Solution 1.

(a) $\sigma_a^2 = 1$; any invertible transform on the output — in particular multiplication by 2 — does not change the error probability.

(b) $\sigma_b^2 = \frac{1}{3}$; $Y = (\pm 2) + W$ which is equivalent to $Y' = \frac{1}{2}Y = (\pm 1) + \frac{1}{2}W$ and $Z = \frac{1}{2}W \sim \mathcal{N}(0, \frac{1}{4})$.

(c) $\sigma_c^2 = 2$; $Y = (\pm 1) + W_1 + W_2$ and $W_1 + W_2 \sim \mathcal{N}(0, 2)$ (since W_1 and W_2 are independent).

(d) $\sigma_d^2 = 1$; Y_1 is a sufficient statistic for decision.

(e) $\sigma_e^2 = \frac{1}{2}$; the observable is

$$(Y_1, Y_2) = (\pm 1, 1) + (W_1, W_2)$$

where $(W_1, W_2) \sim \mathcal{N}(0, I_2)$ and $\frac{1}{2}(Y_1 + Y_2) = \pm 1 + Z$ where $Z = \frac{1}{2}(W_1 + W_2) \sim \mathcal{N}(0, \frac{1}{2})$ is a sufficient statistic for the decision.

Solution 2.

(a) Under the hypothesis $H = +1$, (Y_1, \ldots, Y_n) is an i.i.d. sequence whose components are Laplacian random variables with mean 1, namely

$$f_{Y_1, \ldots, Y_n|H}(y_1, \ldots, y_n|+1) = \left(\frac{1}{2}\right)^n \exp\left\{-\sum_{k=1}^n |y_k - 1|\right\}.$$

Similarly,

$$f_{Y_1, \ldots, Y_n|H}(y_1, \ldots, y_n|-1) = \left(\frac{1}{2}\right)^n \exp\left\{-\sum_{k=1}^n |y_k + 1|\right\}.$$

The MAP decision rule is

$$\frac{f_{Y_1, \ldots, Y_n|H}(y_1, \ldots, y_n|+1)}{f_{Y_1, \ldots, Y_n|H}(y_1, \ldots, y_n|-1)} \stackrel{\hat{H} = +1}{\sim} \frac{1 - p}{p},$$

which, after canceling the common factors and taking the logarithm, becomes

$$\sum_{k=1}^n (|y_k + 1| - |y_k - 1|) \stackrel{\hat{H} = +1}{\geq} \ln \frac{1 - p}{p}. \quad (1)$$

(b) Since $\forall \alpha \in \mathbb{R}: |\alpha + 1| - |\alpha - 1| \in [-2, 2]$, the left-hand-side of (1) lies in $[-2n, 2n]$. Therefore, if

$$2n < \ln \frac{1 - p}{p} \iff p < \frac{1}{1 + e^{2n}},$$

the receiver always chooses $\hat{H} = -1$.

Similarly, if

$$-2n > \ln \frac{1 - p}{p} \iff p > \frac{e^{2n}}{1 + e^{2n}},$$

the decision will always be $\hat{H} = +1$ (regardless of the observation).
(c) \(T(y_1, \ldots, y_n) = \sum_{k=1}^n (|y_k + 1| - |y_k - 1|) \) is the log-likelihood ratio and, hence, is a sufficient statistic. We can prove this using Neyman–Fisher factorization theorem by noting that (for \(a \in \{-1,+1\})
\[
f_{Y|H}(y_1, \ldots, y_n|a) = \left(\frac{1}{2}\right)^n \exp\left\{ -\frac{1}{2} \sum_{k=1}^n (|y_k - 1| + |y_k + 1|) \right\} \\
\times \exp\left\{ -\frac{a}{2} \sum_{k=1}^n (|y_k - 1| - |y_k + 1|) \right\}.
\]

(d) We have
\[
f_{V_1, \ldots, V_n|H}(v_1, \ldots, v_n|1) = \exp\left\{ -\sum_{k=1}^n (v_k - 1) \right\} \prod_{k=1}^n 1\{v_k \geq 1\},
\]
and
\[
f_{V_1, \ldots, V_n|H}(v_1, \ldots, v_n|-1) = \exp\left\{ -\sum_{k=1}^n (v_k + 1) \right\} \prod_{k=1}^n 1\{v_k \geq -1\},
\]

Simplifying the above we get (for \(a \in \{-1,+1\})
\[
f_{V_1, \ldots, V_n|H}(v_1, \ldots, v_n|a) = \exp\left\{ -\sum_{k=1}^n v_k \right\} \times \exp(na)1\{\min\{v_1, \ldots, v_n\} \geq a\},
\]
with \(T'(v_1, \ldots, v_n) = \min\{v_1, \ldots, v_n\}\).

