |B11〉12}

The associated projectors for the total system are

P00 = |B00〉〈B00|⊗I3, P01 = |B01〉〈B01|⊗I3, P10 = |B10〉〈B10|⊗I3, P11 = |B11〉〈B11|⊗I3

As usual the outcome of the measurement is one of the four possible col-

lapsed states10 (check this calculation and also that the probability of each

outcome is 1
4 )

P00|Ψ〉 =
1

2
|B00〉12 ⊗ (α|0〉3 + β|1〉3)

P01|Ψ〉 =
1

2
|B01〉12 ⊗ (β|0〉3 + α|1〉3)

P10|Ψ〉 =
1

2
|B10〉12 ⊗ (α|0〉3 − β|1〉3)

P11|Ψ〉 =
1

2
|B11〉12 ⊗ (−β|0〉3 − α|1〉3)

• Depending on the random outcome Bob has one of the four states

α|0〉3 + β|1〉3 = |Φ〉
β|0〉3 + α|1〉3 = X|Φ〉
α|0〉3 − β|1〉3 = Z|Φ〉
β|0〉3 − α|1〉3 = iY |Φ〉

but he does not know the state he has.

10 up to normalization
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• Alice knows that the outcome of the measurement (in her lab) is one of the

four Bell states. She can thus use the Bell basis to re-measure (this will not

perturb Bob’s particle this time) and determine her outcome. This outcome

can be encoded by two classical bits

00, 01, 10, 11

that she sends to Bob over the classical communication channel. As soon as

Bob receives Alice’s message he knows that she has finished her operations

and he has the two bits of information needed to decide which unitary

operation he has to perform on his state in order to recover |Φ〉,

I(α|0〉3 + β|1〉3) = |Φ〉
X(β|0〉3 + α|1〉3) = |Φ〉
Z(α|0〉3 − β|1〉3) = |Φ〉

−iY (β|0〉3 − α|1〉3) = |Φ〉

4.5 Dense coding

Suppose Alice and Bob have established a quantum channel over which they can

send Qbits (for example a optic fiber over which photons travel). We will study

the capacity of such a noisy channel later in the course but for the moment let

us address a simpler question. Assume that Alice and Bob share an EPR pair.

How much information does one Qbit convey over the quantum channel ?

The answer is that 2 classical bits of information can be transmitted by Alice

to Bob, by sending only 1 Qbit as long as they share an EPR pair. The protocol

that achieves this is called dense coding.

We will come back to the problem of communicating classical/quantum mes-

sages over noisy quantum channels assisted/or not by entanglement in later chap-

ters. As we will see even for simple analogs of Shannon’s channel coding theorem

there are various open questions.

Dense coding can be summarized as follows:

communicating 2 Cbits = sending 1 Qbit + sharing 1 EPR pair

This ”law“ may seem complementary to the one of teleportation. Note however

that here only two particles are involved and it is the Qbit that is physicaly

transported form Alice to Bob.

Protocol.

• An EPR pair in the state |B00〉 is prepared by a source and each particle sent

to Alice and Bob.

• Alice wants to communicate two bits of information to Bob:
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– To send 00 she leaves her particle intact (or applies the unitary gate I)

and physically sends her particle to Bob. Bob receives the particle

and is now in possession of the whole state

|B00〉

– To send 01 she applies the unitary gate X to her particle and then

physically sends her particle to Bob. Bob is now in possession of the

pair in the state

X1 ⊗ I2|B00〉 = |B01〉

– To send 10 she applies the unitary gate Z to her particle and then

physically sends her particle. Bob is now in possession of the pair in

the state

Z1 ⊗ I2|B00〉 = |B10〉

– To send 11 she applies the unitary gate iY to her particle and then

physically sends her particle. Bob is now in possession of the pair in

the state

(iY )1 ⊗ I2|B00〉 = |B11〉

• Bob now has the EPR pair 12 in some state |Bxy〉. In order to determine the

two Cbits that Alice sent he must decide which Bell state he has. Since he

knows that he has one of the four Bell states in his lab, he can do a local

measurement in the Bell basis, and access the information xy.

Measurement in the Bell basis. One might think that measuring in the

Bell basis is a theoretician’s wishful thinking. In fact this has been realized

experimentally, and although explaining how is beyond the scope of this course,

we give here an argument that shows that, in principle, it suffices to have H and

CNOT gates (the simplest unitary gates) together with polarization analyzers

(the simplest measurement apparatus).

We have seen at the beginning of this chapter that Bell states can be generated

as |Bxy〉 = (CNOT )(H ⊗ I)|xy〉. The projectors on the Bell basis states are

therefore related to the ones over the Z basis,

|Bxy〉〈Bxy| = (CNOT )(H ⊗ I)|xy〉〈xy|(H ⊗ I)(CNOT )

(here we have used that the Hadamard and control not matrices are hermitian).

The projectors |xy〉〈xy| correspond to the analyzer-photo-detector apparatus for

photons or to spin analyzers (Stern-Gerlach analyzer) for spins (Z basis). The

circuit representation of a measurement device in the Bell basis in given on figure

8. The input is any state |Ψ〉, and the output is one of the four states

|Bxy〉
〈Bxy|Ψ〉
|〈Bxy|Ψ〉|
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H H

Figure 4.9 Device for Bell basis measurements

Experiments. Quantum teleportation and dense coding have been realized ex-

perimentally. A summary of the subject can be found in ”Les dossiers de la

recherche“ no 18, février 2005, ”L’étrange pouvoir de l’intrication quantique“,

by N. Gisin.
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5 Density matrix formalism

In chap 2 we formulated quantum mechanics for isolated systems. In practice

systems interact with their environment and we need a description that takes

this feature into account. Suppose the system of interest which has Hilbert space

H is coupled to some environment with space HE . The total system is isolated

and is described by a state vector |Ψ〉 ∈ H ⊗HE . An observable for the system

of interest is of the form A⊗ I where A acts only in H. We suppose that A has

spectral decomposition A =
∑
n anPn so that

A⊗ I =
∑
n

anPn ⊗ I

A measurement of the observable will leave the system in one of the states

Pn ⊗ I|Ψ〉
〈Ψ|Pn ⊗ I|Ψ〉1/2

with probability

prob(n) = 〈Ψ|Pn ⊗ I|Ψ〉

and the average value of the observable is

〈Ψ|A⊗ I|Ψ〉.

If we introduce the matrix1

ρ = TrHE |Ψ〉〈Ψ|

which acts on H, we can rewrite all these formulas as follows,

prob(n) = TrPn ⊗ I|Ψ〉〈Ψ| = TrHTrEPn ⊗ I|Ψ〉〈Ψ| = TrHPnρ

and

〈Ψ|A⊗ I|Ψ〉. = TrA⊗ I|Ψ〉〈Ψ| = TrHTrEA⊗ I|Ψ〉〈Ψ| = TrHAρ

Thus we see that the system of interest is described by the matrix ρ called

“density matrix”. At the level of the reduced density matrix the collapse of the

state vector becomes

ρ = TrE |Ψ〉〈Ψ| → ρafter = TrE
Pn ⊗ I|Ψ〉〈Ψ|Pn ⊗ I
〈Ψ|Pn ⊗ I|Ψ〉

=
PnρPn
TrPnρ

1 here a partial trace is performed. This is formally defined in a later section. Readers who

are not comfortable with this paragraph can skip to the next one.
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Thus a density matrix can describe part of a system (Landau).

There is also another kind of preparation of a quantum system for which

density matrices are useful. Suppose a source emits with probability p1 photons

in state |Ψ1〉 ∈ H and with probability p2 photons in state |Ψ2〉 ∈ H (with

p1 + p2 = 1). Then the average value of an observable A acting in H is

p1〈Ψ1|A|Ψ1〉+ p2〈Ψ2|A|Ψ2〉 = TrρA

where

ρ = p1|Ψ1〉〈Ψ1|+ p2|Ψ2〉〈Ψ2|

This density matrix describes a system that is prepared in an ensemble of state

vectors with a definite proportion for each state vector (von Neumann). Of course

this example can be generalized to an ensemble of more than two vectors.

These two examples are sufficient motivation for introducing a slightly more

general formalism, that formulates the rules of QM in terms of the density matrix.

This is the subject of this chapter.

5.1 Mixed states and density matrices

LetH be the Hilbert space of a system of reference (isolated or not). From now on

the vectors of the Hilbert space will be called pure states. As we remarked earlier

a global phase is unobservable so that giving a pure state |Ψ〉 or its associated

projector |Ψ〉〈Ψ| is equivalent. So a pure state can be thought of as a projector

on a one dimensional subspace of H.

A very general notion of state is as follows (von Neumann)

General definition of a state. Given a Hilbert space H, consider B(H) the

space of bounded linear self-adjoint operators from H → H. A state is a positive

linear functional

Av : B(H)→ C, A→ Av(A) (5.1)

such that Av(A) = 1 (normalization condition).

A general theorem (that we do not prove here) then shows that it is always

possible to represent this functional by a positive self-adjoint operator ρ with

Trρ = 1. That is

Av(A) = TrρA, ρ† = ρ, ρ ≥ 0, T rρ = 1

This operator is called a density matrix.

If ρ is a one dimensional projector2 it is said to be a pure state, while if it is

not a projector, i.e. ρ2 6= ρ it is said to be a mixed state.

2 to check this it enough to have ρ2 = ρ because then it is a projector so its eigenvalues are 1
and 0; so if we already know that Trρ = 1 the multiplicity of 1 is one so its a

one-dimensional projector
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Examples.

• A pure state ρ = |Ψ〉〈Ψ|.
• A mixture of pure states - not necessarily orthogonal - ρ =

∑
n λn|φn〉〈φn|,

λn ≥ 0,
∑
n λn = 1.

There are two kind of physical interpretations of ρ that we have already given

in the introduction. In fact these correspond also to two mathematical facts.

First we will see at the end of the chapter that a system that is in a mixed

state can always be “purified”. By this we mean that one can always construct

(mathematically) a bigger Hilbert space and find a pure state |Ψ〉 such that

ρ = Tr|Ψ〉〈Ψ|. Thus we may always interpret ρ as describing part of a bigger

system (Landau).

Second, given ρ, since it is self-adjoint, positive and its trace is normalized it

always has a spectral decomposition

ρ =
∑
i

ρi|i〉〈i|, ρi ≥ 0,
∑
i

ρi = 1

Thus we can always interpret ρ as describing a mixture of pure states |i〉 each

state occurring in the proportion ρi (von Neumann). In quantum statistical me-

chanics for example we have ρi = e−βEi

Z , Z =
∑
i e
−βEi , β the inverse tem-

perature. Of course there are other ways (not corresponding to the spectral

decomposition) of rewriting ρ as a convex combination of one dimensional pro-

jectors so there is an ambiguity in this interpretation. In quantum information

theory it is important to have in mind that, given ρ, if we do not know the state

preparation of the system - that is the set {λn, |φn〉} - there is an ambiguity in

the interpretation as a mixture. We can access part of the information about

the preparation by making measurements, and as we will see in the next chap-

ter the Holevo quantity gives a bound on the mutual information between the

preparation and the measurement outcomes.

Lemma 5.1.1 The set of states of a quantum system is convex. The extremal

points are pure states, in other words they are one dimensional projectors |Ψ〉〈Ψ|.
Conversely the pure states are extremal points of this set.

Proof Let ρ1 and ρ2 be two density matrices. Then evidently any convex com-

bination ρ = λρ1 + (1 − λ)ρ2 for λ ∈ [0, 1] satisfies ρ† = ρ, ρ ≥ 0 and Trρ = 1.

Hence the set of density matrices is convex.

If ρ is an extremal point then it cannot be written as a non trivial linear

combination of other density matrices. But all ρ have a spectral decomposition

ρ =
∑
i ρi|i〉〈i| with 0 ≤ ρi and

∑
i ρi = 1. Since this is a convex combination it

must be trivial so only one of the ρi equals 1 and the other vanish: thus ρ = |i〉〈i|
for some i.

Now let ρ be a pure state: there exits a |Ψ〉 st ρ = |Ψ〉〈Ψ|. We want to show

that it is impossible to find ρ1 6= ρ2 and 0 < λ < 1 st ρ = λρ1 + (1− λ)ρ2. If P⊥
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is the projector on the orthogonal complement of |Ψ〉,

0 = TrP⊥ρP⊥ = λTrP⊥ρ1P⊥ + (1− λ)TrP⊥ρ2P⊥

The positivity of ρ1, ρ2 and the strict positivity of λ and 1− λ imply that

TrP⊥ρ1P⊥ = TrP⊥ρ2P⊥ = 0

and by the positivity again we deduce

P⊥ρ1,2P⊥ = 0, P⊥ρ
1/2
1,2 = ρ

1/2
1,2 P⊥ = 0

(To see this one uses that (TrA†A)1/2 is a norm in B(H) with the choice A =

ρ1/2P ; and that if the norm of a matrix is zero then the matrix itself is zero)

Thus we have

ρ1 = (P⊥ + |Ψ〉〈Ψ|)ρ1(P⊥ + |Ψ〉〈Ψ|) = (|Ψ〉〈Ψ|)〈Ψ|ρ1|Ψ〉

But Trρ1 = 1 so 〈Ψ|ρ1|Ψ〉 = 1 and ρ1 = |Ψ〉〈Ψ|. The same argument applies to

ρ2 and thus ρ1 = ρ2.

The density matrix of a single Qbit. The set of states of a single Qbit can

easily be described in terms of 2 × 2 density matrices as we now show. A basis

for all matrices is given by the Pauli matrices {I,X, Y, Z},

ρ = a0I + a1X + a2Y + a3Z

We have Trρ = 2a0 so we require that a0 = 1
2 . We rewrite the density matrix as

ρ =
1

2
(I + a · Σ) =

1

2

(
1 + a3 a1 − ia2

a1 + ia2 1− a3

)
where a = (a1, a2, a3) and Σ = (X,Y, Z) is the vector with the three Pauli

matrices as components. We need ρ† = ρ so the vector a has real components

(Pauli matrices are hermitian). In order to have also ρ ≥ 0 we necessarily need

detρ ≥ 0. This is also sufficient because we already have Trρ = 1 so that both

eigenvalues cannot be negative and hence they are both positive. The positivity

of the determinant is equivalent to

detρ = 1− |a|2 ≥ 0

Therefore the space of 2× 2 density matrices is

{ρ =
1

2
(I + a · Σ)||a| ≤ 1}

Evidently we can identify it to the unit ball |a| ≤ 1 and is commonly called the

“Bloch sphere“. Of course it is convex and the extremal states are those which

cannot be written as a non-trivial linear combination, that is the states with
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Figure 5.1 Z basis {|0〉, |1〉}, Y basis { 1√
2
(|0〉 ± |1〉)}, X basis { 1√

2
(|0〉 ± i|1〉)}

|a| = 1. Let us check that the later are pure states. We compute

ρ2 =
1

4
(I + a · Σ)2

=
1

4
(1 + a2

1X
2 + a2

2Y
2 + a2

3Z
2)

+
1

4
axay(XY + Y X) + axaz(XZ + ZX) + ayaz(Y Z + ZY )

+
1

4
2a · Σ

The squares of Pauli matrices equal the unit matrix and they anti-commute, so

ρ2 =
1

4
(1 + |a|2) +

1

2
a · Σ

which equal ρ iff |a|2 = 1.

Figure 1 shows the pure states of the three basis X, Y , Z on the Bloch sphere.

For example |ψ〉 = |0〉 corresponds to ρ = |0〉〈0| = 1
2 (I +Z), i.e a = (0, 0, 1). For

|ψ〉 = 1√
2
(|0〉 + |1〉) we have ρ = |0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1| = 1

2 (I + X), i.e

a = (1, 0, 0). General pure states can be parametrized by two angles while for

mixed states one also needs the length of the vector inside the ball.

5.2 Postulates of QM revisited

We briefly give the postulates of QM in the density matrix formalism.

1. States. A quantum system is described by a Hilbert space H. The state of

the system is a density matrix ρ satisfying ρ = ρ†, ρ ≥ 0 and Trρ = 1. One may

also think of the state as a positive linear functional A ∈ B(H) → TrAρ ∈ C.

These form a convex set. The extremal points are one dimensional projectors

and are called pure states. Other states that are non-trivial linear combinations

of one dimensional projectors are called mixed states. Any density matrix is of

the form

ρ =
∑
n

λn|φn〉〈φn|

with 0 ≤ λn ≤ 1 and
∑
n λn = 1.
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2. Evolution. The dynamics of the system is given by a unitary matrix acting

on the states as

ρ(t) = Utρ(0)U†t

Indeed let the initial condition be ρ(0) =
∑
n λn|φn〉〈φn|. At time t each state of

the mixture is Ut|φn〉 thus ρ(t) =
∑
n λnUt|φn〉〈φn|U

†
t = Utρ(0)U†t .

3. Observables. They are described by linear self-adjoint operators A = A†.

They have a spectral decomposition A =
∑
n αnPn with real eigenvalues αn

and an orthonormal set of projectors Pn satisfying the closure or completeness

relation
∑
n Pn = 1.

4. Measurements. The measurement of an observable A is described by the

measurement basis formed by the eigenprojectors of A. When the system is

prepared in state ρ the possible outcomes of the measurement are

ρafter =
PnρPn
TrPnρPn

with probability

Prob(n) = TrPnρPn

As we will see one can always purify the system, which means constructing a

bigger system whose reduced density matrix is ρ. Applying the usual measure-

ment postulate to the purified system leads to the above formulas (we showed

this at the very beginning of the chapter).

5. Composite systems. A system composed of two (or more) parts A∪B has

a tensor product Hilbert space HA ⊗HB. A density matrix for this system is of

the general form

ρ =
∑
n

λn|φn〉〈φn|

with |φn〉 ∈ HA ⊗HB, 0 ≤ λn ≤ 1 and
∑
n λn = 1. Note that ρ = ρA ⊗ ρB only

if there are no correlations between the parts.

A remark about the Schroedinger and Heisenberg pictures. In the

Schroedinger picture of QM the states evolve as in postulate 2 above and ob-

servables stay fixed. The average value of A at time t is given by TrAρ(t)

where ρ(t) = UtρU
†
t . The Heisenberg picture is a mathematically equivalent

description where the states ρ stay fixed and the observables evolve according to

A(t) = U†tAUt. In the Heisenberg picture the average is TrA(t)ρ. Both pictures

are equivalent because of the cyclicity of the trace.
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5.3 Partial trace and Reduced density matrix

Suppose we have a composite system with Hilbert space HA ⊗HB and let it be

described by a density matrix ρ. The reduced density matrix of A (resp. B) is

ρA = TrHBρ ρB = TrHAρ

Here the trace is performed over HB only (resp. HA only). This is known as a

partial trace and can be defined as follows

TrB (|a1〉〈a2| ⊗ |b1〉〈b2|)︸ ︷︷ ︸
operator inHA⊗HB

= |a1〉〈a2|(Tr|b1〉〈b2|) = (|a1〉〈a2|)︸ ︷︷ ︸
operator inHA

〈b2|b1〉︸ ︷︷ ︸
∈C

This rule combined with linearity enables one to compute all partial traces in

practice. You can translate this rule for computing a partial trace in the usual

matrix language but you will see that the Dirac notation is much more powerful

at this point. In general if ρ =
∑
n λn|φn〉〈φn| and |φn〉 =

∑
i,j a

n
ij |φi〉A ⊗ |χj〉B,

we have

ρ =
∑

n,i,j,k,l

λna
n
ij(|φi〉A ⊗ |χj〉B)(〈φk|A ⊗ 〈χl|B) (5.2)

=
∑

n,i,j,k,l

λna
n
ij(|φi〉A〈φk|A)⊗ (|χj〉B〈χl|B) (5.3)

The partial traces are

ρA = TrHBρ =
∑
i,k

(∑
n,j,l

λna
n
ij(〈χl|χj〉B

)
(|φi〉A〈φk|A)

and

ρB = TrHAρ =
∑
j,l

(∑
n,i,k

λna
n
ij(〈φk|φi〉A

)
(|χj〉B〈χl|B)

Examples.

• The partial trace of a tensor product state is a pure state. Indeed let |Ψ〉 =

|φ〉A ⊗ |χ〉B. Then one finds

ρA = |φ〉A〈φ|A, ρB = |χ〉B〈χ|B

• The partial trace of an entangled pure state is a mixed state (we prove this

in full generality later). The reader should check that if ρ = |B00〉 then

ρA =
1

2
IA, ρB =

1

2
IB

• Another instructive calculation is for ρ = 1
2 |B00〉〈B00|+ 1

2 |01〉〈01|,

ρA =
3

4
|0〉A〈0|A +

1

4
|1〉A〈1|A, ρB =

1

4
|0〉B〈0|B +

3

4
|1〉B〈1|B

The eigenvalues of the two reduced density matrices are the same. Do you

think this is a coincidence ?
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Physical interpretation. The interpretation of the reduced density matrix is

the same as the one discussed in the introduction to this chapter. For a composite

system AB is in the state ρ, the RDM ρA describes everything that is accessible

by local operations in the part A.

In particular if we measure a local observable A⊗ I =
∑
n αnPn⊗ I according

to postulate 4) the measured value of the observable is αn, and the total state

collapses to

ρafter =
(Pn ⊗ I)ρ(Pn ⊗ I)

Tr(Pn ⊗ I)ρ

with probability

prob(n) = Tr(Pn ⊗ I)ρ

Thus the average value of the observable is
∑
n αnprob(n) = Tr(A ⊗ I)ρ. This

is also equal to TrAρ. Since this is true for any local observable, from the point

of view of a local observer in A, before the measurement the system is in state

ρA and after it is found in the state

ρA, after = TrHBρafter =
PnρAPn
TrPnρA

with probability

prob(n) = TrPnρA

As an example consider the composite system formed of an EPR pair in the

state state |B00〉. Imagine Alice does measurements on her photons and does

not communicate with Bob. From the discussions of chapter 4 we know that

for any measurement basis {|α〉, |α⊥〉} (this means she measures any observable

A = λ1|α〉〈α|+λ2|α⊥〉〈α⊥〉) she will find outcomes α〉 or α⊥ each with probability
1
2 . Since this is true for any choice of α some thought will show that the only

compatible state with the outcomes is the mixed state ρA = 1
2I. Within the

density matrix formalism we can arrive at this result in an immediate manner.

Indeed the reduced density matrix of the Bell state is indeed ρA = 1
2I. The

physical interpretation is that if Alice and Bob share an EPR pair, then Alice

(or Bob) cannot learn more than the mixed state 1
2I by local measurements.

We will see that this has an interesting consequence for the notion of quantum

mechanical entropy: the entropy of the composite system is zero (it is in a well

defined pure state) but at the same time the entropy of its parts is maximal (it

is ln 2). Thus in the quantum world the entropy3 of a system can be lower than

the entropy of its parts. This is one of the effects of entanglement which violates

classical inequalities such as Shannon’s H(X,Y ) ≥ H(X).