Since conditioned on \(H = a \), \(a \in \{-1,+1\} \) the observables \(Y_1, \ldots, Y_n \) and \(V_1, \ldots, V_n \) are independent,
\[
f_{Y_1, \ldots, Y_n, V_1, \ldots, V_n|H}(y_1, \ldots, y_n, v_1, \ldots, v_n|a) = f_{Y_1, \ldots, Y_n|H}(y_1, \ldots, y_n|a) \times f_{V_1, \ldots, V_n|H}(v_1, \ldots, v_n|a)
\]
\[
= h(y_1, \ldots, y_n)h'(v_1, \ldots, v_n) \times g_a(T(y_1, \ldots, y_n))g'_a(T'(v_1, \ldots, v_n))
\]
where \(h, g_a, h', \) and \(g'_a \) are defined in (2) and (3). Therefore, using the factorization theorem we conclude that \((T(y_1, \ldots, y_n), T'(v_1, \ldots, v_n)) \) is a sufficient statistic for the hypothesis testing problem.

The MAP decision rule (in terms of \(T \) and \(T' \)) is
\[
g_{+1}(T)g'_{+1}(T') \times p \underset{H=+1}{\geq} g_{-1}(T)g'_{-1}(T') \times (1 - p).
\]

Now if \(T' = \min\{v_1, \ldots, v_n\} \in (-1, 1) \) we see that \(g'_{+1}(T') = 0 \) thus the MAP rule always chooses \(H = -1 \). Otherwise (i.e., when \(\min\{v_1, \ldots, v_n\} \geq 1 \)) \((4) \) reduces to
\[
T(y_1, \ldots, y_n) = \sum_{k=1}^n (|y_k + 1| - |y_k - 1|) \underset{H=+1}{\geq} \underset{H=-1}{\geq} \ln \frac{1 - p}{p} - 2n.
\]
Thus, the decision regions are:
(note that $T \in [-2n, 2n]$ as we discussed in (b) and $T' \geq -1$).

(e) From the decision regions of (d) it is clear that if $p \geq \frac{1}{2}$ the optimal decision depends only on T' which, in turn, is only a function of (V_1, \ldots, V_n). Therefore, if $p \geq \frac{1}{2}$ the receiver that only observes (V_1, \ldots, V_n) can perform as well as the optimal receiver.

Solution 3.

(a) Since the space spanned by $\{w_0, w_1\}$ is the same as the space spanned by $\{v_0, w_1\}$, we can obtain v_1 by applying the Gram–Schmidt procedure on $\{v_0, w_1\}$:

$$w_1 - \langle w_1, v_0 \rangle v_0 = w_1 - \left\langle w_1, \frac{w_0 - w_1}{\|w_0 - w_1\|} \right\rangle \frac{w_0 - w_1}{\|w_0 - w_1\|}$$

$$= w_1 - \frac{\langle w_0, w_1 \rangle - \|w_1\|^2}{\|w_0 - w_1\|^2} \cdot (w_0 - w_1)$$

$$= w_1 - \frac{\langle w_0, w_1 \rangle - \|w_1\|^2}{\|w_0\|^2 + \|w_1\|^2 - 2\langle w_0, w_1 \rangle} \cdot (w_0 - w_1)$$

$$= w_1 - \frac{\langle w_0, w_1 \rangle - \mathcal{E}}{2\mathcal{E} - 2\langle w_0, w_1 \rangle} \cdot (w_0 - w_1)$$

$$= w_1 + \frac{1}{2} (w_0 - w_1) = \frac{1}{2} (w_0 + w_1).$$

Therefore,

$$v_1 = \frac{w_1 - \langle w_1, v_0 \rangle v_0}{\|w_1 - \langle w_1, v_0 \rangle v_0\|} = \frac{w_0 + w_1}{\|w_0 + w_1\|}.$$