3 we will introduce in the next chapter the von Neumann entropy which is a direct
generalization of Shannon’s entropy
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5.4 Schmidt decomposition and purification

The Schmidt decomposition and purification are two useful tools that we will

use extensively later on.

theorem 5.4.1 Let |Ψ〉 be a pure state for a bipartite system with Hilbert space

HA ⊗HB. then

a) ρA = TrB|Ψ〉〈Ψ| and ρB = TrA|Ψ〉〈Ψ| have the same non-zero eigenvalues

with the same multiplicities. The multiplicity of the zero eigenvalue (if present)

may or may not be different. Thus the spectral decompositions of the two reduced

density matrices are

ρA =
∑
i

ρi|i〉A〈i|A, ρB =
∑
i

ρi|i〉B〈i|B

with ρi > 0 and
∑
i ρi = 1. Note that we do not write explicitly the contribution

of the zero eigenvalues since they contribute a vanishing term. Here |i〉A are

orthonormal states of HA and |i〉B are other orthonormal states of HB. Note

that they do not form a complete basis unless we include also the eigenstates of

the 0 eigenvalues. If the non-zero eigenvalues are not degenerate the vectors |i〉A
and |i〉B are unique (up to a phase). Otherwise there is freedom in their choice

(rotations in the ρi subspaces).

b) The pure state |Ψ〉 has the Schmidt decomposition

|Ψ〉 =
∑
i

√
ρi|i〉A ⊗ |i〉B

This expansion (with positive coefficients) is unique up to rotations in the span

of ρi.

An immediate consequence is

Corollary 5.4.2 For any |Ψ〉 ∈ HA ⊗HB we can form ρ = |Ψ〉〈Ψ| and ρA, ρB .

We have

TrF (ρA) =
∑
i

F (ρi) + gAF (0), T rF (ρB) =
∑
i

F (ρi) + gBF (0)

and

TrF (ρA)− TrF (ρB) = (gA − gB)F (0)

where gA and gB are the degeneracies of the zero eigenvalues of ρA and ρB.

Proof Let us prove the Schmidt theorem. Let {|µ〉A} be an orthonormal basis

of HA and {|µ′〉B} an orthonormal basis of HB. We can expand any pure state

in the tensor product basis,

|Ψ〉 =
∑
µ,µ′

aµµ′ |µ〉A ⊗ |µ′〉B
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For each µ set

|µ̃〉B =
∑
µ′

aµµ′ |µ′〉B

so that

|Ψ〉 =
∑
µ

|µ〉A ⊗ |µ̃〉B

Note that {|µ̃〉B} is not necessarily an orthonormal basis so this is not yet a

Schmidt decomposition. For the reduced density matrix of the A part we get

ρA =
∑
µ1,µ2

〈µ̃2|µ̃1〉B|µ1〉A〈µ2|A

Suppose now that

ρA|i〉A = ρi|i〉A

For the basis {|µ〉A} we take {|i〉A}, so

ρA =
∑
i1,i2

〈̃i2 |̃i1〉B|i1〉A〈i2|A

But we also have

ρA =
∑
i1

ρi1 |i1〉A〈i1|A

So for all non zero terms, ρi1 6= 0, we must have 〈̃i2 |̃i1〉B = ρi1δi1i2 . Thus the

states |̃i〉B are orthogonal and we can make them orthonormal by defining

|i〉B = ρ
−1/2
i |̃i〉B

In this way we obtain the expansion

|Ψ〉 =
∑
i

|i〉A ⊗ |̃i〉B =
∑
i

√
ρi|i〉A ⊗ |i〉B

which is the Schmidt decomposition (statement b)). To obtain statement a) we

simply compute the partial traces from this expansion which leads to

ρA =
∑
i

ρi|i〉A〈i|A, ρB =
∑
i

ρi|i〉B〈i|B

These expressions show that ρA and ρB have the same non zero eigenvalues with

the same multiplicities. Now suppose we have a second Schmidt decomposition.

This will lead to a second spectral decomposition for ρA and ρB. Thus the unicity

of the Schmidt decomposition up to rotations in the span of each ρi follows from

the same fact for the spectral decomposition.

Notion of Schmidt number. The number of non-zero coefficients (including

multiplicity) in the Schmidt decomposition of |Ψ〉 is called the Schmidt number
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of the state. It is invariant under unitary evolutions that do not couple A and

B. Indeed if U = UA ⊗ UB then

U |Ψ〉 =
∑
i

√
ρiUA|i〉A ⊗ UB|i〉B

which has the same number of non zero coefficients. This number is also the

number of non-zero eigenvalues of the reduced density matrices TrB|Ψ〉〈Ψ| and

TrA|Ψ〉〈Ψ|. This number can change only if A and B interact in some way.

Obviously a tensor product state has Schmidt number equal to 1. Since an

entangled state is one which cannot be written as a tensor product state its

Schmidt number is necessarily ≥ 2. The Schmidt number is our first attempt to

quantify the degree of entanglement.

Purification. This turns out to be a powerful mathematical tool. Given a system

S with Hilbert space HS and density matrix ρS one can view it a part of a bigger

system S ∪R with Hilbert space HS ⊗HR in a pure state |Ψ〉SR such that

ρS = TrR|Ψ〉SR〈Ψ|SR

The Schmidt decomposition can be used to explicitly construct the pure state

|Ψ〉SR. One uses the spectral decomposition

ρS =
∑

ρi|i〉A〈i|A

and takes a copy of the space HS - call it HR. Each vector |i〉S has a copy which

we call |i〉R. Then form

|Ψ〉SR =
∑
i

√
ρi|i〉S ⊗ |i〉R

The reader can easily check that ρS = TrR|Ψ〉SR〈Ψ|SR.

Finally, we remark however that the purification is not unique.
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There is a notion of entropy which quantifies the amount of uncertainty contained

in an ensemble of Qbits. This is the von Neumann entropy that we introduce

in this chapter. In some respects it behaves just like Shannon’s entropy but in

some others it is very different and strange. As an illustration let us immediately

say that as in the classical theory, conditioning reduces entropy; but in sharp

contrast with classical theory the entropy of a quantum system can be lower

than the entropy of its parts.

The von Neumann entropy was first introduced in the realm of quantum sta-

tistical mechanics, but we will see in later chapters that it enters naturally in

various theorems of quantum information theory.

6.1 Main properties of Shannon entropy

Let X be a random variable taking values x in some alphabet with probabilities

px = Prob(X = x). The Shannon entropy of X is

H(X) =
∑
x

px ln
1

px

and quantifies the average uncertainty about X.

The joint entropy of two random variables X, Y is similarly defined as

H(X,Y ) =
∑
x,y

px,y ln
1

px,y

and the conditional entropy

H(X|Y ) =
∑
y

py
∑
x,y

px|y ln
1

px|y

where

px|y =
px,y
py

The conditional entropy is the average uncertainty of X given that we observe

Y = y. It is easily seen that

H(X|Y ) = H(X,Y )−H(Y )
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The formula is consistent with the interpretation of H(X|Y ): when we observe

Y the uncertainty H(X,Y ) is reduced by the amount H(Y ). The mutual in-

formation between X and Y is the complement of the remaining uncertainty

H(X|Y )

I(X;Y ) = H(X)−H(X|Y ) (6.1)

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y ) = I(Y : X)

It is easily seen that I(X;Y ) = 0 iff px,y = pxpy.

The Kullback-Leibler divergence, or relative entropy, between two probability

distributions p and q is a useful tool

D(p‖q) =
∑
x

px ln
1

qx
−
∑
x

px ln
1

px
=
∑
x

px ln
px
qx

Note that this quantity is not symmetric, D(p‖q) 6= D(q‖p). One can also check

that

I(X;Y ) = I(Y ;X) = D(PX,Y ‖PXPY )

Let us list the main inequalities of classical information theory and indicate

which become true or false in the quantum domain.

• The maximum entropy state corresponds to the uniform distribution. For an

alphabet with cardinality D we have

0 ≤ H(X) ≤ lnD

with the upper bound attained iff px = 1
D . Quantum mechanically this is

still true.

• H(X) is a concave functional of px. This means that if p0(x) =
∑
k akpk(x),

ak ≥ 0,
∑
k ak = 1 then

H0(X) ≥
∑
k

akHk(X)

QMly this is still true.

• Entropy is sub-additive,

H(X,Y ) ≤ H(X) +H(Y )

Equivalently conditioning reduces entropy H(X|Y ) ≤ H(X), H(Y |X) ≤
H(Y ), and mutual information is positive I(X;Y ) ≥ 0. QMly all this is

true.

• The conditional entropy is positive, the entropy of (X,Y ) is higher than that

of X (or Y )

H(X|Y ) ≥ 0, H(X,Y ) ≥ H(X), H(X,Y ) ≥ H(Y )

with equality if Y = f(X). QMly this is not true ! We will see that (again

!) entanglement is responsible for this !
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• Conditioning reduces conditional entropy

H(X|Y,Z) ≤ H(X|Y )

This inequality is also called “strong sub-additivity and is equivalent to

H(X,Y, Z) +H(Y ) ≤ H(X,Y ) +H(Y,Z)

Equality is attained iff X − Y − Z form a Markov chain. This means that

px,z|y = px|ypz|y or equivalently px,y,z = pz|ypy|xpx (a Markov chain is

reversible: Z−Y −X is also a Markov chain). We will see that QMly strong

sub-additivity still holds. In view of the great gap in difficulty between the

classical and quantum proofs it is fair to say that this fact is subtle and

remarkable. However the notion of Markov chain is not obvious in the

quantum case (there is no natural notion of conditional probability) so it

is not easily asserted when equality holds.

• A consequence of strong sub-additivity is the data processing inequality obeyed

by Markov chains X − Y − Z

H(X|Z) ≥ H(X|Y )

Indeed H(X|Z) ≥ H(X|Z, Y ) = H(X|Y ) where the first inequality is

strong sub-additivity and the equality follows from the fact Z and X are

independent given Y . Since the notion of Markov chain is not clear QMly

the quantum version of the data processing inequality is a subtle matter.

• The relative entropy is positive

D(p‖q) ≥ 0

This is basically a convexity statement which is also true QMly.

• A very useful algebraic identity which follows immediately from definitions,

is the chain rule

H(X1, ..., Xn|Y ) =

n∑
i=1

H(Xi|Xi+1, ..., Xn, Y )

and

I(X1, ..., Xn|Y ) =

n∑
i=1

I(Xi|Xi+1, ..., Xn, Y )

6.2 Von Neumann entropy and main properties

We assume that the system of interest is described by its density matrix ρ and

furthermore we restrict ourselves to the case of a finite dimensional Hilbert space

dimH = D. the von Neumann entropy is by definition

S(ρ) = −Trρ ln ρ
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In physics this quantity gives the right connection between quantum statistical

mechanics and thermodynamics when ρ = e−βH/Z is the Gibbs state describing

a mixture at thermal equilibrium. In quantum information theory this entropy

enters in many theorems (data compression, measures of entanglement etc...)

and thus acquires a fundamental status.

For the moment we just note that the definition is reasonable in the following

sense. Suppose the quantum system is prepared in a mixture of states {|φx〉; px}
so that its density matrix is

ρ =
∑
x

px|φx〉〈φx|

For the special case where |φx〉 form an orthonormal basis of H, this is a diagonal

operator, so the eigenvalues of ρ ln ρ are px ln px, and S(ρ) = −
∑
x px ln px =

H(X), where X is the random variable with distribution px. In an orthogonal

mixture all states can be perfectly distinguished so the mixture behaves classi-

cally: the quantum and classical entropies coincide.

We emphasize that for a general mixture the states |φx〉 are not orthonormal

so that S(ρ) 6= H(X). In fact we will see that the following holds in full generality

S(ρ) ≤ H(X)

where X is the random variable associated to the “preparation” of the mix-

ture. This bound can be understood intuitively: since the states |φx〉 cannot be

perfectly distinguished (unless they are orthogonal, see chap 2) the quantum

uncertainty associated to ρ is less than the classical uncertainty associated to X.

In the case of a pure state ρ = |Ψ〉〈Ψ| we see that the eigenvalues of ρ are 1

(multiplicity one) and 0 (multiplicity D − 1). Thus

S(|Ψ〉〈Ψ|) = 0

The entropy of a pure state is zero because there is no uncertainty in this state

(in line with the Copenhagen interpretation of QM).

A quantity that plays an important role is also the relative entropy defined by

analogy with the KL divergence

S(ρ||σ) = Trρ ln ρ− Trρ lnσ

Let us set up some notation concerning the entropy of composite systems and

their parts. For a bipartite system AB with density matrix ρAB we write

S(AB) = −TrρAB ln ρAB

and for its parts described by the reduced density matrices ρA = TrBρAB and

ρB = TrAρAB,

S(A) = −TrρA ln ρA, S(B) = −TrρB ln ρB

One could try to pursue further the analogies with the classical case and define

conditional entropies as S(A|B) = S(AB)− S(B), S(B|A) = S(AB)− S(A) and
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mutual information as I(A;B) = I(B;A) = S(A) +S(B)−S(AB). However it is

not clear that these are of any fundamental use since they do not enter (yet) in

any theorem of quantum information theory. Perhaps two more serious argument

for suspicion are that first, as we will see S(AB) − S(B) can be negative, and

second it is not at all clear how to define the quantum analog of conditional

probabilities.

Let us now proceed to the statements and proofs of the basic inequalities

satisfied by von Neumann’s entropy.

• Uniform distribution maximizes entropy. Any ρ can be diagonalized and

has positive eigenvalues ρx which sum to one. Thus S(ρ) = −
∑
ρx ln ρx, a

quantity which is maximized for the distribution ρx = 1
D (as in the classical

case). Thus in the basis where it is diagonal ρ = 1
D I, and this is also true

in any basis. We conclude

0 ≤ S(ρ) ≤ lnD

where the upper bound is attained for the “fully mixed” (or most disor-

dered, or uniform) state ρ = 1
D I. The lower bound is attained for pure

states (check !).

• Concavity. Let ρ and σ be two density matrices. then

S(tρ+ (1− t)σ) ≥ tS(ρ) + (1− t)S(σ), 0 ≤ t ≤ 1

The proof follows the same lines as the classical one which uses convexity

of x→ x lnx. We prove below that ρ→ Trρ ln ρ is a convex functional and

this immediately implies concavity of von Neumann’s entropy.

Lemma 6.2.1 (Klein’s inequality) Let A and B self-adjoint and f con-

vex from R→ R. We have

Tr(f(A)− f(B)− (A−B)f ′(B)) ≥ 0

Proof Let A|φi〉 = ai|φi〉 and B|ψi〉 = bi|ψi〉. Then

Tr(f(A)−f(B)− (A−B)f ′(B)) =
∑
i

〈φi|f(A)−f(B)− (A−B)f ′(B)|φi〉

(6.2)

Each term in the sum equals

f(ai)− 〈φi|f(B)|φi〉 − ai〈φi|f ′(B)|φi〉+ 〈φi|Bf ′(B)|φi〉 (6.3)

Using the closure relation

1 =
∑
j

|ψj〉〈ψj |

equation (6.2) can be rewritten as∑
j

|〈φi|ψj〉|2
(
f(ai − f(bj)− (ai − bj)f ′(bj)

)
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Now since f : R→ R is convex we have

f(ai)− f(bj) ≥ (ai − bj)f ′(bj)

which proves the statement.

Corollary 6.2.2 Let A and B self-adjoint and positive (positive means

that all eigenvalues are positive or equivalently that all diagonal averages

〈ψ|A|ψ〉 are positive for any |ψ〉). Then

TrA lnA− TrA lnB ≥ Tr(A−B)

Proof Take f(t) = t ln t and apply Klein’s inequality.

Now choose A = ρ and B = tρ+ (1− t)σ. From the corollary

Trρ ln ρ− Trρ ln(tρ+ (1− t)σ) ≥ (1− t)Tr(ρ− σ) = 0

Choose A = σ and B = tρ+ (1− t)σ. Then

Trσ lnσ − Trσ ln(tρ+ (1− t)σ) ≥ tT r(σ − ρ) = 0

Multiplying the first inequality by t and the second by (1− t) and adding

them yields

Tr(tρ+ (1− t)σ) ln(tρ+ (1− t)σ) ≤ tT rρ ln ρ+ (1− t)Trσ lnσ

which proves the concavity of entropy.

• Positivity of relative entropy. Choose A = ρ and B = σ and apply the

corollary,

S(ρ||σ) = Trρ ln ρ− Trρ lnσ ≥ Tr(ρ− σ) = 0

• Sub-additivity. In the classical case one has

H(X) +H(Y )−H(X,Y ) = D(px,y||pxpy) ≥ 0

In the quantum case the proof is similar, but we detail the steps

S(A) + S(B)− S(AB) = −TrAρA ln ρA − TrBρB ln ρB + Trρcab ln ρAB

= −TrρAB ln ρA ⊗ IB − TrρAB ln IA ⊗ ρB + TrρAB ln ρAB

= TrρAB ln ρAB − TrρAB(ln ρA ⊗ IB + ln IA ⊗ ρB)

= TrρAB ln ρAB − TrρAB ln ρA ⊗ ρB
= S(ρAB||ρA ⊗ ρB) ≥ 0

Note that sub-additivity can also formally be written as S(A|B) ≤ S(A)

in terms of the naive conditional entropy. We may say that conditioning

reduces quantum entropy, as in the classical case.

Exercise: check the identity ln ρA⊗ IB+ln IA⊗ρB = ln ρA⊗ρB by using

spectral decompositions.
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• Araki-Lieb bound. Classically H(X,Y ) ≥ H(X) (the whole is more disor-

dered than the parts). But quantum mechanically this can be completely

wrong as the following counterexample shows. In quantum mechanics it is

not true that the naive conditional entropy is always non-negative. Let

ρAB = |B00〉〈B00|

This is a pure state so S(AB) = 0. However we have for the two parts

ρA =
1

2
IA, ρB =

1

2
IB

which have maximal entropies S(A) = S(B) = ln 2. The two parts of

the EPR pair when looked upon locally are as disordered as they can be,

however the global state is highly correlated.

Is there a general good lower bound for S(AB) in terms of the entropies

of the parts ? The answer is provided by

theorem 6.2.3 (Araki-Lieb)

S(AB) ≥ |S(A)− S(B)|

Proof The proof is a nice application of the purification idea and the

Schmidt decomposition theorem. We introduce a third system R such that

ABR is a purification of AB. That is

ρABR = |ABR〉〈ABR|, T rRρABR = ρAB

By sub-additivity

S(AR) ≤ S(A) + S(R) (6.4)

Now since ρABR is a pure state the non-zero eigenvalues of ρAB and ρR are

equal; and also the non zero eigenvalues of ρAR and ρB are equal (Schmidt

theorem). Thus

S(AB) = S(R), S(AR) = S(B)

Replacing in (6.4) we get

S(B)− S(A) ≤ S(AB)

Since A and B play a symmetric role we can exchange them which ends

the proof.

• Strong sub-additivity. let ABC be a quantum system formed of three parts

HA ⊗HB ⊗HC . We have similarly to the classical case

S(ABC) + S(B) ≤ S(AB) + S(BC)
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This can be written also as S(C|AB) ≤ S(C|B) in terms of “naive” condi-

tional entropies. So one may say that further conditioning reduces condi-

tional entropy (although the “conditional” entropy is not necessarily posi-

tive). As in classical information theory, this inequality plays an important

role.

Classically the proof of this inequality is based on the positivity of the

KL divergence. It turns out that quantum mechanically the proof is much

more difficult. We will omit it here except for saying that one can base it

on the joint concavity of the functional

f(A,B) = TrM†AsMB(1−s)

for any matrix M (not necessarily self-adjoint) and any 0 ≤ s ≤ 1. This

fact was a conjecture of Wigner-Yanase-Dyson for many years until Lieb

found a proof (1973). Later, Lieb and Ruskai realized that it implies strong

sub-additivity.

6.3 Useful bounds on the entropy of a mixtures

This section is devoted to the proof of the following important theorem

theorem 6.3.1 Let X be a random variable with distribution px and ρ =∑
x pxρx where ρx are mixed states. We have

S(ρ) ≤
∑
x

pxS(ρx) +H(X)

This inequality has a clear interpretation: the uncertainty about ρ cannot be

greater than the average uncertainty about each ρx plus the uncertainty about

the classical preparation described by X. If in particular ρx = |φx〉〈φx| are pure

states we have S(ρx) = 0 so, as announced at the beginning of the chapter,

S(ρ) ≤ H(X)

Proof First we deal with a mixture of pure states. For convenience we call this

mixture A and set

ρA =
∑
x

px|φx〉A〈φx|A

Let HR a space whose dimension is equal to the number of terms in the mixture

and with orthonormal basis labeled as |x〉R. The pure state

|AR〉 =
∑
x

√
px|φx〉A ⊗ |x〉R

is a purification of ρA because

TrR|AR〉〈AR| =
∑
x

px|φx〉〈φx|A = ρA
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We also have that

ρR = TrA|AR〉〈AR| =
∑
x,x′

√
px
√
px′〈φx|φx′〉A|x〉R〈x′|R (6.5)

By the Schmidt theorem we know that ρA and ρR have the same non zero

eigenvalues, thus

S(ρA) = S(ρR)

Consider now

ρ′R =
∑
x

px|x〉R〈x|R

and look at the relative entropy

S(ρR||ρ′R) = TrρR ln ρR − TrρR ln ρ′R ≥ 0

Thus

S(ρA) = S(ρR) ≤ −TrρR ln ρ′R (6.6)

It remains to compute the right hand side. Since |x〉R is an orthonormal basis

ln ρ′R =
∑
x

(ln px)|x〉R〈x|R

which implies

TrρR ln ρ′R =
∑
x

(ln px)TrρR|x〉R〈x|R =
∑
x

(ln px)〈x|ρR|x〉

From the expression of ρR (6.5) we remark that

〈x|ρR|x〉 = px

Thus (6.6) becomes

S(ρA) ≤ −
∑

px ln px = H(X)

Consider now the general case of a mixture of mixed states ρ =
∑
x pxρx. each

mixed state has a spectral decomposition

ρx =
∑
j

λ
(x)
j |e

(x)
j 〉〈e

(x)
j |

so

ρ =
∑
x,j

pxλ
(x)
j |e

(x)
j 〉〈e

(x)
j |

Note that this is a convex combination of one dimensional projectors so that we
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can apply the previous result

S(ρ) ≤ −
∑
x,j

pxλ
(x)
j ln pxλ

(x)
j

= −
∑
x,j

pxλ
(x)
j ln px −

∑
x,j

pxλ
(x)
j lnλ

(x)
j

= −
∑
x

px ln px −
∑
x

px
∑
j

λ
(x)
j lnλ

(x)
j

= H(X) +
∑
x

pxS(ρx)

In the last equality we used S(ρx) =
∑
j λ

(x)
j lnλ

(x)
j .

6.4 Measuring without learning the measurement outcome cannot
decrease entropy

Suppose we are given a mixed state ρ and a measurement apparatus with mea-

surement basis {|x〉〈x|}. According to the measurement postulate the possible

outcomes are pure states

|x〉, with probability px = 〈x|ρ|x〉

[Note that
∑
x〈x|ρ|x〉 = 1]. If we observe the measurement result we know that

we have some |x〉 with zero entropy.

Now imagine that we do the measurement but do not record the measure-

ment result (subsequently we will call this a “blind” measurement). Then our

description of the state of the system is a mixture {|x〉, px} with diagonal density

matrix

ρblind =
∑
x

〈x|ρ|x〉|x〉〈x|

Note that this diagonal density matrix is equivalent to a classical state. If we

look at the relative entropy

S(ρ||ρblind) ≥ 0

we find, by a small calculation1,

S(ρ) ≤ H(〈x|ρ|x〉) = S(ρblind)

Thus blind measurements can only increase the entropy or leave it constant.

To conclude the chapter consider again a composite system AB where Alice

and Bob are very far apart and do not communicate. A local measurement (with

an apparatus {|i〉A〈i|A}) is done by Alice on part A which is blind to Bob.

Thus according to the previous inequality S(ρblind
B )−S(ρB) ≥ 0. However a true

1 identical to the one in the proof of the upper bound in the previous section
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(immediate) increase would violate locality and it is very reassuring to check

that S(ρblind
B ) = S(ρB)

After Alice’s measurement the possible outcomes for the total system are

(|i〉A〈i|A ⊗ IB)ρAB(|i〉A〈i|A ⊗ IB)

Tr(|i〉A〈i|A ⊗ IB)ρAB(|i〉A〈i|A ⊗ IB)

or equivalently

ρ
(i)
AB =

(|i〉A〈i|A ⊗ IB)ρAB(|i〉A〈i|A ⊗ IB)

〈i|ρA|i〉

with probability (we set |i〉A = |i〉 to alleviate the notation)

〈i|ρA|i〉

Since this is a blind measurement for Bob the reduced density matrix is (a

mixture of mixed states)

ρblind
B =

∑
i

〈i|ρA|i〉TrAρ(i)
AB

A short calculation shows that this equals

ρblind
B =

∑
i

〈i|ρA|i〉
〈i|ρAB|i〉
〈i|ρA|i〉

=
∑
i

〈i|ρAB|i〉 = TrAρAB = ρB

So after Alice’s measurement not only Bob’s entropy is unchanged but even his

density matrix is left the same as it was before the measurement. This provides

a completely general proof that Bob does not notice Alice’s measurements. On

Alice’s side if she does not record her measurement outcome her entropy is

greater.
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In this chapter we prove a very important bound of quantum information theory,

namely Holevo’s bound. Suppose we are given a system prepared in a mixed state

represented by a density matrix. Information about the preparation of this state

can be retrieved by making measurements on the system. The Holevo bound gives

an upper bound on the maximaum possible information that can be extracted

from the mixed state by a measurement process. Holevo was a precursor, indeed

this is the first information theoretic estimate that was derived and involves von

neumann entropy as a basic ingredient. In fact we will see an important new

quantity that enters in this estimate and is nowadys called the Holevo quantity.

We will see in a later chapter that it has important applications in channel coding

theory, and play there it plays the role of a mutial information.

7.1 Notion of accessible information

We argued in chapter 2 that non-orthogonal quantum states are not perfectly

distinguishable. The Holevo bound quantifies this statement. Suppose a system

with Hilbert space H is prepared in a mixed state {px, ρx} where ρx are density

matrices (hence the preparation of the system is a mixture of mixed states). The

total density matrix of the system is

ρ =
∑
x

pxρx

We imagine that Alice has prepared the mixture {px, ρx} but “gives only ρ”

to Bob who wants to extract information about the preparation by performing

measurements on ρ. Let us formalize the problem.

• The preparation of Alice is described by a classical random variable X taking

value x with Prob(X = x) = px. For example Alice flip a coin: if Face is

obtained with pF = 1
2 she prepares a photon in state ρF = |0〉〈0|, while

if Tail is obtained with pT = 1
2 she prepares a photon in state ρT =

1√
2
(|0〉+|1〉)( 1√

2
(〈0|+〈1|). In this way Alice prepares an ensemble of photons

(trapped in a cavity say).

• Bob is given the enesemble of photons described by the mixed state ρ. However

he does not know the details {px, ρx} of the preparation. He has full access
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to ρ in the sense that he can manipulate and measure the state, and wants

to retrieve information about the preparation.

In the example

ρ =
1

2
|0〉〈0|+ 1

2

1√
2

(|0〉+ |1〉)( 1√
2

(〈0|+ 〈1|)

=
3

4
|0〉〈0|+ 1

4
|0〉〈1|+ 1

4
|1〉〈0|+ 1

4
|1〉〈1|

=

[
3
4

1
4

1
4

1
4

]
• Bob makes measurements (on the ensemble of photons) with an apparatus

corresponding to a measurement basis {Py} where P 2
y = Py are projectors

and
∑
y Py = 1. The outcome of the measurement is a random variable Y

Prob(Y = y) =
∑
x

pxTrρxPy = TrρPy (= py)

Note that the last equation also follows directly from the measurement

postulate applied to ρ.

Here we can a natural define a conditional probability distribution from

Prob(Y = y|X = x) = TrρxPy (= py|x)

This also allows to define a joint probability distribution

Prob(X = x, Y = y) = pxpy|x = pxTrρxPy (= px,y)

It is good to check that py is a marginal of px,y and the marginal

Prob(Y = y) =
∑
x

pxTrρxPy = TrρPy (= py)

and of course that px is the other marginal.

In the example, suppose that Bob uses a measurement apparatus corre-

sponding to the canonical basis {|0〉〈0|; |1〉〈1|}. One obtains for the distri-

bution of (measurements) Y

py =

[
3
4
1
4

]
. (7.1)

For the conditional distribution one obtains

py|x =

[
1 1

2

0 1
2

]
, (7.2)

for the joint distribution

px,y =

[
1
2

1
4

0 1
4

]
, (7.3)
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• The mutual information I(X;Y ) defined from px,y is the information about

X that Bob can extract from ρ by his measurement outcomes Y . We define

the accessible information as the maximum possible mutual information

obtained by the best possible measurement

Acc({px, ρx}) = sup{Py}I(X;Y )

In the example we haveH(X) = ln 2,H(Y ) = ln 4− 3
4 ln 3 andH(X,Y ) =

3
2 ln 2. Thus for the particular measurement in the canonical basis I(X;Y ) =
3
2 ln 2− 3

4 ln 3 = 0.215. This equals 0.31 ln 2 so Bob retrieves 0.31 bits from

this type of measurement. He can do better by choosing a more clever basis

but, since the states ρF and ρT are not perfectly distinguishable, his ac-

cessible information will always be strictly smaller than 1 bit (the entropy

of X). An interesting question partly answered in the next paragraph is :

how much smaller is it ?

Note that if ρx are pure orthogonal states they form a subset of a basis

of the Hilbert space. Thus by choosing this basis as a measurement basis

Bob gets Y = X so that I(X;Y ) = H(X). This means that a mixture of

orthogonal states behaves as a classical probability distribution and can be

perfectly known by suitable measurements.

7.2 The Holevo bound

In general it is very difficult to compute the supremum over all possible mea-

surement basis, involved in the definition of the accessible information. Holevo

(following pioneering works of Gordon and Levitin) gave a bound which gives us

an estimate that is independent of the measurement basis. In general this bound

is loose and is not achievable by a measurement basis. The achievability holds

for special mixtures, as briefly discussed in the next paragraph, and plays an

important role in channel coding theorems.

Theorem [Holevo bound]. LetX be a classical random variable {px = Prob(X =

x)} and {px, ρx} a mixture of mixed quantum states. Let Y be the random vari-

able describing outcomes of measurements on the state ρ =
∑
x pxρx in the

basis {Py} (these can be measurements of any observable that has the spectral

decomposition A =
∑
y ayPy). Then

I(X;Y ) ≤ χ({px, ρx}), so also Acc({px, ρx}) ≤ χ({px, ρx})

where

χ({px, ρx}) = S(ρ)−
∑
x

pxS(ρx)

In the example ρF and ρT are pure so their individual entropies vanish, and

χ({px, ρx}) = S(ρ). The eigenvalues of ρ are ρ± = 1
2 ±

√
2

4 . So the von Neumann
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entropy is

S(ρ) = −(
1

2
+

√
2

4
) ln(

1

2
+

√
2

4
)− (

1

2
−
√

2

4
) ln(

1

2
−
√

2

4
) = 0.41 = 0.59 ln 2

We can conclude that there are no measurements that would retrieve more than

0.59 bits of information from X.

Exercise: compute Acc({px, ρx}).

Proof of the Holevo Bound. Bob is given the mixed state ρQ =
∑
x pxρx

which we view as a state belonging to HQ. We introduce a larger Hilbert space

HX ⊗HQ ⊗HY and a state

ρXQY =
∑
x

px|x〉〈x| ⊗ ρx ⊗ |0〉〈0|

The interpretation of this state is as follows: |x〉〈x| are mutual orthogonal states

describing Alice’s preparation (or r.v X) and |0〉〈0| is a blank state where Bob

will record his measurement outcomes. Note that dimHX = number of values of

x, dimHQ is the dimension of the Hilbert space in which Bob’s state lives (e.g 2

if this is a single Qbit) and dimHY = dimHQ since HY records the measurement

outcomes. For the measurement basis of Bob we take {Py = |y〉〈y|}.
We introduce the unitary operation

UXQY = Id⊗ UQY

where

UQY |φ〉Q ⊗ |a〉Y =
∑
y

Py|φ〉Q ⊗ |a⊕ y〉Y

Here a ⊕ y is computed modulo dimHY . Let us check that this is a unitary

operation. We have

〈ψ| ⊗ 〈b|U†QY UQY |φ〉 ⊗ |a〉 =
∑
y,y′

〈ψ|Py′ ⊗ 〈b⊕ y′|Pyφ〉 ⊗ |a⊕ y〉

=
∑
y,y′

〈ψ|Py′Py|φ〉〈b⊕ y′|a⊕ y〉

=
∑
y,y′

δy,y′〈ψ|Py|φ〉〈b⊕ y|a⊕ y〉

= 〈ψ|φ〉〈b|a〉

Thus Id⊗ UQY preserves the inner product and is unitary.

Now we define

ρ′XQY = UXQY ρXQY U
†
XQY =

∑
x,y,y′

px|x〉〈x| ⊗ PyρxPy′ ⊗ |y〉〈y′|

The two density matrices ρXQY and ρ′XQY have the same eigenvalues (since they

are unitarily related) therefore their von Neumann entropies are the same

S(ρXQY ) = S(ρ′XQY )
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The two partial density matrices

ρQY = TrXρXQY =
∑
x

pxρx ⊗ |0〉〈0| = ρ⊗ |0〉〈0|

and

ρ′QY = TrXρ
′
XQY =

∑
x

pxPyρxP
′
y ⊗ |y〉〈y′|

are also unitarily related because of the tensor product form of UXQY = Id ⊗
UQY . Thus we also have

S(ρQY ) = S(ρ′QY )

From the strong sub-additivity (in the form S(X|QY ) ≤ S(X|Y ) say)

S(ρ′XQY )− S(ρ′QY ) ≤ S(ρ′XY )− S(ρ′Y ),

thus we get

S(ρXQY )− S(ρQY ) ≤ S(ρ′XY )− S(ρ′Y ).

The rest of the proof is a computation of all the entropies appearing in this

last inequality. For the first one we have (since the pure part |0〉〈0| has zero von

Neumann entropy)1

S(ρXQY ) = S
(∑
x

px|x〉〈x| ⊗ ρx
)

To compute this entropy we use the spectral decomposition ρx =
∑
ax
λax |ax〉〈ax|.

Then ∑
x

px|x〉〈x| ⊗ ρx =
∑
x,ax

pxλax |x〉〈x| ⊗ |ax〉〈ax|

Since this is a convex combination of mutually orthogonal states we have that

its entropy is

−
∑
x,ax

pxλax ln pxλax = H(X)−
∑
x

px
∑
ax

λax lnλax (7.4)

= H(X) +
∑
x

pxS(ρx)

Thus

S(ρXQY ) = H(X) +
∑
x

pxS(ρx)

For the second entropy since ρQY = ρ⊗ |0〉〈0| we simply have

S(ρQY ) = S(ρ).

For the third one, we first compute the reduced density matrix

ρ′XY = TrQρ
′
XQY =

∑
x,y,y′

px|x〉〈x| ⊗ |y〉〈y′|TrQPyρxPy′

1 More formally use TrρA ⊗ ρB ln ρA ⊗ ρB = TrρA ln ρA + TrρB ln ρB).
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By the cyclicity of the trace

TrQPyρxPy′ = TrQPy′Pyρx = δyy′TrQPyρx = δyy′py|x

Thus we find

ρ′XY =
∑
x,y

px,y|x〉〈x| ⊗ |y〉〈y|

The states |x〉〈x| ⊗ |y〉〈y| are mutually orthogonal. Thus this density matrix is

just another representation for the random variable (X,Y ). The von Neumann

entropy is

S(ρ′XY ) = H(X,Y )

Now it remains to compute the last entropy S(ρ′Y ). We have

ρ′Y = Trρ′XY =
∑
x,y

px,y|y〉〈y| =
∑
y

py|y〉〈y|

therefore

S(ρ′Y ) = H(Y )

Collecting all these entropies and replacing them in the strong sub-additivity

inequality we obtain

H(X) +
∑
x

pxS(ρx)− S(ρ) ≤ H(X,Y )−H(Y )

which is the same as

I(X;Y ) ≤ S(ρ)−
∑
x

pxS(ρx) = χ(X; ρ)

This ends the proof of Holevo’s bound.

7.3 Remarks on the achievability of Holevo’s bound

Given a measurement basis {Py} we have

I(X;Y ) =H(Y )−H(Y |X)

=−
∑
y

(TrPyρ) ln(TrPyρ) +
∑
x

px
∑
y

(TrPyρx) ln(TrPyρx)

The Holevo bound states that for any {Py} this expression is less than

S(ρ)−
∑
x

pxS(ρx)

In general, given a mixture {px, ρx} it is difficult to assess if there exists a

measurement basis {Py} such that the bound is achieved. A positive answer

can be given in special important cases.
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For a mixture of pure states {px, |φx〉〈φx|} and a measurement basis Py =

|y〉〈y| we have

I(X;Y ) =−
∑
y

(∑
x

px|〈y|φx〉|2) ln(
∑
x

px|〈y|φx〉|2
)

+
∑
x

px
∑
y

|〈y|φx〉|2 ln |〈y|φx〉|2

If the states |φx〉 are mutually orthonormal, and we choose a measurement basis

containing all these states, we find

I(X;Y ) = H(X)

But since S(ρ) ≤ H(X) +
∑
x pxS(ρx) (a general bound proved in chapter 6) we

always have

χ(px; ρx) ≤ H(X)

Therefore we see that (for mixtures of mutually orthonormal states) the equality

is achieved for mixtures of orthonormal states, by a measurement basis containing

these states. This result is an expression of the fact that orthonormal states can

be perfectly distinguished: we gain the maximum possible amount of mutual

information by doing the right measurements.

These arguments can be generalized to the case of a mixture such that the

density matrices ρx are mutually orthonormal in the sense that

Trρxρx′ = 0, x 6= x′

This means that for no zero eigenvalues the eigenprojectors of ρx and ρx′ are

mutually orthogonal. If we set ρx =
∑
j λjPj,x for the spectral decomposition,

we have (for non zero λj ’s)

TrPj,xPj′,x′ = δj,j′δx,x′

This can be checked by replacing the spectral decompositions of the density

matrices in the trace and noting that all terms in the sum are non-negative. We

leave it as an exercise for the reader to check that if the measurement basis {Py}
contains {Pj,x} one gets

I(X;Y ) = S(ρ)−
∑
x

pxS(ρx)

Summarizing, when the density matrices are mutually orthogonal, the Holevo

bound can again be attained by an appropriate measurement basis.

A more sophisticated case were achievability can be proven is the following.

Take a finite ”alphabet” of density matrices ρx (for example |0〉〈0| and 1
4 |0〉〈0|+

3
4 |1〉〈1|) and fix a classical distribution px. Take M tensor products of n elements

picked in the alphabet: {ρx1 ⊗ · · · ⊗ ρxn}. Now given {px, ρx}, as long as M is



96 Accessible information

not too large it is possible to find M tensor products that are asymptotically

mutually orthogonal

Tr(ρx1 ⊗ · · · ⊗ ρxn)(ρx′1 ⊗ · · · ⊗ ρx′n)→ 0, n→∞

The proof uses the probabilistic method, in the spirit of Shannon’s theory. One

picks the tensor product strings randomly according to the distribution px1
...pxn

to first show that the tensor products are mutually orthogonal on average. Then

usual arguments show that there must exist one such choice. The proof shows

that one should have log2M
n ≤ χ({px, ρx}). Combining this result with the ar-

guments of the previous paragraph we see that in such a situation there exists

a measurement basis in H⊗n that asymptotically achieves the Holevo bound as

n→ +∞,

1

n

∣∣∣∣I(X1...Xn;Y1...Yn)−
(
S(ρ⊗n)−

∑
x1...xn

px1
...pxnS(ρx1

⊗· · ·⊗ρxn)

)∣∣∣∣→ 0 (7.5)

This remark is at the basis of one of the capacity theorems for communication

of classical messages accross quantum channels.



8 Compression of a Quantum State

We are now ready derive the direct analog of Shannon’s lossless source coding

theorem, that was first analyzed by Schumacher.

In the classical case we are given a memoryless source which produces strings

x1x2...xn where each letter x ∈ {0, 1} and occurs with probability Prob(X =

x) = px. One shows that for n sufficiently large, the outputs of the source can

be faithfully be described by nR bits as long as R > H(X) and also that this is

not possible if R < H(X). Thus length n messages can compressed be to length

nR messages with negligible error as n→ +∞.

In the quantum case a memoryless source produces tensor product states ρx1⊗
· · · ρxn each “letter” ρx belonging to a finite set A of d× d density matrices (the

quantum alphabet) and occurring with probability px (so
∑
x∈A px = 1). The

quantum state of the source is therefore

∑
x1...xn

px1 ...pxnρx1 ...ρxn =
(∑
x

pxρx
)⊗n

= ρ⊗n (8.1)

This is a density matrix of dimension dn×dn (the Hilbert space of pure states has

dimension dn; for example d = 2 for Qbits, d = 3 for ”quantum trits” ect). We

want to compress the source: this means that we want to represent it faithfully

by states (or density matrices) of a Hilbert space of dimension dnR.

In general this problem is open. It is known that it is not possible to achieve

a compression rate R < χ({px, ρx}), but it is not known that any rate higher

than the Holevo quantity is achievable. However, Schumacher solved the special

case where the alphabet letters ρx ∈ A are pure states ρx = |φx〉〈φx|. Namely

any rate R > S(ρ) is achievable while it is not possible to faithfully compress

at rates R < S(ρ). Note that if the alphabet consists of orthonormal states (say

{|0〉, |1〉}) S(ρ) = H(X) so one recovers the classical Shannon theorem. This

should be so, since orthonormal states are perfectly distinguishable, so that the

problem becomes equivalent to the classical one. In the sequel we concentrate on

sources of pure states that live in Cd.
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8.1 Notion of typical subspace

In the classical case, the space of length n strings is partitioned into Tn,ε ∪ T cn,ε
where

Tn,ε =

{
{x1...xn|

∣∣∣∣ 1n
n∑
i=1

logd
1

p(xi)
−H(X)

∣∣∣∣ ≤ ε} (8.2)

is called the space of (weakly) typical sequences. This definition implies that all

typical sequences have approximately the same probability, namely

d−n(H(X)+ε) ≤ px1
...pxn ≤ d−n(H(X)−ε) (8.3)

By the law of large numbers, for any ε and δ small positive we can find n large

enough such that

1− δ ≤ Prob(Tn,ε) ≤ 1 (8.4)

Summing (8.3) over typical sequences and using (8.4) we also deduce an estimate

on the number of typical sequences

(1− δ)dn(H(X)−ε) ≤ |Tn,ε| ≤ dn(H(X)+ε) (8.5)

Finally, any set Sn,ε of sequences that is too small in the sense that |Sn,ε| ≤ dnR
with R ≤ H(X)− ε has negligible probability,

Prob(Sn,ε) ≤ δ + d−n(H(X)−ε−R) (8.6)

To see this write

Sn,ε = (Sn,ε ∩ Tn,ε) ∪ (Sn,ε ∩ T cn,ε) (8.7)

and use (8.3) with the union bound.

These properties immediately suggest to encode only the typical sequences

and to throw away or code non-typical ones into a junk state. Because of (8.4)

this scheme will incur a decoding error with probability at most δ. Because of

(8.5) it is enough to use n(H(X) + ε) nats for the encoding. Moreover because

of (8.6) using less than n(H(X)− ε) nats will incur a finite probability of error1.

In the quantum case one defines a similar notion of typicality. Consider a mem-

oryless source that outputs with probability px letters |φ〉x ∈ A which belong to

the Hilbert space H = Cd. The density matrix for the source is∑
x1...xn

px1
...pxn |φx1

〉〈φx1
| ⊗ ...⊗ |φxn〉〈φxn | =

(∑
x

px|φx〉〈φx|
)⊗n

= ρ⊗n (8.8)

One can find the spectral decomposition of this density matrix. Indeed let

ρ =
∑
a

λaPa (8.9)

1 See Cover and Thomas for more details
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be the spectral decomposition for the length one case (here we assume for sim-

plicity non-degeneracy of the eigenvalues, so Pa = |a〉〈a|). Then

ρ⊗n =
∑
a1...an

λa1 ...λanPa1 ⊗ ...⊗ Pan (8.10)

The eigenvalues λa are positive and sum to one, thus define a probability distribu-

tion. Moreover the projectors Pa are mutually orthogonal, thus distinguishable.

Therefore the density matrix ρ⊗n is also the density matrix of a ”mathematical”

memoryless classical source that outputs letters a (or Pa or |a〉) with probabili-

ties pa. We stress that this is not the physical preparation of the state ρ⊗n. We

can define a set of typical sequences of eigenvalues and/or eigenstates

Tn,ε =

{
a1...an|

∣∣∣∣ 1n
n∑
i=1

logd
1

λai
− S(ρ)

∣∣∣∣ ≤ ε} (8.11)

Definition: typical subspace. Consider the projector

Pn,ε =
∑

a1...an∈Tn,ε

Pa1 ⊗ ...⊗ Pan (8.12)

The subspace Pn,εH⊗n is called the typical subspace. We have

ρ⊗n = Pn,ερ
⊗nPn,ε + (I − Pn,ε)ρ⊗n(I − Pn,ε) (8.13)

The source coding scheme described in the next section is based on the fol-

lowing theorem, which is the quantum analog of (8.3), (8.5) and (8.6).

theorem 8.1.1 [typical subspace theorem] Fix ε and δ positive, small. For

n sufficiently large,

• the density matrix has almost all its support on the typical subspace

1− δ ≤ TrPn,ερ⊗n ≤ 1, (8.14)

• the dimension of the typical subspace is approximately dnS(ρ)

(1− δ)dn(S(ρ)−ε) ≤ TrPn,ε ≤ dn(S(ρ)+ε), (8.15)

• let Sn,ε be a projector on a subspace of dimension less than dnR with R ≤
S(ρ) − ε. In other words TrSn,ε ≤ dnR with R ≤ S(ρ) − ε. For such a

projector we have

TrSn,ερ
⊗n ≤ δ + d−n(S(ρ)−ε−R). (8.16)

Proof The basic difference with the classical case is that one has to deal a bit

more carefully with operator inequalities for the third statement2

2 We recall: a hermitian matrix A = A† is said to be (semi-definite) positive iff 〈φ|A|φ〉 ≥ 0

for any |φ〉; A ≥ B iff (A−B) ≥ 0; and A ≥ 0 implies C†AC ≥ 0.
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First statement. Observe that

Pn,ερ
⊗nPn,ε =

∑
a1...an∈Tn,ε

λa1 ...λanPa1 ⊗ ...⊗ Pan (8.17)

So

TrPn,ερ
⊗n =

∑
a1...an∈Tn,ε

λa1 ...λan (8.18)

which is the probability of the set Tn,ε. The statement follows by the law of large

numbers (as in the classical case).