(b) Let $Z_0 = \langle N, v_0 \rangle$ and $Z_1 = \langle N, v_1 \rangle$. Z_0 and Z_1 are independent because v_0 and v_1 are orthogonal. We have:

$$U_1 = \langle R, v_1 \rangle = \begin{cases}
\langle w_0, \frac{w_0 + w_1}{\|w_0 + w_1\|} \rangle + Z_1 & \text{if 0 is sent,} \\
\langle w_1, \frac{w_0 + w_1}{\|w_0 + w_1\|} \rangle + Z_1 & \text{if 1 is sent.}
\end{cases}$$

$$= \left\langle \frac{\|w_0\|^2 + (w_0, w_1)}{\|w_0 + w_1\|^2} w_0 + w_1, \frac{\|w_0\|^2 + (w_0, w_1)}{\|w_0 + w_1\|^2} w_0 + w_1 \right\rangle + Z_1$$

$$= \left\langle \frac{\mathcal{E} + (w_0, w_1)}{\|w_0 + w_1\|^2} + Z_1, \frac{\mathcal{E} + (w_0, w_1)}{\|w_0 + w_1\|^2} + Z_1 \right\rangle$$

This shows that the distribution of U_1 is independent from the transmitted bit (and from U_0). Therefore, U_1 can be thrown away. Hence, U_0 is sufficient statistics for the hypothesis testing problem.
(c) We have:
\[
U_0 = \langle R, v_0 \rangle = \begin{cases}
\langle w_0, \frac{w_0 - w_1}{\|w_0 - w_1\|} \rangle + Z_0 & \text{if 0 is sent}, \\
\langle w_1, \frac{w_0 - w_1}{\|w_0 - w_1\|} \rangle + Z_0 & \text{if 1 is sent},
\end{cases}
\]
\[= \begin{cases}
\frac{\|w_0 - w_1\|^2}{2\|w_0 - w_1\|} + Z_0 & \text{if 0 is sent}, \\
-\frac{\|w_0 - w_1\|^2}{2\|w_0 - w_1\|} + Z_0 & \text{if 1 is sent}.
\end{cases}
\]
Note that \(\|w_0 - w_1\|^2 = \|w_0\|^2 + \|w_1\|^2 - 2\langle w_0, w_1 \rangle = 2\mathcal{E} - 2\langle w_0, w_1 \rangle\). Therefore,
\[
U_0 = \begin{cases}
\frac{1}{2}\|w_0 - w_1\| + Z_0 & \text{if 0 is sent}, \\
-\frac{1}{2}\|w_0 - w_1\| + Z_0 & \text{if 1 is sent}.
\end{cases}
\]
Now since \(Z_0 = \langle N, v_0 \rangle \sim \mathcal{N}(0, N_0^2)\), the probability of error of the MAP decoder is given by
\[
P_e = Q\left(\frac{\frac{1}{2}\|w_0 - w_1\|}{\sqrt{N_0^2 + \mathcal{E}}} \right) = Q\left(\frac{\|w_0 - w_1\|}{\sqrt{2N_0^2}} \right).
\]
(d) The Cauchy–Schwarz inequality gives \(|\langle w_0, w_1 \rangle| \leq \|w_0\| \cdot \|w_1\| = \mathcal{E}\). Therefore, \(\langle w_0, w_1 \rangle \geq -\mathcal{E}\). Hence,
\[
\|w_0 - w_1\|^2 = 2\mathcal{E} - 2\langle w_0, w_1 \rangle \leq 2\mathcal{E} + 2\mathcal{E} = 4\mathcal{E}.
\]
We conclude that \(\|w_0 - w_1\| \leq 2\sqrt{\mathcal{E}}\). Therefore, the probability of error of the MAP decoder is lower-bounded as follows:
\[
P_e = Q\left(\frac{\|w_0 - w_1\|}{\sqrt{2N_0^2}} \right) \geq Q\left(\frac{2\sqrt{\mathcal{E}}}{\sqrt{2N_0^2}} \right) = Q\left(\frac{\sqrt{2\mathcal{E}}}{N_0} \right).
\]
Moreover, \((*)\) becomes an equality when \(\langle w_0, w_1 \rangle = -\mathcal{E} = -\|w_0\| \cdot \|w_1\|\), which is true if \(w_1 = -w_0\).

Solution 4.

(a) Looking at the waveforms we realize that the four signals \(\psi_1(t) = 1\{0 \leq t \leq 1\}, \psi_2(t) = \psi_1(t - 1), \psi_3(t) = \psi_1(t - 2),\) and \(\psi_4(t) = \psi_1(t - 2)\) form an orthonormal basis for the signal space spanned by the waveforms. In this basis \(w_1(t), w_2(t), w_3(t),\) and \(w_4(t)\) correspond to the codewords \(c_1 = (2, 1, 3, 2), c_2 = (1, 0, 2, 1), c_3 = (0, -1, 1, 0)\) and \(c_4 = (-1, -2, 0, -1)\) respectively.