Second statement. Observe that

TrPn,ε =
∑

a1...an∈Tn,ε

1 = |Tn,ε| (8.19)

so the statement again follows like in the classical case. Note that here we have

assumed that the eigenvalues are not degenerate (if TrPa = ga we have to modify

the definition of typical sequences according to 1
λa
→ ga

λa
).

Third statement. We use the decomposition (8.13) to write TrSn,ερ
⊗n as a

sum of two contributions.

For the first one we have,

TrSn,εPn,ερ
⊗nPn,ε = TrSn,εPn,ερ

⊗nPn,εSn,ε

≤ d−n(S(ρ)−ε)TrSn,ε

≤ d−n(S(ρ)−ε−R) (8.20)

In the first equality we use the cyclicity of the trace and for the first inequality

we use the operator inequality Pn,ερ
⊗nPn,ε ≤ d−n(S(ρ)−ε) I.

For the second contribution we observe that M = (I −Pn,ε)ρ⊗n(I −Pn,ε) is a

positive operator so by the cyclicity of the trace

TrSn,ε(I − Pn,ε)ρ⊗n(I − Pn,ε) = Tr
√
MSn,ε

√
M

≤ Tr
√
M I
√
M = TrM

= Trρ⊗n(I − Pn,ε)
≤ δ (8.21)

In the inequality we used that Sn,ε ≤ I (true for any projector).

8.2 Compression scheme

The source outputs words of length n,

|φx1〉 ⊗ ...⊗ |φxn〉 (8.22)

with probability px1
...pxn . We specify a bock coding scheme for these words:

we would like to encode these words which belong to the Hilbert space H⊗n by
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states in a Hilbert space H⊗nR were R < 1. This encoding should be faithful in

the sense that that it should be possible to recover, most of the time, the original

words by some decoding procedure.

Encoding procedure. We have to rely on a slightly more general encoding

process that encodes source states into density matrices. An encoding map is a

map from states of dimension dn to density matrices of dimension dnR × dnR

En : H⊗n → DM(H⊗nR)

|φx1
〉 ⊗ ...⊗ |φxn〉 → E(|φx1

〉 ⊗ ...⊗ |φxn〉)

Here DM(H⊗nR) is the space of density matrices of dimension dnR × dnR. The

compression rate per letter is R = nR
n .

Decoding procedure. Ideally we should map back the density matrix E(|φx1
〉⊗

...⊗ |φxn〉) to the input word |φx1
〉 ⊗ ...⊗ |φxn〉. This cannot be done exactly, so

we allow for a slightly more general definition,

Dn : DM(H⊗nR) → DM(H⊗n)

σ → D(σ)

Reliability criterion. The scheme (En,Dn) should be faithful. Let

ρoutput = D(E(|φx1〉 ⊗ ...⊗ |φxn〉)) (8.23)

We define a fidelity as the overlap between the input and output states,

F (|φx1〉 ⊗ ...⊗ |φxn〉) = 〈φx1 , ..., φxn |ρoutput|φx1 , ..., φxn〉 (8.24)

The average fidelity is

F̄n =
∑

x1,...,xn

px1 ...pxn〈φx1 , ..., φxn |ρoutput|φx1 , ..., φxn〉 (8.25)

One has to be careful with the notation here: in each term of the sum ρoutput

depends on the input state |φx1
, ..., φxn〉.

The intuitive meaning of the fidelity can be better understood by looking

at the classical case. If the letters |φx〉 are orthonormal then we are reduced

to a classical situation and the encoding-decoding operations can be done by

looking at a “look-up table”. In other words for a typical source word we have

perfect recovery so ρoutput = |φx1
, ..., φxn〉〈φx1

, ..., φxn | and F = 1; while for a

non typical source word we have ρoutput = |junk〉〈junk| and the decoder simply

declares an error and sets F = 0 (simply assume that |junk〉 is orthogonal to all

source words). We see that in the classical case the average fidelity is precisely

equal to 1− Prob(error).

theorem 8.2.1 [Schumacher’s theorem] Fix ε > 0, δ > 0 small.

• Fix R > S(ρ)+ε. Then one can find encoding-decoding schemes (En,Dn) such
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that for n large enough F̄n ≥ 1−2δ. So asymptotically loss-less compression

is possible.

• Fix R < S(ρ) − ε. Then for any encoding-decoding scheme (En,Dn) we have

F̄n ≤ δ + d−n(S(ρ)−ε−R). Loss-less compression is not possible.

This theorem says that compression rates above S(ρ) are (faithfully) achiev-

able, while this is not the case for compression rates below S(ρ). Note that in

general S(ρ) ≤ H(X). The fact that a quantum source is more compressible than

a classical one should not surprise the reader: this is an expression of the fact

that non-orthogonal alphabet letters cannot be perfectly distinguished so that a

quantum source word is more redundant than its classical counterpart.

8.3 Proof of the source coding theorem

First we prove the achievability part and then proceed to the converse.

Achievability part. We specify the encoding map E . Take the measurement

apparatus defined by the two orthogonal projectors {Pn,ε, I − Pn,ε) on the typi-

cal subspace and its orthogonal complement. Given a source word |φx1
, ..., φxn〉

perform a measurement. According to the measurement postulate the outcome

is

Pn,ε|φx1
, ..., φxn〉

〈φx1 , ..., φxn〉|Pn,ε|φx1 , ..., φxn〉1/2
, with prob 〈φx1

, ..., φxn |Pn,ε|φx1
, ..., φxn〉

(8.26)

or

(I − Pn,ε)|φx1
, ..., φxn〉

〈φx1
, ..., φxn〉|I − Pn,ε|φx1

, ..., φxn〉1/2
, with prob (8.27)

〈φx1 , ..., φxn |I − Pn,ε|φx1 , ..., φxn〉

Now the first state is in the typical subspace Pn,εH⊗n so it can be described

by nS(ρ) quantum nats (because of theorem 1 the dimension of the typical

subspace is dnS(ρ)). One can find a basis of H⊗n such that this typical subspace

is described by the first nS(ρ) terms of the tensor product. In other words we

can find a unitary operation U that transforms the state (8.26) to the form (this

unitary depends only on the original basis and the typical space, not on the

particular input state)∑
b1...bm

cb1...bnx1...xn | b1...bm︸ ︷︷ ︸
nR terms

, 0, 0, ..., 0︸ ︷︷ ︸
n(1−R) terms

〉 = |ψcompressed〉 ⊗ | 0, 0, ..., 0︸ ︷︷ ︸
n(1−R) terms

〉 (8.28)

The state |0n(1−R)〉 is then discarded. The second possible outcome is not coded

since it lies in the non typical subspace. More precisely we describe all such

states as |junk〉 a single specified quantum state (in the typical subspace, say).
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We assume that the outcome is not observed during the compression stage so its

state is described by the mixture

E(|φx1
...φxn〉) =〈φx1

, ..., φxn |Pn,ε|φx1
, ..., φxn〉|ψcompressed〉〈ψcompressed|

+ 〈φx1
, ..., φxn |I − Pn,ε|φx1

, ..., φxn〉|junk〉〈junk| (8.29)

For the decoding operation one first appends n(1 − R) quantum letters in

the |0n(1−R)〉 state that was discarded. then one performs the inverse unitary

operation U†. So the decoder map is given by

D(E(|φx1 ...φxn〉)) (8.30)

= Pn,ε|φx1 ...φxn〉〈φx1 , ..., φxn |Pn,ε
+ 〈φx1

, ..., φxn |I − Pn,ε|φx1
, ..., φxn〉U† |junk, 0n(1−R)〉〈junk, 0n(1−R)|U

We now estimate the fidelity associated to this scheme (En,Dn). We replace

ρoutput given by (8.30) in the definition of the average fidelity. The contribution

from the first term is∑
x1...xn

px1
...pxn〈φx1

, ..., φxn |Pn,ε|φx1
...φxn〉2 (8.31)

≥
{ ∑
x1...xn

px1
...pxn〈φx1

, ..., φxn |Pn,ε|φx1
...φxn〉

}2

= (Trρ⊗nPn,ε)
2

≥ (1− δ)2

The first inequality is Cauchy-Schwartz, and the second comes from theorem 1.

Finally the contribution from the second term is trivially positive (write it down

and see !). Thus we conclude that

F̄ ≥ (1− δ)2 ≥ 1− 2δ (8.32)

Converse part. Let

EN : |φx1
...φxn〉〈φx1

...φxn | → σ (8.33)

be a completely general encoding scheme (so σ is any dnR×dnR density matrix).

The first step of the decoder is to append |0n(1−R)〉〈0n(1−R)| to get a state

σ ⊗ |0n(1−R)〉〈0n(1−R)| (8.34)

in the original Hilbert space. Here we restrict the proof to the special case of

unitary decoders3. So let

D : σ ⊗ |0nR〉〈0nR| → Uσ ⊗ |0nR〉〈0nR|U† (8.35)

3 More general ones would correspond to a mappings between density matrices and would
require a more complicated proof.
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The density matrix (8.34) is constructed out of states of a dnR dimensional

subspace of H⊗n. Let Sn be the projector on that subspace, and note that

Uσ ⊗ |0nR〉〈0nR|U† = USn

(
σ ⊗ |0nR〉〈0nR|

)
SnU

† (8.36)

Now, the average fidelity is

F̄ =
∑
x1...xn

px1 ...pxn〈φx1 ...φxn |USn
(
σ ⊗ |0nR〉〈0nR|

)
SnU

†|φx1 ...φxn〉 (8.37)

≤
∑
x1...xn

px1
...pxn〈φx1

...φxn |USnU†|φx1
...φxn〉

= Tr(ρ⊗nUSnU
†)

We first used that any density matrix is smaller than the identity matrix, so

σ ⊗ |0nR〉〈0nR ≤ I, and then the cyclicity of the trace. Clearly USnU
† is a

projector on some dnR dimensional subspace of H⊗n with R < S(ρ) − ε. Then,

the third statement of theorem 1 implies

F̄ ≤ δ + d−n(S(ρ)−ε−R) (8.38)

This achieves the proof of the converse part for the class of unitary decoders.
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Quantum Computation





10 Quantum Computation and Circuit
Model

10.1 Brief historical introduction

A computation is ultimately performed by a physical device. Then it is a natural

question to ask what are the fundamental limitations that the laws of physics

impose on a computation. An early work on such issues was that of Landauer

who argued that a bit erasure - a logically irreversible process - is always accom-

panied by heat dissipation and is thus a thermodynamically irreversible process.

Consequently any computation using logically irreversible gates (AND; OR) will

dissipate heat. But is there a fundamental principle that requires a minimum

amount of heat dissipation in computation? A negative answer to this question

was put forward by Bennett, Benioff and others. More precisely any logically

irreversible computation can be made logically reversible, with appropriate el-

ementary gates, provided we are willing to increase the work space. And there

is no physical principle that requires a minimum amount of heat dissipation for

logically reversible computation.

If no heat is generated by reversible computations, then as the physical support

of bits becomes smaller and smaller the quantum mechanical behavior of matter

and notably quantum coherence effects might become important. It is natural

to ask the question: what are the effects of the quantum mechanical behavior of

matter on computation? Do they help, or do they bring any new limitations?

These issues where raised and discussed by Feynman, Benioff, Manin and oth-

ers in the early 1980’s. In principle QM does not bring any new limitations.

On the contrary the superposition principle applied to many particle systems

(many qubits) enables us to perform “parallel computations”, thereby speeding

up classical computations. This was recognized very early by Feynman who ar-

gued that classical computers cannot simulate efficiently quantum mechanical

processes. This lead him to suggest that we should buid “quantum machines” to

simulate efficiently quantum processes.

The basic reason why classical computation cannot simulate efficiently quan-

tum processes is the following. A general quantum state for N quantum bits

involves a superposition of 2N classical states :

|ψ〉 =
∑

b1...bN∈ {0,1}N
cb1,...,bN |b1, . . . , bN 〉



110 Quantum Computation and Circuit Model

A classical simulation of the evolution of |ψ〉 must perform essentially 2N com-

putations for the evolution of each “classical state” |b1 . . . bN 〉 (states of the com-

putational basis are mutually othogonal and can be considered as “classical”).

On the contrary, the unitary quantum dynamics U acts on |ψ〉 as a whole (or on

each |b1 . . . bN 〉 in parallel). So physical devices performing a unitary dynamics

on |ψ〉 can be viewed as devices performing a quantum computation.

Feymman developed the concept of quantum computation in the language of

Hamiltonian dynamics. It turns out that this is not very practical. A practical

classical model of computation (that has an intuitively clear quantum counter-

part) can be represented by a circuit model built out of a given set of elementary

gates acting in a recursive way on the input of the computation. Around 1985

David Deutsch showed that the same holds in the quantum case. Namely, any

unitary evolution can be approximated well enough by some set of universal

elementary quantum gates.

Nowaday it is the Deutsch model - a quantum circuit model - of a quantum

computer that is the most popular. The subject of this chapter is to explain this

model. One reason for its popularity is that it is a universal model: in principle

any quantum computation can be cast as an instance of a quantum circuit.

There is also a notion of quantum Turing machine (which is analogous to

classical Turing machines) and is the natural and most convenient framework

to discuss quantum complexity classes. It has been shown that the Quantum

Turning machine model is equivalent to the quantum circuit model. Complexity

issues are (almost) not discussed here.

10.2 Classical circuit model of Computation

We begin with a discussion of classical computations done with classical boolean

circuits. Consider the basis set of logical gates acting on bits xi ∈ F2 = {0, 1}.

x1
-

x2
-

AND - x1 ∧ x2

x1
-

x2
-

OR - x1 ∨ x2

x1
- NOT - x̄1 x - COPY

- x
- x

Note that COPY is also sometimes called FANOUT. We can use these logical

gates to define a boolean circuit.

definition 10.2.1 A boolean circuit is a directed acyclic graph with n input

bits and m output bits. The input can always be initialized to (0. . .0) because

any (x1 . . . xm) is obtained by a series of appropriate NOT gates.

The following figure is an example illustrating this definition.



10.2 Classical circuit model of Computation 111

1
10 - NOT -

0 - -
AND - -

OR - 0

1 0
1 0

0 - NOT - -

0 - - - -
OR - NOT - COPY

0
0

A celebrated theorem of Emil Post (circa 1950) says that for any function

f : Fm2 → Fm2 one can construct a Boolean circuit that computes it.

theorem 10.2.2 For any function f : Fm2 → Fm2 there exists a Boolean circuit

that maps inputs (x1 . . . xm) to outputs (y1 . . . ym) = f(x1 . . . xm). The Boolean

circuit is constructed out of NOT, AND, OR, COPY and is a directed acyclic

graph.

One says that the set of gates {NOT,AND,OR,COPY} is universal. Note that

AND, OR are not reversible. We come back later to the issue of reversibility.

Proof A function f : Fm2 → Fm2 can be represented by component functions

fi : Fm2 → F2, i = 1 . . .m . So if we can COPY the input, m times we just need

to show that there exists a Boolean circuit for each fi : Fm2 → F2. The problem

is then reduced to finding Boolean circuits for functions f : Fm2 → F2.

For each ~a = (a1 . . . am) ∈ F we define

C~a(x1 . . . xm) = φ1(x1) ∧ φ2(x2) ∧ . . . ∧ φm(xm)

where {
φi(xi) =

−
xi if ai = 0

φi(xi) = xi if ai = 1

This is built out of AND, NOT gates only, and since ∧ is associative it can

be done recursively (directed acyclic graph). We note that C~a(x1 . . . xm) = 1 if

(x1 . . . xm) = (a1 . . . am).

Now given a function f : Fm2 → F2 let {~a(1), . . . ,~a(k)} be the set of inputs

in Fm2 for which f takes values 1. For all other input f takes value 0. A little

thought shows that

f(x1 . . . xm) = C~a(1)(x1 . . . xm) ∨ C~a(2)(x1 . . . xm) ∨ . . . ∨ C~a(K)(x1 . . . xm)

It remains to see that ∨ is associative and can thus be done in a recursive way

(i.e with a directed acyclic graph). So f is computed from OR and COPY.
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10.3 Reversibility versus irreversibility

The NOT gate is logically reversible. This means that from the output one can

recover the input. However the AND, OR gates are logically irreversible, and this

implies heat dissipation. The COPY operation is logically reversible. However its

naive implementation (the FANOUT) is thermodynamically irreversible. Indeed

the reversed operation

x -

x -
- x

erases a bit. Thus, according to Landauer’s analysis, there is heat dissipation and

the gate is not thermodynamically reversible. However we will see below that the

agte can be implemented in a way that is also thermodynamically reversible.

We will now show that any Boolean circuit can be simulated by a logically

reversible circuit. Moreover a universal set of reversible gates exists.

From f : Fm2 → F2 we construct f̃ : Fm2 ⊕ F2 → Fm2 ⊕ F2 as follow :

f̃(x1 . . . xm, y) = (x1 . . . xm, f(x1 . . . xm)⊕ y)

Now, f̃ is invertible since from (x1 . . . xm, f(x1 . . . xm)⊕y) we can recover x1 . . . xm
and f(x1 . . . xm) [since we have a circuit for f ] and then

y = (f(x1 . . . xm)⊕ y)⊕ f(x1 . . . xm).

Thus any f can be computed in a reversible way from the circuit for f̃ . To com-

pute f reversibly we start with the input (x1 . . . xm, 0) compute f̃(x1 . . . xm, 0) =

(x1 . . . xm, f(x1 . . . xm)) copy1 the last bit f(x1 . . . xm) and run back the compu-

tation to get

f̃−1(x1 . . . xm, f(x1 . . . xm)) = (x1 . . . xm, 0).

In this way we have f(x1 . . . xm) and the circuit is left in its initial state (x1, . . . , xm, 0).

It remains to be shown that f̃ can be represented by a circuit containing only

irreversible elementary gates. We already know that f̃ can be represented by a

circuit containing AND, OR, NOT, COPY. We want to replace AND, OR by a

reversible gate. This can be achieved by using the 3 bit gate known as Toffoli

gate which is a CCNOT (controlled-controlled NOT):

x - • - x

y - • - y or T(x, y, z) = (x, y, z ⊕ xy).

z - ⊕- z ⊕ xy.

1 This step is logically reversible but not necessarily thermodynamically so. However as

explained below it can be made thermodynamically reversible by a proper implementation
of COPY
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This gate flips the target bit z if both control bits x and y are equal to 1.

Otherwise z is left unchanged. The Toffoli gate is reversible because:

x - • - • - x

y - • - • - x or T2(x, y, z) = (x, y, z)

z - ⊕- ⊕- z

If we set z = 0, T (x, y, 0) = (x, y, xy) outputs x ∧ y in the third bit. Thus the

AND gates can be replaced by a Toffoli gate provided we increase our workspace

to have a target input bit z = 0 and the additional outputs x & y.

For the OR gate we can use

x̄
x - NOT - • - x̄

ȳ
y - NOT - • - ȳ

1
0 - NOT - ⊕- 1⊕x̄ȳ = x ∨ y

Finaly the COPY gate can be replaced by

x - • - x

0 - ⊕ - x

which is a CNOT gate (reversible) with the target bit set to 0 in the input.

Summarizing we have shown that a Boolean circuit made of the universal set

{AND,OR,COPY,NOT} can be simulated by a reversible circuit made of the

universal set {CNOT; Toffoli; NOT}.

The set {AND,OR,COPY,NOT} involves single and two bit gates. On the

other hand {CNOT; Toffoli; NOT} involves single, two bit, and the Toffoli three

bit gate. Is it possible to build reversible circuits using only single and two bit

gates? It is possible to show that the answer to this question is no. In fact

it suffices to produce a counterexample: the Toffoli gate cannot be simulated

reversibly with single & two bit gates. We will see that (perhaps surprisingly) in

the quantum case single and two bit gates suffice for reversible computation.
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10.4 Deutsch model of quantum circuits.

As we will see the quantum circuits are built out of a small set of gates. We fisrt

start by listing a few of the most important gates that we will encounter.

10.4.1 Single Qbit gates

• The three Pauli-gates X =

(
0 1

1 0

)
; Y =

(
0 −i
i 0

)
and Z =

(
1 0

0 −1

)
.

|b〉 - X - |b̄〉 is the quantum NOT gate.

Quantum mechanicaly the input can also be a coherent superposition of

the states {|0〉, |1〉}. For example

X(α|0〉+ β|1〉) = α|1〉+ β|0〉.

• The Hadamard gate H = 1√
2

(
1 1

1 −1

)
|b〉 - H - H|b〉 = 1√

2
(|0〉+ (−1)b|1〉)

• The ”π8 gate” T =

(
1 0

0 eiπ/4

)
|b〉 - T - eibπ/4|b〉 =

{
|0〉 → |0〉
|1〉 → eiπ/4|1〉

for superpositions: α|0〉+ β|1〉 → α|0〉+ βeiπ/4|1〉

• The gate S =

[
1 0

0 eiπ/2

]
=

[
1 0

0 i

] {
|0〉 → |0〉
|1〉 → i|1〉.

An important Lemma that we give here without proof is

Lemma 10.4.1 (Approximation of single Qbit gates by H and T .) Any single

bit unitary U can be approximated to arbitrary precision δ by a concatenation

of ”Hadamard H” and ”π8 − T gates”. Moreover if V is the concatenation of H

and T gates approximating U and ||U − V || < δ we need at most O(ln δ) gates

H and T [ This last statement is known as the Solevay-Kitaev theorem ].

The main idea of the proof is to represent U by a succession of rotations,

themselves represented by Pauli-gates, themselves represented by H and T . It is

not very difficult to prove that a circuit size O(1/δ) is sufficient. The Solovay-

Kitaev O(ln δ) is more difficult.

10.4.2 Controlled two-bit gates.

• The CNOT gate (controlled not) is the prototypical two-bit gate:

|c〉 - • - |c〉 control bit.

|t〉 -
⊕ - |c⊕ t〉 target bit.
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In the basis

|0〉 ⊗ |0〉 ; |0〉 ⊗ |1〉 ; |1〉 ⊗ |0〉 ; |1〉 ⊗ |1〉


1

0

0

0




0

1

0

0




0

0

1

0




0

0

0

1


the matrix representation is

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


• The controlled-U gate where U is a single bit operation.

|c〉 - • - |c〉

|t〉 - U - U c|t〉 =

{
|t〉 if c = 0

U |t〉 if c = 1

10.4.3 Multi-controlled gates.

A generalization of the preview controlled-U gate is the multi-controlled-U

|c1〉 - • - |c1〉
|c2〉 - • - |c2〉

... - • -
......

...
...

...
...... - • -
...

|ck〉 - • - |ck〉

|t〉 - U - U c1c2...ck |t〉

So U acts on the target bit if and only if all control bits are set to 1. By increasing

the work space this gate can be represented by a concatenation of controlled-

controlled-NOT and a controlled U . Indeed:

|c1〉 - • • - |c1〉
|c2〉 - • • - |c2〉
|c3〉 - • • - |c3〉

 controlled

bits
|c0〉 -

⊕
• •

⊕- |c0〉
|c0〉 -

⊕
•

⊕ - |c0〉

}
extra working

space

|ct〉 - U - U c1c2c3 |ct〉
}

target bit
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The controlled-controlled-NOT gate is nothing else than the Toffoli gate. Re-

markably it can be represented by one and two-bit quantum gates {T, S,H,CNOT}.
Remember that classicaly this is not possible! The reader can check that:

|c1〉 - • - |c1〉
|c2〉 - • - |c2〉
|c2〉 -

⊕ - |t⊕ c1c2〉

is equivalent to the following circuit:

|c1〉- - • - • - • - • - |c1〉

|c2〉- • - • - T†-
⊕- T†-

⊕- S- |c2〉

|t〉 - H-
⊕- T†-

⊕- T-
⊕- T†-

⊕- T- H - |t⊕ c1c2〉

Summarizing we arrive at the following Lemma:

Lemma 10.4.2 Any multibit-Controlled single bit gate U acting on N Qbits

(2N × 2N matrix), can be represented by the set {T, S,H,CNOT,U} where U

acts on the last Qbit (2× 2 matrix).

10.4.4 A universal set of quantum gates and the circuit model

An important lemma that we give here without proof is:

Lemma 10.4.3 Any unitary U acting on N-Qbits states, i.e states in C2 ⊗
C2 ...⊗ C2 can be decomposed as a finite product of ”two qubit unitaries”:

U = U (i1j1) ⊗ U (i2j2)... U (iKjK)

where U (ij) acts from C2⊗ ...⊗C2 → C2⊗ ...⊗C2 on spaces i and j (and trivialy

on all other spaces).

Lemma 10.4.4 Any two level unitary U (ij) acting as U on bits i and j and as

the identity on all others can be implemented by a concatenation of CNOT and

a multicontrolled single bit U .

One can show that there exist N-Qbits unitary matrices (2N × 2N matrices)

such that the decomposition obtained by lemmas 3 and 4 requires O(eN ) gates.

For

Combining Lemmas 1, 2, 3, 4 we arrive at the following basic theorem on

which the quantum Circuit Model of quantum Computation is based:

theorem 10.4.5 Any 2N × 2N unitary matrix U acting on C2 ⊗ ...⊗ C2 can

be represented to arbitrary accuracy by a concatenation of the finite set of single

and two-bit gates {T, S,H,CNOT}.
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If the required accuracy is δ one can argue that the maximal number of gates

is of the form O((ln δ)eN ). One can show that there exists unitary U for which

it is not possible to have O((ln δ)poly(N)). On the other hand for some special

problems such as factoring we will see that O(polyN) suffices for the quantum

circuit model (even though it does not suffice for a classical circuit).

The basic theorem just explained justifies the following model for quantum

computation.

definition 10.4.6 (Definition of a quantum circuit) a. A quantum circuit is

a directed acyclic graph whore vertices are gates among the finite set {T, S,H,CNOT}.
The wires ”carry” single Qbits (α|0〉+ β|1〉).

b. The input is set to the simple product state

|0〉 ⊗ ...⊗ |0〉

c. The output is the result of the unitary evolution operating on the input. The

output is in general a state of the form

|Ψ〉 =
∑
c1...cN

A(c1...cN )|c1c2...cN 〉

d. Finally a measurement is performed on |Ψ〉 with an apparatus measuring in

the computational basis {|0〉, |1〉}⊗N . The outcome of the measurement is ”the

result of the computation” |c1...cN 〉 obtained with probability |A(c1...cN )|2.

A few remarks about this model are in order:

1. Acting on ”Qtrits” instead of ”Qbits” would not change anything fundamental

(e.g the size or complexity of the circuit).

2. Performing measurements at intermediates stages instead of at the end does

not change anything.

3. Performing measurements in another basis simply amounts to first unitarily

rotate the basis so this can viewed as an adjunction to the circuit and finaly

does not change anything. However this may add complexity.

4. Starting with another initial condition amounts to start from the |0〉 ⊗ ... ⊗
|0〉 initial condition and adding extra unitary gates. However this may add

complexity.

5. Other sets of universal gates exist. It may be surprising that in the classi-

cal care three bit gates are needed whereas this is not the case for quantum

computation. But from a more physical point of view this is not surprising

because the classical three bit gates can be viewed as an effect of ”two-body

interaction” [see Billiard-Ball-Model and Fredkim gate].

6. A quantum computation is reversible as long as the measurement has not been

performed.
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7. A reversible classical computation can be represented by a unitary operator.

Indeed

f̃(x1...xN , y) = (x1...xN , y ⊕ f(x1...xN ))

induces the unitary

Uf |x1...xN , y〉 = |x1...xN , y ⊕ f(x1...xN )〉.

That Uf is a unitary, is easily checked by checking that it preserves the scalar

product.

8. Any classical reversible computation is included in the model of quantum

computation.

9. The power of quantum computation comes from the simultaneous action of the

unitary evolution on all ”classical” strings |c1...cN 〉 of a many-qubit state. The

complexity of the calculation is given by the size of the circuit. Since the result

is obtained with some probability, typicaly one must repeat a certain number

of times the computation to get a result with high probability (hopefully).

This repetition may add to the complexity.

10.5 The Deutsch-Josza problem.

This problem illustrates nicely the notion of quantum parallelism and the power

of quantum computation might be. We start with a special case due to Deutsch.

10.5.1 The Deutsch problem

We are given a black box representing f : {0, 1} → {0, 1} and are assured that f

is either constant i.e f(0) = f(1) or balanced f(0) 6= f(1). The black box gives

us an output when it is queried with an input. How many queries are needed to

decide if f is constant or balanced? Classicaly we need two queries. Indeed we

present the input 0 and get f(0). Then we present the input 1 and get f(1) and

check wether f(0) = f(1) or f(0) 6= f(1).

We will show that quantum mechanically one query suffices! This is because

we can present a query 1√
2
(|0〉+|1〉) and get a global answer about f even though

we do not learn what specific f is in the black box.

Consider the circuit:

|0〉 - H - - H - [measurement of first bit].

Uf
|1〉 - H - -

Here H is the Hadamard gate and

Uf |x, y〉 = |x, y ⊕ f(x)〉.
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Note that any Uf can be represented by T, S,H,CNOT but this is not the point

here; we view Uf as a black-box or Oracle which gives us an output for a given

input.

We query the black-box with |0〉⊗|1〉. Let us compute the action of the circuit

step by step:

(H ⊗ 1)Uf (H ⊗H)|0〉 ⊗ |1〉
= (H ⊗ 1)Uf (H|0〉 ⊗H|1〉)

= (H ⊗ 1)Uf
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉)

= (H ⊗ 1)
1

2
(Uf |00〉 − Uf |01〉+ Uf |10〉+ Uf |11〉)

= (H ⊗ 1)
1

2
(|0f(0)〉 − |01 + f(0)〉+ |1f(1)〉+ |11 + f(1)〉)

= (H ⊗ 1)
1

2
((−1)f(0)|00〉 − (−1)f(0)|01〉+ ((−1)f(1)|10〉 − (−1)f(1)|11〉

= (H ⊗ 1)
1

2
((−1)f(0)|0〉 ⊗ (|0〉 − |1〉) + (−1)f(1)|1〉 ⊗ (|0〉 − |1〉))

= (H ⊗ 1)
1

2
((−1)f(0)|0〉+ (−1)f(1)|1〉)⊗ (|0〉 − |1〉)

=
1

2
√

2
((−1)f(0)(|0〉+ |1〉) + (−1)f(1)(|0〉 − |1〉))⊗ (|0〉 − |1〉)

= {1

2
((−1)f(0) + (−1)f(1))|0〉+

1

2
((−1)f(0) − (−1)f(1))|1〉} ⊗ 1√

2
(|0〉 − |1〉)

This last state is the output of the circuit. We may do a measurement of the

first Qbit:

Prob(0) =
1

4
|(−1)f(0) + (−1)f(1)|2 =

{
1 if f(0) = f(1)

0 if f(0) 6= f(1)

and

Pro(1) =
1

4
|(−1)f(0) − (−1)f(1)|2 =

{
0 if f(0) = f(1)

1 if f(0) 6= f(1)

Thus if the function happens to balanced the measurement surely yields |1〉 and

if it happens to be constant the measurement surely yields |0〉. Therefore with

one ”query” we can learn if f is constant or balanced.

10.5.2 The Deutsch-Josza Problem

This is a generalization of the previous problem to functions f : {0, 1}N → {0, 1}.
We are assured that f is either constant or balanced. Here balanced means

that it takes the value 0 for half of the inputs and the value 1 for the other

half. If f happens to be constant, classically we have to query the black box
2N

2 + 1 = 2N−1 + 1 times to determine if it is constant. On the other hand if f
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happens to be balanced we need at least 2 queries and at most 2N

2 +1 = 2N−1 +1

queries.

We will now show that there is a quantum circuit for which only one query

suffices! Consider the generalization of the previous circuit:

N Qbits



|0〉 - H - - H -

|0〉 - H - - H -

- ... - - ... -
- ... - - ... -

|0〉 - H - - H -


Measurement of

first N Qbits.

extra bit { |1〉 - H - - -

Uf

We analyse the efect of the circuit step by step.

The initial state is |0〉 ⊗ ...⊗ |0〉 ⊗ |1〉.

The Hadamard gates transform the input as

H⊗...⊗H|0〉 ⊗ ...⊗ |0〉 ⊗ |1〉
= H|0〉 ⊗ ...H|0〉 ⊗H|1〉

=
1

2N/2
(
|0〉+ |1〉)⊗ ...⊗ (|0〉+ |1〉

)
⊗ 1√

2
(|0〉 − |1〉)

=
1

2N/2

∑
b1...bN∈{0,1}N

|b1...bN 〉 ⊗
1√
2

(|0〉 − |1〉).

We query the Uf box with this input. The output is:

1

2N/2

∑
b1...bN∈{0,1}N

(
1√
2
|b1...bN , f(b1...bN )〉 − 1√

2
|b1...bN , 1 + f(b1...bN )〉

)

=
1

2N/2

∑
b1...bN

1√
2

(−1)f(b1...bN )

(
|b1...bN , 0〉 −

1√
2

(−1)f(b1...bN )|b1...bN , 1〉
)

=
1

2N/2

( ∑
b1...bN

(−1)f(b1...bN )|b1...bN 〉
)
⊗ 1√

2
(|0〉 − |1〉)

We apply again the Hadamard gates H ⊗ · · · ⊗H on the first N Qbits and

leave the last Qbit intact. This yields:

1

2N/2

∑
b1...bN

(−1)f(b1...bN )(H|b1〉 ⊗ ...⊗H|bN 〉)⊗
1√
2

(|0〉 − |1〉)

Since

H|bi〉 =
1√
2

(|0〉+ (−1)bi |1〉)
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we obtain

H|b1〉 ⊗ ...⊗H|bN 〉 =
1

2N/2

∑
a1...aN

(−1)~a·
~b|a1...aN 〉

where

~a ·~b =

N∑
i=1

aibi

The net result for the output of the circuit is therefore:

1

2N

({ ∑
b1...bN

(−1)f(b1...bN )(−1)~a·
~b

} ∑
a1...aN

|a1...aN 〉
)
⊗ 1√

2
(|0〉 − |1〉)

Now we measure the first N Qbits: the probability of an outcome (a1...aN ) =

(0...0) is

Prob(0...0) =
1

22N
|
∑
b1...bN

(−1)f(b1...bN )|2

We conclude that

• If f happens to be constant we find Prob(0...0) = 1 so the measurement will

surely yield (0...0).

• If f happens to be balanced we find Prob(0...0) = 0 so the measurement will

surely yield some a1...aN 6= (0...0).

Summarizing, we see that with only one query of the quantum circuit we can

learn if f is constant or balanced! We have explored all possible classical questions

simultaneously, a spectacular illustration of quantum parallelism.



11 Hidden Group, Period Finding and
Factoring

In this chapter we begin with a variation of the Deutsch-Josza problem, that was

originally proposed by Simon. As we will see the quantum Fourier transform will

appear naturally as an attempt to generalize Simon’s algorithm to the search for

the (hidden) period of a function. The factorization of an integer can be reduced

to the search of the period of an arithmetic functio (the modular exponential).

Shor’s factorization algorithm exploits this fact and is an instance of the period-

finding quantum algorithm.

11.1 Simon’s problem and hidden groups

Let us first give the statement of the simplest version originally considered by

D. Simon. Let f : {0, 1}n → X where X is a finite set of values. We suppose

that we are assured that f satisfies ”Simon’s promise”: f(x) = f(y) if and only

if x = y or x = y ⊕ a for some fixed a ∈ {0, 1}n = Fn2 . Simon’s problem is: given

a black box that computes f find a in a minimal number of queries of f.

It can be shown that if the black box is classical then we need at least O(2cn)

queries to find a with finite probability O(1). We will show that if the black box

is quantum, there is an algorithm such that O
(
poly(n)

)
queries suffices to find

a with probability equal to 1−O(2−cn).

We note that {0, a} forms a subgroup of (Fn2 ,⊕) (in fact this is a one-dimensional

vector sub-space). This motivates the more general Hidden Subgroup Problem.

Let G be a finite group (abelian) and H a subgroup. Let ρ : G→ X (X a finite

set) with satisfies Simon’s promise: ρ is constant on the cosets G/H (equivalence

classes). The problem is to find a set of generators for H.

The following figure (?) illustrates a function that is constant over the cosets

G/H. The group G can be partioned in equivalence classes (cosets) with equal

cardinalities.

If the elements of G (abelian) admit a binary representation of size O(n);n =

log |G| then there exist a quantum algorithm solving the problem with probability

1−O(2−cn) with O(n) queries. For G non-abelian the problem is still open.

Here we will limit ourselves to G = (Fn2 ,⊕) and H ⊂ G is a subgroup of

Fn2 . In fact H is also a vector sub-space since Fn2 is a vector space. That is, H

has dimension dimH and we look for a set of basis vectors. Equivalently we
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could look for a set of basis vectors of H⊥ (the orthogonal complement of H:

Fn2 = H ⊕H⊥). Indeed once a basis of H⊥ is known it is possible to find a basis

for H in O
(
poly(n)

)
steps by methods of linear algebra (e.g Gauss-Jordan).

For later use we note that the number of vectors in Fn2 is 2n; the number of

vectors in H is 2dimH ; the number of vectors in H⊥ is 2dimH⊥ . The cosets Fn2/H
all have one representative that we denote by t. Given a coset with representative

t, all vectors in the coset are {t+ h | h ∈ H}. So the number of vectors in each

coset is 2dimH and the number of cosets is 2n

2dimH = 2dimH⊥ .

11.2 Simon’s algorithm

The quantum circuit for Simon’s algorithm is

n Qbits



- H - - H -

- H - - H -

...
...

...
...

- H - - H -


measurement on

first n Qbits

|0〉 - -

Quantum

Black
Box

Uρ

Let us perform all operations step by step.

Initialisation: the initial state is |0〉 ⊗ ... ⊗ |0〉 ⊗ |0〉. Any quantum algorithm

may be initialized in this way at the expense of adding unitary gates effecting

the desired preparation. Here this preparation is performed by the next step.

Hadamard transformations: these prepare transform the initial state into a

coherent superposition of all possible ”classical states”,

(H|0〉 ⊗ ...⊗H|0〉)⊗ |0〉 =
1

2n/2
(|0〉+ |1〉)⊗ ...⊗ (|0〉+ |1〉)⊗ |0〉

=
1

2n/2

∑
b

|b〉 ⊗ |0〉 ; b = (b1...bn) ; bi ∈ {0, 1}

=
1

2n/2

∑
t∈Fn2 /H

∑
h∈H

|t+ h〉 ⊗ |0〉

Quantum Black Box: on the computational basis states the black box acts

as Uρ|b〉 ⊗ |0〉 = |b〉 ⊗ |ρ(b)〉. As usual this can be checked to be unitary. Using

that ρ is constant on cosets Fn2/H, we find that the output of Uρ on the state

prepared by the Hadamard transforms is

1

2n/2

∑
t∈Fn2 /H

∑
h∈H

|t+ h〉 ⊗ |ρ(t)〉
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Final Hadamard transforms: applying H ⊗H...⊗H︸ ︷︷ ︸⊗1 we get the output

quantum superposition:

1

2n/2

∑
t∈Fn2 /H

∑
h∈H

(H|t1 + h1〉 ⊗ ...⊗H|tn + hn〉)⊗ |ρ(t)〉

Using

H|xi〉 =
1√
2

∑
yi=0,1

(−1)xiyi |yi〉

we obtain

1

2n/2

∑
t∈Fn2 /H

∑
h∈H

1

2n/2

∑
y

(−1)(t+h)·y|y〉 ⊗ |ρ(t)〉

=
1

2n

∑
t∈Fn2 /H

∑
y

( ∑
h∈H

(−1)h·y
)
(−1)t·y|y〉 ⊗ |ρ(t)〉

Since H is a group:

∑
h∈H

(−1)h·y =

{
|H| = 2dim H if y ∈ H⊥(i.e h · y = 0)

0 otherwise

Note that to get the ”otherwise” we use the group property:∑
h∈H

(−1)h·y =
∑
h∈H

(−1)(h+g)·y = (−1)g·y
∑
h∈H

(−1)h·y

for some fixed g ∈ H. If y /∈ H⊥ (−1)g·y 6= 0 so that
∑
h∈H(−1)h·y = 0.

Summarizing, the output of the quantum circuit is:

|φ〉 =
2dimH

2n
·
∑

t∈Fn2 /H

∑
y∈H⊥

(−1)t·y|y〉 ⊗ |ρ(t)〉

This is the state just before the measurement. The quantum black box has been

queried only once to prepare this state.

Measurement of first n Qbits: we measure in the computational basis {|0〉, |1〉}
so that the outcome is y ∈ H⊥. From the measurement postulate

Prob(y) = 〈φ|(|y〉〈y| ⊗ 1︸ ︷︷ ︸)|φ〉
=

22dimH

22m

∑
t,t′

(−1)t·y (−1)t
′
·y 〈ρ(t)| ρ(t

′
)〉

Now since ρ takes different values on different cosets we have

〈ρ(t)| ρ(t
′
)〉 = δt,t′
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so that the probability of outcome y becomes:

Prob(y) =
22dimH

22n
·#(of cosets)

=
2dimH

22n
· 2n

=
1

2dimH⊥
=

1

|H⊥|

So we get a state |y〉 for some y ∈ H⊥ with uniform probability 1

2dimH⊥ . In other

words, when we query the quantum black box we obtain surely a vector in H⊥.

This is a random vector in H⊥. So if we query O(n) times the quantum black

box we get a set of random vectors y
1
, ... y

O(n)
surely in H⊥.

It remains to estimate the probability that y
1
, ... y

O(n)
form a linearly inde-

pendent set.

Lemma 11.2.1 Let y
1
, ... y

k
randomly chosen vectors from H⊥ with a uniform

distribution. Then for k ≤ dimH⊥,

Prob(y
1
... y

k
linearly independent) ≥ 1

4

Proof Choose y
1
. We have

Prob(y
1
6= 0) =

2dimH⊥ − 1

2dimH⊥

Suppose that (y
1
... y

i−1
) have been chosen linearly independent. Choose y

i
.

Prob(y
i
linearly independent of(y

1
... y

i−1
)) =

2dimH⊥ − 2i−1

2dimH⊥

Indeed the # (of vector lin dep in y
1
... y

i−1
subspace)= 2i−1. So y

i
must be in

the complement. Thus we get

Prob(y1...yk lin indep) =

k−1∏
i=0

2dimH⊥−2i

2dimH⊥

=

k−1∏
i=0

(1− 2i−dimH⊥)

For k ≤ dimH⊥ we can show that this product is ≥ 1
4 . This is conveniently done

by writing the product as the exponential of a logarithm and looking at the first

order Taylor expansion of the logarithm.

We conclude that if we run the algorithm M times we assured that ∼ M
4 times

we will have an independent set of vectors spanning H⊥. Each time we make a

check to see if we are successful (If we are we stop; if we are not we continue).

The total number of queries is O(M). If M ∼ n we can show that we will be

successful with probability exponentially close to 1.
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11.3 Period Finding and Quantum Fourier Transform

Consider the following variation of the Hidden Subgroup problem. LetG = (Z,+)

and H = Z
rZ , where r some fixed unknown integer. We have a function f : Z→ Z

which is r-periodic:

f(x) = f(x+ r), x ∈ Z

and we want to find the period. Here the group G is infinite so that Simon’s

algorithm has to be adapted. The first idea is to assume that we know r < M

for some very large integer M and then restrict G = Z to the set {0, 1, ..., N −1}
for some N >> M (later on we will choose N ∼M2). The problem now is that

{0, 1, ..., N − 1} does not have the group structure so Simon’s algorithm does

not quite work. We will see that a very similar algorithm works which is based

on the Quantum Fourier Transform. The net result will be that we can find the

period r with exponentially high probability 1−O(2−cn) in poly(n) time where

n = log2N .

We use the following rotation. Integers in {0, 1, ..., N − 1} are denoted by x,

y. Corresponding quantum states are |x〉, |y〉. If N = 2n these states are in the

space C2 ⊗ ...⊗ C2. More precisely if we use the binary expansion

x = 2n−1xn−1 + ...+ 22x2 + 2x1 + 20x0, xi ∈ {0, 1}

we define the computational basis states

|x〉 = |xn−1... x2 x1 x0〉
= |xn−1 ⊗ ...⊗ |x2〉 ⊗ |x1〉 ⊗ |x0〉

As usual we can form superpositions of such states, that have no classical analog.

The quantum Fourier transform is a unitary operator defined on basis vectors

as

QFT |x〉 =
1√
N

N−1∑
y=0

e2πi xyN |y〉, N = 2n

Its action on a general state is obtained by linearity:

QFT
(N−1∑
x=0

Cx|x〉
)

=

N−1∑
x=0

Cx QFT |x〉

Thanks to the general results of lecture 10 we know that it can be implemented

using only one and two bit elementary gates. In fact as we will show later the

size of the circuit for QFT can be chosen O(n2) = O((log2N)2).

For the moment we just suppose that we have such a circuit at our disposal

and look at the algorithm for period inding. The quantum circuit for Period

Finding is:
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m Qbits |0〉



- H - - -

- H - - -

......
- H - - -


measure

|0〉 - - - -

Quantum

Black

Box

Uf

QFT

With respect to Simon’s algorithm we see that the first series of Hadamard gates

is the same. It serves to transform the initial state into a coherent superposition

of all possible classical inputs. The second column of Hadamard gates has been

traded for a QFT.

Let us now look at the operations performed by this circuit at each stage.

The input is |0〉 ⊗ ...⊗ |0〉︸ ︷︷ ︸ ⊗ |0〉.
After the Hadamard transforms we get the state

1√
N

N−1∑
x=0

|x〉 ⊗ |0〉

One query with quantum black box (unitary) yields

1√
N

N−1∑
x=0

Uf (|x〉 ⊗ |0〉) =
1√
N

N−1∑
x=0

|x〉 ⊗ |f(x)〉

Since f is r-periodic we can rewrite this state as

1√
N

r−1∑
j=0

Ax0−1∑
j=0

|x0 + jr〉|f(x0〉

where Ax0
is an integer such that

N − r ≤ x0 + (A− 1)r < N.

In the sequel we write A instead of Ax0
for simplicity of notation. But it is

important to remenber that A depends on x0.

Now we apply the QFT. We find the final state (just before the measurement)

1

N

r−1∑
x0=0

A−1∑
j=0

N−1∑
y=0

e2πi
(x0+jr)y

N |y〉|f(x0)〉

=
1

N

r−1∑
x0=0

N−1∑
y0=0

e2πi
x0y
N

A−1∑
j=0

e2πi jy
N/r |y〉|f(x0)〉
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The last step is the measurement of the first register. According to the

measurement postulate when we measure the first n Qbits in the computational

basis {|y〉} we get an outcome |y〉 with probability:

Prob(y) =
1

N2

r−1∑
x0=0

∣∣∣ e2πi
x0y
N

A−1∑
j=0

e2πi jy
N/r

∣∣∣2
In other words the outcome is y ∈ {0, ... , N − 1} with

Prob(y) =
1

N2

r−1∑
x0=0

∣∣∣A−1∑
j=0

e2πi jy
N/r

∣∣∣2
where A is an integer such that N − r ≤ x0 + (A− 1)r < N .