An ML receiver (which is optimal because of equiprobable hypotheses) first projects the received signal \(R(t) = w_i(t) + N(t)\) onto the orthonormal basis and forms the 4-tuple \((Y_1, Y_2, Y_3, Y_4)\) with \(Y_k = \langle R(t), \psi_k(t) \rangle, k = 1, 2, 3, 4\). This reduces the problem to the hypothesis testing problem in discrete additive white Gaussian noise channel,

\[
\text{under } H = i, i = 1, 2, 3, 4: \quad Y = c_i + Z
\]
where c_i's are defined above and $Z \sim \mathcal{N}(0, \frac{N_0}{2} I_4)$. We know that the ML receiver should choose $\hat{H} = \arg \min_i \|Y - c_i\|$.

We finally realize that since $h(t) = \psi_1(1 - t)$ and the remaining basis vectors are the shifted versions of $\psi_1(t)$, the n-tuple former can be implemented by sampling the output of a single filter at times $t = 1, 2, 3$ and 4 to compute $Y_1, Y_2, Y_3, \text{and } Y_4$ respectively:

![Diagram](image.png)

(b) The union bound gives

$$\Pr\{\text{error}|w_i \text{ is sent}\} \leq \sum_{j \neq i} Q\left(\frac{d_{i,j}}{\sqrt{2N_0}}\right)$$

where $d_{i,j} = \|w_i - w_j\| = \|c_i - c_j\|$. In the following table we have computed those values

<table>
<thead>
<tr>
<th>$d_{i,j}$</th>
<th>1 2 3 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 2 4 6</td>
</tr>
<tr>
<td>2</td>
<td>2 0 2 4</td>
</tr>
<tr>
<td>3</td>
<td>4 2 0 2</td>
</tr>
<tr>
<td>4</td>
<td>6 4 2 0</td>
</tr>
</tbody>
</table>

Consequently,

$$\Pr\{\text{error}|w_1 \text{ is sent}\} = \Pr\{\text{error}|w_4 \text{ is sent}\} = Q\left(\frac{2}{\sqrt{2N_0}}\right) + Q\left(\frac{4}{\sqrt{2N_0}}\right) + Q\left(\frac{6}{\sqrt{2N_0}}\right),$$

and

$$\Pr\{\text{error}|w_2 \text{ is sent}\} = \Pr\{\text{error}|w_3 \text{ is sent}\} = 2Q\left(\frac{2}{\sqrt{2N_0}}\right) + Q\left(\frac{4}{\sqrt{2N_0}}\right).$$

Therefore,

$$\Pr\{\text{error}\} = \sum_{i=1}^{4} \Pr\{w_i \text{ is sent}\} \Pr\{\text{error}|w_i \text{ is sent}\} \leq \frac{3}{2} Q\left(\frac{2}{\sqrt{2N_0}}\right) + Q\left(\frac{4}{\sqrt{2N_0}}\right) + \frac{1}{2} Q\left(\frac{6}{\sqrt{2N_0}}\right).$$

(c) The minimum energy signal set is obtained by subtracting from each signal the average $\frac{1}{4}[w_1(t) + w_2(t) + w_3(t) + w_4(t)]$ which is depicted below
\[\frac{1}{4}[w_1(t) + w_2(t) + w_3(t) + w_4(t)] \]

Therefore the minimum energy signal set is

\[\tilde{w}_1(t) \]
\[\tilde{w}_2(t) \]
\[\tilde{w}_3(t) \]
\[\tilde{w}_4(t) \]

(d) It is easy to verify that the new signal set spans a one-dimensional space with basis \(\tilde{\psi}(t) = \frac{1}{2} \mathbb{1}\{0 \leq t \leq 4\} \). Indeed, the new signal set corresponds to 4-PAM constellation

For the 4-PAM constellation,

\[
\Pr\{\text{error}|w_1 \text{ is sent}\} = \Pr\{\text{error}|w_4 \text{ is sent}\} = Q\left(\frac{2}{\sqrt{2N_0}}\right),
\]

and

\[
\Pr\{\text{error}|w_2 \text{ is sent}\} = \Pr\{\text{error}|w_3 \text{ is sent}\} = 2Q\left(\frac{2}{\sqrt{2N_0}}\right),
\]

which yields

\[
\Pr\{\text{error}\} = \frac{3}{2}Q\left(\frac{2}{\sqrt{2N_0}}\right).
\]

(e) Since translation is an isometric transform and does not change the probability of error, the probability of error for the receiver in part (a) will also be equal to \(\frac{3}{2}Q\left(\frac{2}{\sqrt{2N_0}}\right) \).