The following remark is useful for the ensuing analysis. We have N
r ≤

x0

r + A <
N
r + 1. From x0/r < 1 we deduce A < N

r + 1 and N
r < A + 1. So A is in

general the unique integer such that A− 1 < N
r < A+ 1.

We now show that from the outcome y we can find the period r with finite

probability. For this we distinguish two cases: N
r is integer (easy but unrealistic

case) and N
r is not integer (harder realistic case).

Easy unrealistic case: suppose N
r is a integer. Then

e2πi jy
N/r = 1 if y = k

N

r
withk ∈ {0, 1, ..., r − 1}

Since A = N/r we have

Prob(y) =

{
1
N2 · r ·

(
N
r

)2
= 1

r for y ∈ {0, Nr ,
2N
r , ..., (r − 1)Nr }

0 otherwise

This means that with probability equal to one we have

y

N
=
k

r
, k ∈ {0, 1, 2, ..., r − 1}

If PGCD(k, r) = 1 we get k and r in a univocal manner by simplifying the

fraction y
N . In practice we do not known if the PGCD equals one. But it is

enough to simplify the fraction and check if the denominator which is obtained

is indeed a period of the function.

The probability of success is the probabilisty that PGCD(k, r) = 1. This prob-

ability is equal to ϕ(r)
r where ϕ(r) is Euler’s fonction (] of coprimes to r that are

< r). It is known that

ϕ(r) ≥ r

4 ln(ln r)

Thus we have

Prob (PGCD(k, r) = 1) ≥ 1

4 ln ln r
≥ 1

4 ln lnn

and we can conclude that with one query of the circuit we succeed with probabil-

ity at least 1
4 ln lnn . By repeating the query of the quantum circuit O(ln lnn) we
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can amplify this probability to O(1). Thus we have a polynomial time algorithm

which finds the period with a probability close to 1.

Realistic case: N
r is not an integer. The formula for the probability favors

values of y ∈ {0, ..., N − 1} that are close to kNr . We can prove the following:

Lemma 11.3.1

Prob(−1

2
≤ y − kN

r
≤ 1

2
for some k) ≥ 2

5

The factor 2/5 can be made as close as we want to 4/π2.

Proof By summing the complex exponentials with the help of the formula for

a geometric series we get:

Prob(y) =
1

N2

r−1∑
x0=0

sin2(πyrAN )

sin2(πyrN )

=
1

N2

r−1∑
x0=0

sin2 πA
N (yr − kN)

sin2 π
N (yr − kN)

(∀ k by periodicity)

Now fix k ∈ {0, ..., r − 1} such that − r2 ≤ yr − kN ≤ r
2 . Each ratio in the last

sum takes its minimum for yr − kN = r
2 . So:

Prob(|y − kN

r
| ≤ 1

2
for some k) ≥ r

N2

r−1∑
x0=0

sin2(πAr2N )

sin2( πr2N )

Since as remarked earlier N
r − 1 < A < N

r + 1 we have

π

2
(1− r

n
) ≤ πAr

2N
≤ π

2
(1 +

r

N
)

which implies

Prob(|y − kN

r
| ≤ 1

2
) ≥ r2

N2
·

sin2 π
2 (1− r

N )

sin2 π
2
r
N

≥ 1

N2

r2

π2

4
r2

N2

=
4

π2

since r
N < M

M2 = 1
M small.

We can now conclude the analysis. With one query of the quantum circuit we

observe an integer y s.t for some k ∈ {0, ..., r − 1} we have |y − kNr | ≤
1
2 with

probability at least 2
5 . So with this probability:

| y
N
− k

r
| ≤ 1

2N
≤ 1

2M2
<

1

2r2
(Remember r << M ; N = M2)

A standard result of number theory following from Euclid’s algorithm states

that:

Lemma 11.3.2 Let y
N and k

r s.t | yN −
k
r | ≤

1
2r2 . If PGCD(k, r) = 1 then k

r

belongs to the set of convergents1 of truncated of the fraction y
N . All convergents

1 The set of convergents of a fraction is given by all truncations of the continuous fraction
expansion.
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can be found by Euclid’s algorithm from the continuous fraction expansion of y
N

in O((log2N)3) steps (i.e O(n3).

Note that in practice we do not know if the PGCD is equal to 1, so at each

step of the continuous fraction expansion we check if the denominator is a period

of the function.

What is the probablity of success? Combining this Lemma with the previous

results we deduce that with one query yielding y we can successfully compute r

with a

Prob ≥ 2

5
· 1

4(ln ln r)
in O(n3) steps.

So by repeating the procedure O(ln lnn) times we can amplify the probability

and get r with a probability close to 1. The total time is O(n3 ln lnn).

11.4 Quantum circuit for the quantum Fourier transform

Recall that the QFT is defined by its action on basis vectors {|0〉, |1〉, ... , |N−1〉}
of an N -dimensional Hilbert space H = span{|0〉, ... , |N − 1〉} :

QFT|x〉 =
1√
N

N−1∑
y=0

exp(2πi
xy

N
)|y〉

We first look at special cases to unravel the structure of this transformation.

Case N = 2. The QFT reduces to the usual Hadamard gate:

(QFT)N=2|x〉 =
1√
2

1∑
y=0

exp(πixy)|y〉 =
1√
2

1∑
y=0

(−1)xy|y〉

=
1√
2

(|0〉+ (−1)x|1〉)

Of course the circuit in this case is simply

|x〉 - H - H|x〉

Case N = 4. We have 4 states in the Hilbert space: H = span{|0〉, |1〉, |2〉, |3〉}.

QFT|x〉 =
1√
4

{
e2πi x·04 |0〉+ e2πi x·14 |1〉+ e2πi x·24 |2〉+ e2πi x·34 |3〉

}
We can represent y = 0, 1, 2, 3 in binary rotation:

|0〉 = |0 0〉 ; |1〉 = |0 1〉 ; |2〉 = |1 0〉 ; |3〉 = |1 1〉

Then

QFT|x〉 =
1√
4

(|0 0〉+ ei
π
2 x|0 1〉) + eiπx|1 0〉+ e3iπ2 x|1 1〉)
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=
1√
2

(|0〉+ eiπx|1〉)⊗ (|0〉+ ei
π
2 x|1〉)

Now we use the binary expansion of x, i.e x ∈ {0; 1; 2; 3} = 2 · x1 + x0 with

x0, x1 ∈ {0, 1}, to remark that

eiπx = e2πix1eiπx0 = (−1)x0 , ei
π
2 x = eiπx1ei

π
2 x0 = (−1)x1ei

π
2 x0

Thus we have

QFT |x〉QFT |x0x1〉 =
1√
2

(|0〉+ (−1)x0 |1〉)⊗ (|0〉+ (−1)x1ei
π
2 x0 |1〉)

A circuit realizing this operation is:

|x1〉
SWAP

|x0〉 H

|x1〉 |x1〉 H S
•
•

QFT|x1x0〉

where the SWAP operation is realized as follows:

|x1〉 •
⊕

•
|x1〉 |x0〉

|x0〉

|x0〉
⊕

•
⊕

|x1 + x0〉 |x1 + x0〉
|x1〉

Once the SWAP operation is performed on |x1x0〉 we act with H on the second

Qbit:

H SWAP |x1x0〉 = (I ⊗H)|x0x1〉 = |x0〉 ·
1√
2

(|0〉+ (−1)x1 |1〉)

Then we act with a controlled S =

(
1 0

0 ei
π
2

)
gate:

(CS)(I ⊗H) SWAP |x1x0〉 = CS |x0〉 ⊗
1√
2

(|0〉+ (−1)x1 |1〉) (11.1)

= |x0〉 ⊗
1√
2

(|0〉+ (−1)x1ei
π
2 x0 |1〉) (11.2)

In fact the matrix for CS (a two bit gate) is

CS =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei
π
2


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so that ei
π
2 acts only on |1 1〉 =


0

0

0

1

. Another way to express CS is

CS =|0〉〈0| ⊗ 1 + |1〉〈1| ⊗ S =

(
1 0

0 0

)
⊗
(

1 0

0 1

)
+

(
0 0

0 1

)
⊗
(

1 0

0 ei
π
2

)
The last Hadamard gate acts on the first bit and yields:

(H ⊗ I)(CS)(I ⊗H)SWAP |x1x0〉 = H|x0〉 ⊗
1√
2

(|0〉+ (−1)x1ei
π
2 x0 |1〉)

=
1√
2

(|0〉+ (−1)x0 |1〉)⊗ 1√
2

(|0〉+ (−1)x1ei
π
2 x0 |1〉)

So we have the decomposition (for N = 4)

QFT = (H ⊗ I)(CS)(I ⊗H)(SWAP)

Generalisation to any N = 2n. We begin with a lemma that will allow us to

find the general circuit.

Lemma 11.4.1 Let x ∈ {0, 1, ... , N − 1} with N = 2n.

QFT|x〉 =

n∏
l=1

(|0〉+ e
iπx

2l−1 |1〉)

Proof Use the binary representation for |y〉 = |yn−1... y0〉 where

y = 2n−1yn−1 + 2n−2yn−2 + ...+ 20 · y0

with yi ∈ {0, 1}. Take the definition of QFT|x〉 and split the sum over y ∈
{0, ... , N − 1} into a sum over even terms ans a sum over odd terms:

QFT|x〉 =
1

2
n
2

∑
y even

e2πi xy2n |y〉+
∑
y odd

e2πi xy2n |y〉

=

2n−1−1∑
y′=0

e2πi x2y
′

2n |yn−1, ... , y1, 0〉+

2n−1−1∑
y′=0

e2πix 2y′+1
2n |yn−1, ... , y1, 1〉

where we used the facts that:

• If y = 2y′ and y = 2n−1yn−1 + ...+21y1 +20y0, then y′ = 2n−2yn−1 + ...+20y1

and y0 = 0.

• If y = 2y′+1 and y = 2n−1yn−1+...+21y1+20y0, then y′ = 2n−2yn−1+...+20y2

and y0 = 1.

With this decomposition we conclude that

QFT|x〉 =
( 1

2
(n−1)

2

2n−1−1∑
y=0

e
2πixy

2n−1 |y〉
)
⊗ 1√

2
(|0〉+ e

πix

2n−1 |1〉)
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By repeating the same decomposition again and again on the first parenthesis

we obtain the result of the Lemma.

The l-th term in the tensor product of the Lemma is:

|0〉+ ei
π

2l−1 x|1〉

Let us look at the phase factor more closely. The binary expansion of x is:

x = 2n−1 · xn−1 + ...+ 22 · x2 + 21 · x1 + 20 · x0

and this implies that

ei
π

2l−1 x = (−1)xl−1 · eiπ2 xl−2 · eiπ4 xl−3 ... ei
π

2l−1 x0

So to obtain the l−th term in the product we may use the operations (Hadamard

and double control phases).

|x0〉 - -

|x1〉 - -

...

|xl−3〉 - -

|xl−2〉 - -

|xl−1〉 - H ei
π
2

•

•

ei
π
4

•

•

. . . ei
π

2l−2

•

•

ei
π

2l−1

•

•

-

The output of this circuit is |x0〉|x1〉...|xl−2〉 · 1√
2
(|0〉+ ei

π

2l−1 x|1〉).
From these observations we deduce the full circuit for the QFT found by Shor

(1994). Here we depict the example of n = 4 Qbits (N = 24 = 16). The circuit

represents the 16× 16 QFT matrix.

x3

SWAP

x0

H

x2
x1

H
π
2

•

•

x1
x2

H
π
2

•

•

π
4

•

•

x0
x3

H
π
2

•

•

π
4

•

•

π
8

•

• 
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Let us briefly discuss the complexity of this circuit. To perform the SWAP

here we can first SWAP x0 and x3 and then x1 and x2. In any case the SWAP

operation requires O(3n) CNOT gates. The rest of the QFT requires (H and

phase gates):

n+ (n− 1) + ... 1 =
n(n− 1)

2
gates

So the overall size of the QFT circuit is O(n2) = O((lnN)2). We also remark

that in practice one may want to acheive only a finite accurarcy: then one can

neglect the phase gates π
2K

for 1
2K

< ε, and then the number of gates becomes

O(n) = O(lnN) [the coefficient will be ε-dependent].

11.5 Shor’s factorization algorithm

In this section we review the main application of period fincding and of the

QFT, namely Shor’s famous algorithm for factoring an integer N . The “size”

of the integer is given by n = O(lnN), i.e the length of its decimal or binary

representation. Classicaly there is no know classical polynomial method (the best

methods are superpolynomial but still subexponential). Note however that there

is no proof that a polynomial classical method of complexity O((lnN)a) does

not exist!

As we will see Shor’s quantum algorithm has a total complexity of O(n3 lnn)

The strategy is as follows: first we reduce factoring to a probabilistic method for

order finding in modular arithmetic. This goes back to Miller (∼ 1976). Then

we will recognize that order finding is a particular case of period finding for the

modular exponential function. We will be able to show that the “black box”

representing the modular exponential can be realized with a polynomial number

of gates. Combining these results with the QFT leads immediately to Shor’s

algorithm.

11.5.1 Reduction of Factoring to Order Finding

Let N be an integer to be factored. We will suppose that

N = pe11 p
e2
2 ... p

ek
k with pi 6= 2 and k ≥ 2

Indeed powers of 2 are easily recognized and extracted (even numbers) and if

N = pe there exist efficient classical methods to find p and e. We give the steps

of the factoring algorithm based on order finding:

1. Choose randomly with uniform probability a ∈ {2, ... , N − 1} and compute

d = GCD(a,N)

This greatest common divisor can be computed by Euclid’s algorithm in ∼
(lnN)3 steps.
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2. If d > 1 : we have a factor of N. We keep this factor and start again at [a].

3. If d = 1 we find the ”order of a mod N” i.e we find the smallest integer r such

that:

ar ≡ 1 mod N

For this step there is no known polynomial method and that is where Shor’s

algorithm enters.

4. Suppose r is odd: output failure and go back to [a].

5. Suppose r is even. Then

ar − 1 = (a
r
2 − 1)(a

r
2 + 1)

Since N divides ar − 1 we have three possibilities:

a. N divides a
r
2 − 1 But this is impossible since we would have a

r
2 ≡ 1 (mod

N) so r would not be the (smallest) order.

b. N divides a
r
2 + 1. Then output failure and go back to [a].

c. N shares non-trivial factors with both (a
r
2 −1) and (a

r
2 +1). In other words:

d± = GCD (a
r
2 ± 1, N) is non trivial and we have two factors d+ and

d− of N . This step can be done again in (lnN)3 steps thanks to Euclid’s

algorithm.

6. Go back to [a].

What is the probability of success for one run? The answer is provided by the

following Lemma (proven by using the Chinese Remainder Theorem). For the

proof we refer to the literature [e.g Appendix in book of Chueng & Nielsen].

Lemma 11.5.1 Let N = pe11 ... p
ek
k ; pi 6= 2 ; k ≥ 2. Choose a randomly

uniformly in {2, ... , N − 1}. Then

Prob({r is even and a
r
2 6≡ −1 mod N}) ≥ 1

2
.

This is enough to ensure success by running the algorithm a large number of

times (but finite with respect to logN).

11.5.2 Quantum algorithm for order finding

Given a ∈ {2, ... , N − 1} we want to find the smallest integer r such that

ar ≡ 1 (modN)

We recognize that r is the period of the modular exponential. This is the number

theoretic function:

fa :
Z
NZ
→ Z

NZ
(11.3)

x 7−→ fa(x) = ax(mod N) (11.4)

Indeed fa(x+ r) = ax+r = axar = axmod N , and r is the smallest such integer,

so it is the period of teh function fa.
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Suppose now we are given a black box performing Ufa :

Ufa |x, 0〉 = |x, ax〉

Then we can simply use the algorithm (circuit) for period finding. What is the

complexity of the total circuit? We know that the QFT can be realized with

O((lnN)2) gates. We will now show that Ufa can be realized with O((lnN)3)

gates, so that this operation dominates the circuit complexity.

Let x = xm−12m−1 + ... + 20 · x0 and set M = 2m. Look at ax mod N . We

have

ax(mod N) = (a2m−1

)xm−1 ...(a20

)x0(mod N)

So if we know all even powers of a, namely a, a2, · · · , a2m−1

We can use the cir-

cuit:

xm−1 •...
x1 •
x0 •

|1〉


�
�
��

A
A
AU

A
A
AU

 |ax〉a a2 a2
m−1

multiplication

by a mod N if

x0 = 1.

multiplication

by a2 mod N if

x1 = 1.

multiplication by

a2m−1

mod N if

xm−1 = 1.

The ”controlled multiplications” by a2j (if the control bit xj = 1) can them-

selves be represented by standard classical gates. From the techniques exposed

in Chapter 10 these are made reversible and can thus be implemented as unitary

quantum gates.

This last circuit uses uses O(m) controlled multiplications. Each multiplication

can be done in O(m2) steps (or gates). Thus the modular exponential

Ufa(|x〉 ⊗ |1〉) = |x〉 ⊗ |ax mod M〉

can be realized by a circuit of size O(m3) = O((lnM)3). Finally, remember that

in period finding with r < N we choose to work withm bits where 2m = N ∼M2.

So the total size of this circuit is O((lnN)3) again.

11.5.3 Shor’s algorithm

We summarize the algorithm resulting from the discussion of the previous para-

graphs. We input an odd number N with at least two distinct prime factors. The

algorithm outputs a non trivial factor of N .
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1. Choose randomly uniformly a ∈ {2, ... , N − 1}.
2. Compute d = GCD (a, N) by Euclid’s algorithm. If d > 1 output the factor d.

3. If d = 1 compute the order of a mod N (i.e a1 = 1 mod N) by using Shor’s

quantum circuit. Work with m Qbits where M = 2m ∼ N2.

4. Check that the output of Shor’s circuit i.e the number r satisfies ar ≡ 1 mod N .

If not output ”failure”.

5. If ar ≡ 1 mod N then check of r is odd or if ar/2 ≡ −1 mod N . Output

”failure” if this happens.

6. Otherwise (no ”failure”) compute GCD (ar/2 ± 1, N) by Euclid’s Algorithm.

What is the probability of success for one experiment? The period finding

works with prob 1
ln lnN as we saw (point 4). Moreover (point 5) does not happen

with prob > 1
2 . So the probability of success of one run is O( 1

ln lnN ). By making

O(ln lnN) runs we can amplify this probability close to 1.

What is the total complexity? Let us first answer this question for one run.

Step 2 has complexity O((lnN)3). Indeed this the complexity of Euclid’s al-

gorithm. Step 3 has complexity O((lnN)3) + O((lnN)2) which is the sum of

the complexities for the modular exponential and the QFT. Steps 4 and 5 have

complexities ∼ O((lnN)2). Finally step 6 which uses Euclid’s algorithm has

complexity O((lnN)3).

So for one run we haveO((lnN)3) complexity in total. Since we needO(ln lnN)

runs to amplify the success probability, the total time needed to find one non

trivial factor is of the order of ∼ O((lnN)3 ln lnN).



12 Search Problems and Grover
Algorithm

12.1 Formulation of the search problem

Let us begin with the example of searching an item in a database. As a concrete

example suppose that you are given a phonebook (the database) and a phone

number N (the entry). Your problem is to find the person P corresponding to

this entry. This is not easy because the phone numbers are not sorted out in any

specified order. Of course the reverse problem where you are given a person’s

name (the entry) and you have to find its phone number is easy because the

entries (the person’s names) are sorted out in alphabetical order. For the initial

problem, in the worst case, an exhaustive search would requires N queries of

the database assuming there are N entries and N persons. One might think

that a probabilistic search would improve the situation but this is not so. A

simple probabilistic argument shows that we still need O(N) queries if we want

a non-vanishing probability of success.

Another example of search problems are decision problems. Take the example

of 3-SAT. We have a boolean function

f(x1... xn) = φ1 ∧ φ2 ... ∧ φM

which is a conjunction of M clauses. Each clause is a disjunction of 3 literals

(boolean variables or bits) φi = xi1 ∨ x̄i2 ∨ xi3 , φj = x̄j1 ∨ x̄j2 ∨ x̄j3 etc (here

x̄ = 1 − x). The 3-SAT decision problem is to decide whether there exist an

assignement (x∗1 ... x
∗
m) to the n bits such that

f(x∗1 ... x
∗
n) is satisfied i.e equals 1.

The space of all possible assignements has N = 2n elements. This problem can

be shown to be NP -complete and no polynomial (in m = log2N) time method

of solution is known1.

Both the database and 3-SAT problem are special cases of the following class

of problems. Let f : {0, 1}n → {0, 1} and 2n = N . We want to find a solution

1 Here we assume that f has no obvious or no structure as in the unsorted database problem.

We also remark that if we are given an Oracle that tells us the solution of the decision
problem for each n, we can find the solutions x̄1 ... x̄n in linear time O(n). Indeed set

x1 = 1 and ask the oracle if the reduced formula has a solution. If yes continue with

x2 = 1 etc. If not set x1 = 0 and continue. In this fashion we have a solution in linear time
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x?1 ... x
?
n such that

f(x?1 ... x
?
n) = 1

The function f is assumed to be a ”black box function” on which we know

nothing special. We just assume that we have an oracle that we can query with

an input x1 ... xn and which tells us whether f(x1 ... xn) = 0or1. Classicaly, as

argued before, we need to query the oracle O(N) = O(2n) times to get a solution

with finite probability. We will now explain Grover’s quantum algorithm which

needs O(
√
N) queries in order to find a solution. This is not an exponential

speedup but merely a quadratic one.

Remark that factoring allows for an exponential speedup because of the hidden

structure or symmetry behind the search problem: reduction to period finding of

an arithmetic function! Finally we mention without proof that it is known that

certain classical problems do not admit any speedup by using QM .

12.2 Grover’s quantum search algorithm

We are allowed to query a ”quantum black box” and this counts as ”one

computational step”. The quantum oracle is represented by a unitary operator

Uf :

Uf |x〉|b〉 = |x〉 ⊗ |b⊕ f(x)〉

where |x〉 ∈ {|0〉, ... , |N − 1〉}, |b〉 = |0〉, |1〉 and f(x) ∈ {0, 1}. The goal is to find

a solution to f(x1
?, ... , xN

?) = 1 in a minimal number of queries.

12.2.1 Derivation of the algorithm

In order to query with all classical inputs simultaneously we first prepare a

superposition state:

(H ⊗ ...⊗H) (|0〉 ⊗ ...⊗ |0〉)︸ ︷︷ ︸ =
1√
N

N−1∑
x=0

|x〉
n - Qbits

Note

Uf H
⊗n|0 ... 0〉 ⊗ |0〉 =

1√
N

N−1∑
x=0

|x〉 ⊗ |f(x)〉

and

Uf H
⊗n|0 ... 0〉 ⊗ |1〉 =

1

N

N−1∑
x=0

|x〉 ⊗ |1⊕ f(x)〉
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Note also

|f(x)〉 − |1⊕ f(x)〉 =

{
|0〉 − |1〉 if f(x) = 0

|1〉 − |0〉 if f(x) = 1

thus |f(x)〉 − |1⊕ f(x)〉 = (−1)f(x)(|0〉 − |1〉). These remarks imply

UfH
⊗n|0 ... 0〉 ⊗H|1〉 =

1√
N

N∑
x=0

(−1)f(x)|x〉 ⊗ 1√
2

(|0〉 − |1〉)

The circuit representation of this last identity is

|0〉 - H - -

|0〉 - H - -

...
...

|0〉 - H - -


1√
N

N−1∑
x=0

(−1)f(x)|x〉

|1〉 - H - - 1√
2
(|0〉 − |1〉)

Uf

The extra bit 1√
2
(|0〉−|1〉) will play a trivial role in the sequel and it is customary

to drop it. The action of the oracle can be summarized as

|0〉 - H -

... - H -

|0〉 - H -


1√
N

N−1∑
x=0
|x〉

- -
B
B
BM

N

- -

- -

1√
N

N−1∑
x=0

(−1)f(x)|x〉... ...
...

...
...

Uf

We may say that the oracle recognizes solutions f(x) = 1 and ”marks them”

with a phase (-1) while it leaves the phase (+1) to non-solutions.

Now suppose there are M solutions to f(~x) = 1. Define the normalized states:


|S〉 = 1√

M

∑
~x solution

|~x〉

|n〉 = 1√
N−M

∑
x not a solution

|x〉

The input to the quantum oracle is

1√
N

N−1∑
x=0

|x〉 =

√
M

N
|S〉+

√
N −M
N

|n〉
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and the output is

1√
N

N−1∑
x=0

(−1)f(x)|x〉 =

√
N −M
N

|n〉 −
√
M

N
|S〉

Setting sin θ0 =
√

M
N and cos θ0 =

√
N−M
N (note sin2 θ0 + cos2 θ0 = 1 is verified

as it should) we see that the action of the oracle is the following reflection:

6

-HH
HHHHj

�
��

�
��*

input vector = |ψ〉

output vector

|n〉




|S〉

θ0

- θ0

Let us now take the output vector and perform a reflection about the axis

1√
N

N−1∑
x=0
|x〉 ≡ |ψ〉:

6

�
�
�
�
���

-HH
HHHHj

�
��

�
��*
|ψ〉

Uf |ψ〉

|n〉

|S〉

θ0

2θ0

- θ0

|ψ′〉

This second reflection yields

|ψ′〉 = (cos 3θ0)|n〉+ (sin 3θ0)|S〉

Note that this vector is closer to |S〉 and this is the crucial point which makes

Grover’s algorithm work.

The second reflection can be performed even though its axis |ψ〉 is not known

(indeed θ0 is not known)! Let us explain this important point in more details.
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Indeed a reflection about |ψ〉 is the unitary transformation:

|v〉 7→ (2|ψ〉〈ψ| − I)|v〉

Now,

2|ψ〉〈ψ| − I = 2H⊗n|0 ... 0〉〈0... 0|H⊗n − I
= H⊗n(2|0 ... 0〉〈0 ... 0| − I)H⊗n

and

(2|0 ... 0〉〈0 ... 0| − I)|v〉 =

{
−|v〉 if v 6= 0 ... 0

+|0 ... 0〉 if v = 0 ... 0

This shows that the circuit for the second reflection about |ψ〉 is:

- H - - H

- H - - H

...
...

- H - -

|0〉 → +|0〉

|x〉 → −|x〉

if x 6= 0

H

The box can be represented by O(n) elementary gates (exercise) [for this use

a classical circuit, then make it reversible if needed and you have a quantum

circuit].

The combination of the two reflections is defined as the ”Grover operator” G

-

-

...

-

Uf

- H - - H

- H - - H

...
...

- H - -

|0〉 → +|0〉

|x〉 → −|x〉

if x 6= 0

H

- -

- -

- -

G⇐⇒

We have by the preceding discussion

G(cos θ0|n〉+ sin θ0|S〉) = (cos 3θ0)|N〉+ (sin 2θ0)|S〉

So the Grover operator is a rotation in the subspace {|N〉, |S〉} by an angle 2θ0.

The basic idea of the Grover algorithm is then to iterate this rotation

GK(cos θ0|N〉+ sin θ0|S〉) = (cos(2K + 1)θ0)|n〉+ (sin(2K + 1)θ0)|S〉
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in such a way that sin2(2K+ 1)θ0 ≈ 1 and cos2(2K+ 1)θ0 ≈ 0. Then a measure-

ment will yield some state belonging to |S〉 = 1√
M

∑
x is a sol.

|x〉 with a prob equal

to one.

The final quantum circuit for Grover’s algorithm is

measurementH⊗n G G . . . G

︸ ︷︷ ︸
K iterations

The size of this circuit is O(n) + O(K) = (log2N) + O(K). We will now see

that in order to have sin2(2K + 1)θ0 = O(1) we must take K = O(
√
N).

12.2.2 Analysis of success probability: case where M assumed to be known.

• Let first M = 1. (”hardest case with one solution”). We have sin θ0 = 1√
N

so θ0 ≈ 1√
N

. Since we want sin2(2K + 1)θ0 = O(1) we must iterate

K ≈ π
4

√
N times. Thus (2K + 1)θ0 = (2[ π

4θ0
] + 1)θ0 = π

2 + 2δθ0, where

we used [ π
4θ0

] = π
4θ0
− 1

2 + δ for δ < 1
2 . Since 2δθ0 ≈ 2δ√

N
< 2√

N
we have

(2K+ 1)δ0 ≈ π
2 +O( 1√

N
) The success probability is thus sin2(2K+ 1)θ0 =

sin2(π2 +O( 1
N )) = 1−O( 1

N ).

• Let then M = N
4 . (”easiest” case quantum mechanically). We have sin θ0 =√

M
N = 1

2 ⇒ θ0 = π
6 . Choose K = 1 one iteration. The success probability

is sin2 3π
6 = sin2 π

2 = 1 ! With one iteration we find a solution! (remarkable).

• Let M be general.

∗ If M < 3
4N then sin θ0 <

√
3
4 =

√
3

2 ⇒ θ0 < π
3 . Iterate K = [ π

4θ0
]

times (which is at worst O(
√
N) if M = 1). Then (2K + 1)θ0 =

(2[ π
4θ0

] + 1)θ0 = π
2 + 2δθ0 where we used again [ π4δ0 ] = π

4δ0
− 1

2 + δ for

some |δ| < 1
2 . Now 2|δ|θ0 <

π
3 so the success probability is

sin2(2K + 1)θ0 = sin2
(π

2
+ 2δθ0

)
≥ sin2

(π
2
− π

3

)
= sin2 π

6
=

1

4

So for M < 3
4N the success probability is 1

4 which is enough because

we can iterate the whole process to make it as close to 1 as we wish.

∗ If M ≥ 3
4N then forget about the quantum algorithm and pick x ∈
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{0 ...M − 1} randomly uniformly. The success probability is at least
3
4 .

12.2.3 Case where M is unknown

In this case we can use the following version of Grover’s algorithm.

1. Pick x at random. If f(x) = 1 output x and stop.

2. Otherwise let M̃ =
√
N+1. Choose R ∈ {0, 1, ... , M̃−1} at random uniformly.

3. Apply Grover’s algorithm with R iterations.

4. Measure the output to get some x ∈ {0, ... , N − 1}.

Let us prove that the success probability is at least 1
4 . Let M be the unknown

number of solutions. If M ≥ 3
4N we succeed with probability 3

4 in the first step.

If M < 3
5N we may not succeed and then we go to the second step. Then given R

the success probability is sin2(2R+ 1)θ0 where sin θ0 =
√

M
N . As before θ0 <

π
3 .

Since R is chosen uniformly at random in {0 ... M̃ − 1} the success probability is

prob. success =
1

R

M̃−1∑
R=0

sin2(2R+ 1)θ0

=
1

2R

M̃−1∑
R=0

(1− cos((2R+ 1)2θ0))

=
1

2
− sin 4M̃θ0

4M̃ sin 2θ0

Now we have sin 4M̃θ0 < 1 and

sin 2θ0 = 2 sin θ0 cos θ0

= 2

√
M

N

√
N −M
M

>
1√
N

>
1

M̃

Thus probability of success is greater than 1
2 −

1
4 = 1

4 .

12.3 Optimality of Grover’s search algorithm.

Consider the example of database search. Suppose that we have some ”marked”

state x∗ that we search for using Grover’s algorithm. We need at most O(
√
N)

steps to achieve success with finite probability. But can we do better? The answer

is no! In other words we need at least Ω(
√
N) steps!



12.3 Optimality of Grover’s search algorithm. 145

We suppose that we have oracles that recognize marked states x∗. Since they

recognize these states the oracles can perform the unitary operations:

Ox∗ = I − 2|x∗〉〈x∗|

which acts as

Ox∗ |v〉 =

{
|v〉 if v 6= x∗

−|v〉 if v = x∗

Now, we suppose that we have an arbitrary initial state |ψ〉, and that we query

the oracle Ox∗ , K times as follows:

|ψ〉 Ox∗ U1 Ox∗ U2 Ox∗ ... Ox∗ Uk output |ψ(k)
x 〉

where U1 ... UK are arbitrary unitary operators making up the general search

algorithm. The output of this algorithm is

|ψ(K)
x∗ 〉 = UKOx∗UK−1 ... U1Ox∗ |ψ〉

In order to recognize the marked state x∗ with finite probability ε > 0 we ask

that this search procedure should satisfy

|〈x∗|ψ(K)
x 〉|2 ≥ ε > 0

We also ask that the choice of U1, · · · , UK is independent of the marked state x∗.

In other words we want that the same algorithm works irrespective of the problem

(otherwise this means that we use specific information about the database or the

problem). Thus the last condition should be true for any x.

We will show that necessarily we must choose K ≥ c
√
N for some c > 0

(depending on ε).

Lemma 1:

Set DK =
N−1∑
x=o
||ψ(K)

x − ψK ||2 where |ψK〉 = UKUK−1 ... U1|ψ〉. Then DK ≤

4K2.

Lemma 2:

We also have DK ≥ cN for some c depending on ε.

Lemmas 1 and 2 imply cN ≤ 4K2 ⇒ K = Ω(
√
N) so at least

√
N queries of the

oracle Ox are needed.

Proof of Lemma 2:
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The condition |〈x|ψ(K)
x 〉|2 ≥ ε > 0 for all x will be used. We have

DK =
∑
x

||(ψ(K)
x − |x〉)− (ψK − |x〉)||2

≥
∑
x

||ψ(K)
x − |x〉||2 +

∑
x

||ψK − |x〉||2

− 2
∑
x

||ψ(K)
x − |x〉|| · ||ψK − |x〉||

≥
∑
x

||ψ(K)
x − |x〉||2 +

∑
x

||ψK − |x〉||2

− 2
(∑

x

||ψ(K)
x − |x〉||2

) 1
2
(∑

x

||ψK − x||2
) 1

2

=
[(∑

x

||ψ(K)
x − x||2

) 1
2 −

(∑
x

||ψK − |x〉||2
) 1

2
]2

Now

||ψ(K)
x − x||2 = 2− 〈x|ψ(K)

x 〉 − 〈ψ(K)
x |x〉

≤ 2− 2
√
ε

which implies

(
∑
x

||ψ(K)
x − x||) 1

2 ≤
√

2
√
N(1−

√
ε)

1
2

Moreover

||ψK − |x〉||2 = 2− 〈ψK |x〉 − 〈x|ψK〉

which implies∑
x

||ψK − x||2 = 2N −
∑
x

〈ψK |x〉 −
∑
x

〈x|ψK〉

≥ 2N −
(∑

x

·1
) 1

2
(∑

x

|〈ψK |x〉|2︸ ︷︷ ︸
) 1

2

= 2N − 2
√
N

In the first inequality we used Cauchy-Schwarz and in the last equality we used

the fact that |x〉 is a complete set of states. Combining the above results yields

DK ≥
[√

2N(1−
√
ε)

1
2 −
√

2N(1− 1√
N

)
1
2

]2
≥ 2N

[
(1− 1√

N
)

1
2 − (1−

√
ε)

1
2

]2
This completes the proof of Lemma 2.

Proof of Lemma 1:

This is a consequence of Ox = I − 2|x〉〈x|. We proceed by induction. For K =
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0 ; D0 = 0. Suppose DK ≤ ψK2. Compute DK+1:

DK+1 =
∑
x
||Oxψ(K)

x − ψK ||2 because UK+1 has norm 1.

=
∑
x
||Ox(ψ

(K)
x − ψK)− (Ox − I)ψK ||2

≤
∑
x
||ψ(K)

x − ψK ||2 +
∑
x
||(Ox − I)ψK ||2

+2
∑
x
||ψ(K)

x − ψx|| · ||Ox − I|| (∗)

Now (Ox − I)ψK = −2〈x|ψx〉 · |x〉

⇒ ||(Ox − I)ψK ||2 = ψ|〈x|ψK〉|2

⇒
∑
x ||(Ox − I)ψK ||2 = ψ

∑
x |〈x|ψK〉|2 = ψ (∗∗)

From (∗), (∗∗) and Cauchy-Schwarz on the last term we get

DK+1 ≤ DK + ψ + ψ
√
DK ≤ ψK2 + ψ + 8K = ψ(K + 1)2

This completes the proof of lemma 1.

12.4 Phase estimation and quantum counting

Suppose we want to count the number of solutions to a problem of the form

f(x1 ... , xN ) = 1, N = 2n, xi ∈ {0, 1}. This could be for example the 3-SAT

problem. Classically in the worst case this may require Ω(N) queries of an oracle

computing f . The “quantum counting algorithm“ provides a way to count the

number of solutions in O(
√
N) queries of the oracle. This algorithm is a com-

bination of our two more basic quantum operations: the QFT and the Grover

operator G. Here we wish to give a brief sketch of the main ideas involved and

refer to the literature for a detailled analysis.

Looking back at Grover’s algorithm we see that the number of solutions, say

M , appears as an eigenvalue of the Grover rotation by an angle 2θ0:

|ψ〉 = cos θ0|n〉+ sin θ0|S〉 → cos 3θ0|n〉+ sin θ0|S〉

where sin θ0 =
√

M
N , cos θ0 =

√
N−M
N . This rotation is a unitary operator with

eigenvalues e±i2θ0 and corresponding eigenvectors |2θ0〉, | − 2θ0〉:

G| ± 2θ0〉 = e±i2θ0 | ± 2θ0〉

So counting the number of solutions M means estimating the phase of G. In

the following paragraph we give a general algorithm for estimating the phase

(eigenvalue) of a unitary when the corresponding eigenvector is known.
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12.4.1 Phase estimation algorithm

Estimating the phase of a unitary operator U is almost like finding the period

of the modular exponential function in Shor’s algorithm. It should come as no

surprise that we try out the following circuit (observe the ressemblance without

Shor’s factoring circuit):

|0〉 H

(QFT )−1
|0〉 H

...

|0〉 H


|ρ̃〉
Measure-
ment

|ρ〉 U20

•

U21

•

. . . U2t−2

•

U2t−1

•

Here U |ρ〉 = ei2πρ|ρ〉 and we want to estimate the phase ρ. Let us show that the

output |ρ̃〉 is a good approximation to |ρ〉.
For simplicity suppose ρ = 2−tρt + ... + 2−2ρ2 + 2−1ρ1; ρi ∈ {0, 1}. [Note we

define the phase as 0 < ρ < 1]. The above circuit uses t Qbits |0〉 ⊗ ... ⊗ |0〉 as

input and t extra Qbits to input |ρ〉. The action of all controlled unitary gates

yields (just before (QFT)−1)

t−1∏
l=0

(|0〉+ e(2πi2lρ)|1〉)

Since ρ = 2−tρt + ...+ 2−1ρ1 = 2−t(2t−1ρ1 + ...+ 20︸ ︷︷ ︸ ρt)
= 2−tρ̃

we have just before the (QFT)−1 gate:

t−1∏
l=0

(|0〉+ e
2πi2l

2t
ρ̃|1〉) (∗)

But looking back at the QFT we have that this state is precisely

QFT |ρ̃〉 or QFT |ρt ... , ρ1〉

So when (QFT)−1 acts on (∗) we obtain |ρ1 ... , ρt〉 = |ρ〉. Thus a measurement

will yield the phase ρ with probability equal to 1!

Of course in practice ρ has more than t bits, but it can be shown that this

circuits enables to estimate ρ to t bits of accuracy with high probability. The

error is basically

|ρ̃− ρ| < 2−t
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Moreover in practice the eigenstate |ρ〉 at the entry is unknown. So one prepares

a suitable superposition of eigenstates of U namely |v〉 =
∑
u
cu|ρu〉. Then at the

output we will measure some ρu with prob |cu|2. When U has a small number

of eigenstates and eigenvalues this works pretty well since
∑
u
|cu|2 = 1 so some

of them have to be finite O(1).

12.4.2 Application to quantum counting

In place of U we put G, the Grover operator, in the previous circuit (∗). Thus

we get an estimate of θ0 to t bits of accuracy. We want to determine the number

of bits t needed to get a reasonable estimate for M . We have

θ0 ≈
√
M

N
for M << N.

Thus

δθ0 ≈
δM√
MN

≈
√
M√
MN

=
1√
N

if δM ∼
√
M.

To get an estimate of M with an error of
√
M we need that 2−t = 1√

N
i.e

t = log2

√
N bits.

How many times is the oracle queried? In each box G2l the Grover operator

(and thus the oracle) is queried 2l times. Thus the total number of queries is

20 + 21 + 22 + ...+ 2t−1 = 2t = 2log2

√
N =

√
N

We query the oracle
√
N times to estimate the number of solutions M to an

accuracy of order
√
M .

Finally, note that the eigenvector (input of the circuit) |2θ0〉 is not known but

we can prepare the input

1√
N

N−1∑
x=0

|x〉 = cos θ0|N〉+ sin θ0|S〉 = cθ0 |2θ0〉+ c−θ0 | − 2θ0〉

At least one of the two coefficients is > 1√
2
. Thus we will obtain the corresponding

pahse of the Grover rotation we finite probability.
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Problem 1: Mach-Zehnder interferometer. A beam splitter (see figure ??)

is a semi transparent mirror which separates a beam of light in two equal intensity

beams. Here is a simple quantum mechanical model of this device. Suppose each

photon lives in a two dimensional Hilbert space spanned by the basis states |T 〉,
|R〉 corresponding to the transmitted and reflected beam. When a photon in

the state |T 〉 (see picture) hits the beam splitter the electrons of the material

absorb it and re-emit it in the the new state 1√
2
|T 〉+ 1√

2
|R〉. We know that this

purely dynamical process is modeled by a unitary ”time evolution” or ”transition

matrix”.

T

R

mirror

beam splitter

A

B

Figure 13.1 beam splitter and Mach-Zehnder interferometer

a) Write down the unitary matrix in the basis |T 〉, |R〉. In QIT this matrix is

called a Hadamard gate and is denoted by H.

b) Take a general incoming state |ψ〉 = α|T 〉 + β|R〉 and compute the outgoing

state. For incoming light where all photons are in the state |ψ〉 what are the

intensities of the outgoing light beams ?

Consider the following setup (Mach-Zehnder interferometer). An incoming hor-

izontal beam is splitted in two equal intensity beams which are then recollected

thanks to perfectly reflecting mirrors and splitted again in two equal intensity

beams (here we suppose the mirrors do not affect the states of the photons).

Two detectors DA and DB click each time a photon hits them.

c) If you reason ”classically” what is the probability that DA clicks ? And that

of DB ?

d) Now do the quantum mechanical computation. One way to proceed is to
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first find out the unitary transition matrix between the incoming state and the

outgoing state.

e) Now take another kind of beam splitters such that |T 〉 → 1√
2
|T 〉+ i√

2
|R〉 (find

the other transition) and compute again the probabilities of hearing clicks at DA

and DB .

f) Now we introduce a ”phase shifter” on the upper arm of the interferometer.

This is a unitary device S|R〉 = eiΦ|R〉, S|T 〉 = |T 〉. Compute the intensities

measured by DA and DB .

Problem 2: Quantum parallelism. Suppose we want to compute all possible

values of the map f : {0, 1} → {0, 1} using a quantum unitary evolution. The

idea is to store the argument of f in some Qbit |x〉 (x = 0, 1) and the result in

another Qbit |y〉. Our Hilbert space is spanned by the four basis states {|x〉⊗|y〉}
where ⊗ means the tensor product (or Kronecker product). Prove that

Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f(x)〉

is a unitary map of the four dimensional Hilbert space to itself. Consider the

quantum circuit where H = 1√
2

(
1 1

1 −1

)
is the Hadamard gate acting on the

first Qbit.

a) What does this circuit do to the input state |0〉 ⊗ |0〉 ?

b) Suppose we have a way to do a measurement. What is the probability of

observing f(0) and f(1).

The following is a problem first posed by David Deutsch. We want to determine

if the function f is constant, f(0) = f(1), or not. Classically the only way to

do that is to evaluate f(0) and f(1) and observe each value separately: two

evaluations are required. Quantum mechanically only one evaluation is needed.

Find out why, by looking at the quantum operation of figure ??.

x

y

H

U
f

|Psi>

output
|x> |y>

input

||0> ||0>

H

H

H

H

U
f

Figure 13.2 Deutsch illustration of quantum parallelism

Problem 3: Polarization measurements and uncertainty relation. Pho-

tons that pass through a polarizer at an angle θ are prepared in the state

|θ〉 = cos θ|x〉 + sin θ|y〉. A measurement apparatus consists of an analyzer at
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an angle α and a detector. measurements results are registered in a random vari-

able pα = ±1. When the detector clicks, the photon has been observed in state

|α〉 = cosα|x〉+ sinα|y〉 and we set pα = +1. When it does not click the photon

has been observed in the state |α⊥〉 (α⊥ = α+ π
2 and we register pα = −1.

a) Derive the probabilities of detection and non detection, Prob(pα = ±1) form

the Born rule (measurement postulate). Then compute the expectation and vari-

ance of pα. Fix θ and observe how they vary as a function of α.

b) Consider now the ”observable” defined as Pα = (+1)|α〉〈α| + (−1)|α⊥〉〈α⊥|.
Check that

〈Pα〉 ≡ 〈θ|Pα|θ〉, (∆Pα)2 ≡ 〈θ|P 2
α|θ〉 − 〈θ|Pα|θ〉2

agree with the results of a).

c) Consider two angles α and β and compute the commutator [Pα, Pβ ] = PαPβ−
PβPα. Check (say by fixing α and β and plotting as a function of θ) that Heisen-

berg’s uncertainty principle is satisfied for any |θ〉, namely

∆Pα∆Pβ ≥
1

2
|〈θ|[Pα, Pβ ]|θ〉|.

Remark: you can write the matrices corresponding to Pα and Pβ in the com-

putational basis to see how they look like. But the above calculations are more

easily done directly in Dirac notation instead of matrix form.

Problem 4: Heisenberg uncertainty relation. Here you will give a general

proof of the uncertainty inequality.

a) Prove Heisenberg’s uncertainty relation (see notes)

∆A ·∆B ≥ 1

2
|〈ψ|[A,B]|ψ〉|.

Hint: Express the positivity of the variance of the observable A′ + λB′ (λ areal

number) for of A′ and B′ where A′ = A − 〈ψ|A|ψ〉 and similarly for B. Use

Cauchy-Schwarz.

b) Take |ψ〉 = |0〉, A = X, B = Y and apply the inequality. Here X, Y , Z are

the three Pauli matrices defined in the notes.

c) This question lies a bit outside of the scope of this course but anyone learn-

ing QM should be exposed to it. Consider now the Hilbert space H = L2(R)

of a particle in one dimensional space. The states are wave functions ψ(x)

that are square integrable. The position observable is the multiplication oper-

ator x̂ defined by (x̂ψ)(x) = xψ(x) and the momentum operator p̂ defined by

(p̂ψ)(x) = −i~ d
dxψ(x). Compute the commutator [x̂, p̂] and interpret the uncer-

tainty relation.

Problem 5: Entropic uncertainty principle. Let A and B be two observables
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with non-degenerate eigenvector basis {|a〉} and {|b〉}. Consider the two (clas-

sical) probability distributions given by the measurement postulate when the

system is in state |ψ〉. Each probability distribution has a corresponding (clas-

sical) Shannon entropy, call them HA and HB . Prove the ”entropic uncertainty

principle” mentioned in the notes:

HA +HB ≥ −2log
(1 + max|〈a|b〉|

2

)
.

Hint: Reason geometrically to show that |〈a|ψ〉〈ψ|b〉|2 ≤ |〈a|b〉|2.

Problem 6: No-cloning. With the classical controlled NOT (CNOT) gate

we can copy a classical bit b ∈ {0, 1}. Such a copy machine is implemented

by the circuit of figure 1. The quantum CNOT gate is the unitary matrix s.t

U |0, 0〉 = |0, 0〉, U |0, 1〉 = |0, 1〉, U |1, 0〉 = |1, 1〉, U |1, 1〉 = |1, 0〉 (you may want

to write down this matrix once in the canonical basis). Suppose in the above

circuit the input is α|0〉+ β|1〉 for the first Qbit and |0〉 for the second Qbit.

a) For which values of α and β does this machine copy the input Qbit ?

b) Consider now an arbitrary, but given, orthonormal basis of C2. Use the above

CNOT gate (for the computational basis) to construct a copy machine that

copies the orthonormal basis.

c) Generalize this last construction to an N Qbit system with Hilbert space

C2 ⊗C2 ⊗ · · · ⊗C2.

Problem 7. BB84 protocol

In this exercise you are asked to apply all the steps of BB84 for a concrete

example. Alice generates the classical strings x = (0101100011101010)and e =

(1010101110010101) The string x is encoded into a string of Qbits using the Z

basis {|0〉, |1〉} if ei = 0 and the X basis { 1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)} if ei = 1.

Bob decodes using the Z or X basis according to a randomly generated string

d = (1010100110101010) For the moment nothing is revealed publicly.

a) Write down the string of Qbits transmitted over the channel.

b) Suppose you are Bob and write down your measurement results.

c) Supposing that Eve does not interfere give the key that you generate by

publicly discussing with Alice.

d) Suppose that Eve makes measurements of the type Z,X,Z,X,X,Z,Z,Z,

X,Z,X,Z,Z,X,Z,X and sends her result to Bob. Describe the public discussion

between Alice and Bob.

Problem 8. B92 protocol

Analyze the security check for the B92 protocol under a (bit by bit) measure-

ment attack of Eve.
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b b

a a+b  mod 2
Figure 13.3 CNOT gate

Problem 9: Entanglement of Bell states

Prove that the four Bell states belonging to the Hilbert space C2 ⊗ C2 are

entangled. In other words you have to show that it is not possible to find |φ〉 ∈ C2

and |ψ〉 ∈ C2 such that a Bell state equals |φ〉 ⊗ |ψ〉.

Problem 10. Copy of Bell states

It is important to be well acquainted with the strange properties of the four

Bell states |Bxy〉 where x, y = 00; 01; 10; 11. They are usually written in the

canonical basis of C2 ⊗C2.

a) Write down the states in the tensor product basis of linearly polarized states

|θ〉 = cos θ|0〉+ sin θ|1〉 and |θ⊥〉 = sin θ|0〉 − cos θ|1〉.

b) Same question for the tensor product basis constructed out of circularly

polarized states |θ̃〉 = cos θ|0〉+ i sin θ|1〉 and |θ̃⊥〉 = sin θ|0〉 − i cos θ|1〉.

c) Consider a perfect copy machine UZ for the two states of the Z basis and

another perfect copy machine UX for the two states of the X basis. What are the

state produced by UZ when the X basis states are copied and what the states

produced by UX when the Z basis states are copied ?

Problem 11: Production of Bell entangled states.

a) Show that the four Bell states of two Qbits form an orthonormal basis of the

two Qbit Hilbert space.

b) Show that the circuit of figure 2 (or ”unitary machine”) produces Bell states

from tensor product inputs |x〉 ⊗ |y〉.

c) What is the unitary matrix corresponding to this circuit ? Compute explicitly

this matrix in the canonical basis {|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉}.

Problem 12. Three particle entanglement - GHZ states

Find the simplest three Qbit fully entangled state you can think of. Here fully
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H
|x>

|y>

|Bell>

Figure 13.4 Machine for producing Bell states

entangled means that it cannot be written as the tensor product of three one

Qbit states and it cannot be written as the tensor product of a two with a one

Qbit state and it cannot be written as a tensor product of a one with a two

Qbit state. Think of a way of generating such a state from tensor product state

|000〉 by a unitary operation and give the corresponding quantum circuit. Find

an orthonormal basis of entangled states for the Hilbert space C2 ⊗C2 ⊗C2.

The simplest such states are called GHZ states after Greene, Horne and

Zeilinger. They can be produced and manipulated experimentally.

Problem 13. Entanglement purification

The purpose of the exercise is to show from non-fully entangled states we can

create with finite probability fully entangled states. We will come back to this

later in the course when we will treat ”entanglement purification”. We have four

Qbits in the state |Ψα〉 ⊗ |Ψα〉 where

|Ψα〉 = α|00〉+ (1− α2)1/2|11〉

We measure the observable

Z ⊗ I ⊗ I ⊗ I + I ⊗ I ⊗ Z ⊗ I

Give all the possible outcomes of this measurement together with their respective

probabilities. What is the probability that we obtain a fully entangled state ?

Hint: write the observable in the Dirac notation.

Problem 14. Bell inequality for a non-maximally entangled state.

Calculate the QM prediction for the CHSH quantity (we called it X in the

lecture on Bell’s inequality) when the EPR pair is produced in the state

|Ψα〉 = α|00〉+ (1− α2)1/2|11〉

Repeat the calculations done in the notes to show that the maximal value of X

is 2[1 + 4α2(1− α2)]1/2. In this sense we can say that α = 1√
2

corresponds to a

maximally entangled state.
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Problem 15. Tsirelson inequality and maximal violation of Bell’s in-

equality

The purpose of the exercise is to show that the set up described in the course

yields the maximum possible violation of the Bell inequality.

The three 2×2 matrices X,Y, Z are called Pauli matrices. In the Dirac notation

they are X = |0〉〈1| + |1〉〈0|, Y = −i|0〉〈1| + i|1〉〈0| and Z = |0〉〈0| − |1〉〈1|. In

physics the standard notation for these matrices is σx, σy and σz.

It is often convenient to introduce the ”vector” σ = (X,Y, Z). For electrons

this has the physical meaning of the ”spin of the electron”. For photons it simply

corresponds to three different polarisation observables: linear (say 45 degrees),

circular, linear (say 0 degree).

a) Check the commutation relations [X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY .

b) Let Q = q · σ and R = r · σ. Check [Q,R] = 2i(q× r) · σ

c) Let also S = q · σ and T = t · σ. Prove the identity

R⊗ S +R⊗ S +R⊗ T −Q⊗ T = 4I + [Q,R]⊗ [S, T ]

and deduce that for any state |ψ〉 of C2 ⊗C2 we have the inequality

〈ψ|R⊗ S +R⊗ S +R⊗ T −Q⊗ T |ψ〉 ≤ 2
√

2

d) What are |ψ〉, q, r, s, t in the experimental setup of described in the course

on the violation of Bell’s inequality? What is the general significance of the above

inequality ?

Problem 16. Entanglement swapping

Let O, A,A′, B and B′ be located at coordinates 0, −L, −L2 , L and L
2 respec-

tively. We suppose that two EPR pairs are produced at A′ and B′. For each pair

the entangled particles are then propagated to A and O and to B and O. Thus

we have an entangled Bell state between A and O and another entangled Bell

state between B and O. If the state of the four particles (or four Qbits) is

1√
2

(|00〉AO + |11〉AO)⊗ 1√
2

(|00〉OB + |11〉OB)

explain what happens if we make a measurement in the Bell basis of the two

Qbits located at O.

Now consider three close by locations A, B, C (for example three points in

your lab) and three distant locations A′, B′, C ′. Suppose we have created three

entangled pairs between AA′, BB′, CC ′ in the state

1√
2

(|00〉AA′ + |11〉AA′)⊗
1√
2

(|00〉BB′ + |11〉BB′)⊗
1√
2

(|00〉CC′ + |11〉CC′)

What happens if we do a measurement in the GHZ basis of the three particles

at A, B, C ?
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Hint: the GHZ states have been constructed last week, the first state of the 8

dimensional basis of fully entangled states is 1√
2
(|000〉ABC + |111〉ABC)

Problem 17. GHZ states and ”local hidden variable theories”

The goal of this exercise is to discuss a thought experiment that proves that

QM results cannot be replaced by local hidden variable theories. Consider a GHZ

state of three spins |GHZ〉 = 1√
2
(| ↑↑↑〉ABC − | ↓↓↓〉ABC) where A, B, C are

distant locations (which do not communicate). Consider the three observables

X, Y , Z represented by the three Pauli matrices (actually we will not use Z so

forget about it).

a) Show that |GHZ〉 is an eigenstate of the operators YA ⊗ YB ⊗ XC , YA ⊗
XB ⊗YC , XA⊗YB ⊗YC with eigenvalue 1. Furthermore show that |GHZ〉 is an

eigenstate of XA ⊗XB ⊗XC with eigenvalue −1.

b) Now imagine Alice, Bob and Charlie in their labs at locations A, B and C

measure the observables X and Y on their respective particles. They do the four

experiments (each time on a new GHZ state):

- experiment one: Alice measures Y, Bob Y and Charlie X.

- experiment two: Alice measures Y, Bob X and Charlie Y.

- experiment three: Alice measures X, Bob Y and Charlie Y.

- experiment four: Alice measures X, Bob X and Charlie X.

Give the resulting states and the associated probability after each experiment

according to QM.

c) Suppose now that the outcome of any measurement can be described by a

local hidden variable theory. In other words suppose that Alice, Bob and Charlie

have some way of computing the outcome of their experiments by some functions

FA(W,Λ), FB(W,Λ), FC(W,Λ) where the first variable W is the measurement

basis (or apparatus) used i.e W = X,Y and the second variable Λ is the ”hidden

variable” of the theory (e.g state of the rest of the universe). Show that this

setting is not compatible with the QM results of the four previous experiments.

Hint: there is no big calculation, you only have to multiply plus and minus ones

! When the spin is ↑ record a +1 for FA,B,C(W,Λ) and when it is ↓ record a −1

for FA,B,C(W,Λ).

Problem 18. Mixtures

a) Show that the two mixtures {|0〉, 1
2 ; |1〉, 1

2} and { 1√
2
(|0〉 + |1〉), 1

2 ; 1√
2
(|0〉 −

|1〉), 1
2} have the same density matrix.

b) Consider the mixture {|0〉, 1
2 ; 1√

2
(|0〉+ |1〉), 1

2}. Give the spectral decompo-

sition of the density matrix.

Problem 19. Intermediate state in teleportation
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a) In the teleportation protocol, just after Alice’s measurement, what is the

density matrix that Bob should use to describe his state assuming he has no

information on Alice’s measurement ?

b) Assuming that one can associate an entropy to Bob’s density matrix what

should this be ?

Problem 20. Reduced density matrix

a) Take the first GHZ state for three Qbits 1√
2
(|000〉 + |111〉) in the Hilbert

space HA ⊗HB ⊗HC . Compute the reduced density matrices ρAB and ρC .

b) Take the state |Φ〉⊗ 1√
2
(|00〉+ |11〉) used in teleportation. Compute Alice’s

and Bob’s reduced density matrices.

c) Check that the Schmidt decomposition theorem holds in each of the above

cases.

Problem 21. Schmidt decomposition theorem

Consider the pure N Qbit state,

|Ψ〉 =
1

2N/2

∑
b1...bN∈{0,1}N

|b1...bN 〉

a) Compute the density matrix of the first Qbit. Show that it has non degen-

erate eigenvalues 0 and 1.

b) Compute the reduced density matrix of the set of bits (2...N). Show that

this 2N−1 × 2N−1 matrix has a non degenerate eigenvalue 1 and an eigenvalue 0

with degeneracy 2N−1 − 1.

c) Check explicitly that the Schmidt decomposition theorem holds.

Problem 22. Purification

Consider the pure the mixed state 1
2 |0〉〈0|+

1
2 |1〉〈1|. Give two purifications of

this state: one which is entangled and one which is a tensor product.

Problem 23. Example of comparison between Von Neumann and Shan-

non entropies

Suppose ρ = p|0〉〈0| + (1−p)
2 (|0〉 + |1〉)(〈0| + 〈1|). Evaluate S(ρ) and compare

with the classical Shannon entropy corresponding to {p, 1− p}.

Problem 24. Von Neumann Entropy of a tensor product

Consider a composite system with tensor product density matrix ρ⊗σ. Prove

that

S(ρ⊗ σ) = S(ρ) + S(σ)
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Problem 25. Entanglement and negative conditional entropy

Consider a pure state |AB〉 of a composite system (say shared by Alice and

Bob). Prove that |AB〉 is entangled if and only if the conditional Von Neumann

entropy is strictly negative.

Problem 26. Analog of Araki-Lieb inequality for conditional entropy

First show that for three random variables with any joint distribution the

Shannon entropy always satisfies

H(X,Y |Z) ≥ H(X|Z)

Consider now a tripartite quantum system with Hilbert space HA ⊗HB ⊗HC .

Show that for quantum entropies it is not always true that S(A,B|C) ≥ S(A|C).

Prove that instead the following is always true

S(A,B|C) ≥ |S(A|C)− S(B|C)|

Problem 27. Holevo bound

Consider a source with preparation {|0〉, 1
2 ; 1√

2
(|0〉 + |1〉)}. Investigate if the

Holevo bound on the mutual information between the preparation X and the

measurement results Y

max
all measurements

I(X;Y ) ≤ χ(ρ)

is saturated.

Problem 28. Source coding of mixed states

We consider a source of mixed states ρx occuring each with probabilities px.

Messages are N letter strings of the form ρx1
⊗ ....⊗ ρx2

and have a probability

px1
...pxN . In this exercise we want to give some support to the conjecture that

the achievable rate of compression for a source of mixed states is equal to the

Holevo quantity

χ(ρ) = S(ρ)−
∑
x

pxS(ρx), ρ =
∑
x

pxρx

Note that in the case of a source of pure states ρx = |φx〉〈φx| the Holevo quantity

χ(ρ) reduce to S(ρ) which is the optimal achievable rate given by Schumacher’s

theorem.

a) Take a source constituted of the unique letter ρ0 occuring with probability

p0 = 1. How many bits are needed to compress this source ? What is the value

of χ(ρ) ? Is this consistent ?

b) Now consider a source of mixed mutually orthogonal states. Two mixed

states are said to be mutually orthogonal if

Trρxρy = 0, x 6= y
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Consider purifications |Ψx〉 of ρx. Show that these satisfy

〈Ψx|Ψy〉 = 0, x 6= y

What would be an encoding scheme achieving a compression rate of H(X) =

−
∑
x px log px ? Why would this rate be optimal ? Check that in the present

case we have

H(X) = χ(ρ)

hint: no big calculations

Problem 29. Source coding of mixed states: a conjecture as of 2009.

We consider a source of mixed states ρx occuring each with probabilities px.

Messages are N letter strings of the form ρx1 ⊗ ....⊗ ρx2 and have a probability

px1
...pxN . In this exercise we want to give some support to the conjecture that

the achievable rate of compression for a source of mixed states is equal to the

Holevo quantity

χ({px, ρx}) = S(ρ)−
∑
x

pxS(ρx), ρ =
∑
x

pxρx

Note that in the case of a source of pure states ρx = |φx〉〈φx| the Holevo quantity

χ(ρ) reduce to S(ρ) which is the optimal achievable rate given by Schumacher’s

theorem.

a) Take a source constituted of the unique letter ρ0 occuring with probability

p0 = 1. How many bits are needed to compress this source ? What is the value

of χ(ρ) ? Is this consistent ?

b) Now consider a source of mixed mutually orthogonal states. Two mixed

states are said to be mutually orthogonal if

Trρxρy = 0, x 6= y

Construct purifications |Ψx〉 of ρx that satisfy (hint: use the spectral decomposi-

tion)

〈Ψx|Ψy〉 = 0, x 6= y

What would be an encoding scheme achieving a compression rate of H(X) =

−
∑
x px log px ? Why would this rate be optimal ? Check that in the present

case we have

H(X) = χ(ρ)

hint: no big calculations.
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Problem 30. Product state capacity of the quantum depolarizing chan-

nel.

We want to calculate the capacity of the depolarizing channel with noise

strength 0 ≤ ε ≤ 1. This channel is defined by the map (take the opportu-

nity to check the formulas of the course, although you dont really need them for

this exercise)

Q(ρ) = (1− ε)ρ+
ε

2
I

The product state capacity is given by

C(ε) = maxpx,ρxχ({px,Q(ρx)})

where the supremum is taken over a finite alphabet {ρx} of 2×2 density matrices

and a probability distribution over this alphabet. We will accept (and there is

a proof) that the max is attained for pure states ρx = |φx〉〈φx| (not necessarily

orthogonal).

Prove that

C(ε) = ln 2−H
( ε

2

)
were H(x) is the usual binary entropy function (defined with natural log).

hint: no big optimization.

Problem 31. Quantum Toffoli gate

Check that the quantum Toffoli gate can be obtained from the circuit in the

lecture notes made out of the set {T, S,H,CNOT}

Problem 32. Complexity of Deutsch model

Suppose that we approximate single bit gates C2 → C2 to a precision ε (lemma

1). Then an arbitrary ”two level unitary gate” acting on N Qbits C2N → C2N

acting non trivialy on coordinates i and j and as the identity on all other coor-

dinates is approximated to a presicion ε (see course). In other words given a two

level unitary gate U (ij) we approximate it by V (ij) such that ||U (ij)−V (ij)|| ≤ ε.
Show that if an arbitrary unitary acting on N Qbits (this means it is a 2N × 2N

matrix) has a decomposition (lemma 3)

U = U (i1j1)...U (iKjK)

the error accumulate for U is of the order O(εK).

The consequence is that if we want an overall precision of δ for the circuit of

U we need a presicion of δ
K for each two level unitary. It can be shown that this

can be done with O(ln( δK )) gates. So the total number of gates will increase like

O(K ln( δK )).

Recall that there exist unitary U for which K is necessarily exponentialy big

in N .
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hint: The norm of a matrix is ||A|| = sup|ψ〉
||Aψ〉||
|||ψ〉|| . In the above one just uses

the triangle inequality.

Problem 33. Deutsch-Josza problem

Check the calculations of the course leading to the formula for the probability

of outcome equal to (a1, ..., aN ) = (0, ..., 0),

Prob(0, ..., 0) =
1

22N

∣∣∣ ∑
b1,...,bN

(−1)f(b1,...,bN )
∣∣∣2

Problem 34. Unitarity of QFT

Prove that the Quantum Fourier Transform

|x〉 → 1√
N

N−1∑
y=0

e2πi xyN |y〉

is unitary.

Problem 35. QFT on 3 Qbits

Using the Hadamard and phase gates S and T of lecture 10, give the QFT

circuit for 3 Qbits (i.e N = 0, ..., 7) and write down explicitely the 8× 8 unitary

matrix.

Problem 36. Tensor product decomposition of QFT

The binary representation of x ∈ {0, ..., N − 1} for N = 2n is

x = xn−1.2
n−1 + ...+ x2.2

2 + x1.2
1 + x0.2

0, xi ∈ {0, 1}

Prove that the QFT of |x〉 is equal to the tensor product

(|0〉+ eπi
x
20 |1〉)⊗ (|0〉+ eπi

x
21 |1〉)⊗ ...⊗ (|0〉+ eπi

x

2n−1 |1〉)

Hint: In the QFT of |x〉 represent |y〉 = |y′, y0〉 where y0 = 0 or y0 = 1 and

inspect each contribution y0 = 0 or 1.



Notes

Chapter 1

1 The most important theoretical milestones from 1900 to 1930 are: Planck on black
body radiation (1900), Einstein on the photon (1905), Bohr on the atom (1910),
De Broglie on the wave function (1920 ?) , Schroedinger on the wave function
evolution (1926), Born on the interpretation of the wave function (?), Heisenberg
on his matrix mechanics (?), Dirac on the equivalence of Schroedinger and
Heisenberg mechanics and then on relativistic QM(1930)

2 In fact so-called absorptive polarizers are made of sheets of anisotropic crystals
allowing electron motion preferentially in the θ⊥ direction. The θ⊥ component of
the electric field sets electrons into a state of oscillation which produces the
emission of an emitted anti-phase electromagnetic wave polarized along θ⊥. The
later cancels the progressive θ⊥ component of the wave so that the net effect is to
leave out a θ transmitted component and a θ⊥ reflected component.

3 This can be a photoelectric cell which transforms the electromagnetic energy into
a current.

4 Malus law.
5 These are made of quartz or calcite crystals whose refraction index are different

for polarization perpendicular to, versus into, the incidence plane. Such crystals
are called birefringent, one ray is called ordinary because the direction of
refraction obeys the usual Snell law, while the other ray is called extraordinary.

6 cN
V

is the number of photons per unit time per unit surface that hit a detector.
7 in the spirit of statistical mechanics, say
8 For example photons, electrons, nuclei and their constituents ...
9 According to modern physics, matter is described by relativistic quantum fields.

There are underlying quantum fields (e.g. the quantum electromagnetic field, the
quantum electronic field, the quark field etc...) which may manifest themselves in
a wave-like or particle-like fashion depending on the situation.

10 Einstein never agreed that this rule is the final story. In his words “I, at any rate,
am convinced that He (God) does not throw dice”. Bohr replied “Einstein, don’t
tell God what to do”. In any case, this rule has not been challenged by experiment
so far, and there is hardly any more satisfying theoretical framework to date. In
this course we stick to this rule !

11 Here we may imagine that the paths are not quite in the same direction so that
these two labels are different. In principle one should make a more complete
description of the orbital part of the state that takes into account the finite width
of the beams.

12 Constituents of nuclei, protons and neutrons also have spin 1
2
. In particular the
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interaction of the nuclear spins with magnetic fields is at the basis of Nuclear
Magnetic Resonance, used for example in medical imaging.

Chapter 2

1 Combined with special relativity when needed
2 Complete means that all Cauchy sequences converge in the norm induced by the

inner product and separable that there is a contable orthonormal basis.
3 The study of this sort of reduction has led to a whole discipline called quantum

chaos. Let us also point out that non-linear versions of the Schroedinger equation
may arise when some degrees of freedom are integrated out, in other words for
non-isolated systems.

4 There is a ”correspondence principle” which is a rule of thumb on how to construct
the appropriate self-adjoint operator from the classical one; in fact this procedure
may sometimes be a bit ambiguous due to non-commutativity of operators

5 physicist are used to say that “the wave function collapses”


