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SOLUTION 1.

a) o2 = 1; any invertible transform on the output — in particular multiplication by 2 —
a y y
does not change the error probability.

(b) 0f =1, Y = (£2) + W which is equivalent to Y/ =1V = (£1) + iW and Z = ;W ~
( i)
2;

Y = (£1)+W+W5 and Wi+Ws ~ N(0, 2) (since Wi and W5 are independent).
; Y] is a sufficient statistic for decision.

; the observable is
(Y1,Y2) = £(1,1) + (W1, W)
where (Wi, Ws) ~ N(0, I) and (Y1 +Y2) = £1+ Z where Z = (W1 + W) ~ N(0, 1)
is a sufficient statistic for the decision.
SOLUTION 2.

(a) Under the hypothesis H = +1, (Y;,...,Y,) is an i.i.d. sequence whose components are
Laplacian random variables with mean +1, namely

Similarly,

1\" .
P YnIH(y1>"'ayn’_1):(§) exp{—Z!yk+1\}-

k=1
The MAP decision rule is

le ..... Yn|H(y1,...,yn’—|—1) H:Z+l 1_p

.., Yn|H(y17-~'vyn|_1) H=<71 p 7

which, after canceling the common factors and taking the logarithm, becomes

n H=+1

IL—p
> (ye+1=lye—1) = m—= (1)
k=1 H=-1 p

(b) Since Ya € R: |a + 1] — |a — 1] € [-2,2], the left-hand-side of (1) lies in [—2n, 2n].
Therefore, if

1—0p 1
2n < In — p< ——,
P 1+ e2n
the receiver always chooses H=-1.
Similarly, if
1 — 2n
—2n > In P — p > e—,
D 1+ e

the decision will always be H=+1 (regardless of the observation).



(©) T(y1,---+Yn) = Y p—y (lyx + 1] = lyx — 1]) is the log-likelihood ratio and, hence, is a
sufficient statistic. We can prove this using Neyman-Fisher factorization theorem by
noting that (for a € {—1,+1}),

(v, - ynla) = <%> exp {—%Z (lyr = 1] + |y + 1‘)}

k=1
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(d) We have

3

Jvi, v iz (V15 . vpla) = exp { ka} X exp(na)]l{mm{vl, N T a}/, (3)

gé(T’(vl ----- vn))

with 7'(vy, ..., v,) = min{vy, ..., v,}.

Since conditioned on H = a, a € {—1,+1} the observables Yi,...,Y, and Vi,..., V],
are independent,

i Y ViV HWLs - Uny V1 - - Ynla@)
= fyvi,., Yn|H(yla coUnla) X fv Vn\H(Ula oy Unla)
=h(y1, . yn)W (V1,...,0,) X ga(T(yl, . ,yn))gQ(T'(vl, . ,vn))
where h, g,, b/, and g}, are defined in (2) and (3). Therefore, using the factorization

theorem we conclude that (T(yl, ey Yn), Tl (v, . ,vn)) is a sufficient statistic for the
hypothesis testing problem.

The MAP decision rule (in terms of 7" and 7") is

H=+1
911(M)g(T) xp 2 g(T)g +(T') x (1 —p). (4)
H=-1
Now if 7" = min{vy,...,v,} € (—=1,1) we see that ¢ ,(7") = 0 thus the MAP rule
always chooses H = —1. Otherwise (i.e., when min{vy,...,v,} > 1) (4) reduces to
n H=>+l 1— P
T o) =3 (e + 1 =l —1) = mi=L 2y (5)
k=1 H=-1 p

Thus, the decision regions are:
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— il gy |, 2n —on ;) on
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(note that T' € [—2n, 2n] as we discussed in (b) and 77 > —1).

e) From the decision regions of (d) it is clear that if p > 1 the optimal decision depends
&) 2

only on 7" which, in turn, is only a function of (V4,...,V},). Therefore, if p > % the
receiver that only observes (V1,...,V,) can perform as well as the optimal receiver.
SOLUTION 3.

(a) Since the space spanned by {wp,w;} is the same as the space spanned by {vg, w; }, we
can obtain v; by applying the Gram—Schmidt procedure on {vg, wy }:

(wo, wr) — fJw||*

= w; — (wo —w
' ol + Tan [P = 2wy 0 T )

. <w0,w1>—5

- 25—2<w0,w1> (wo wl)

1 1
= w; + §(w0 — wl) = 5 . (’LU() —|—w1).
Therefore,
v — w, — <@U1,UQ>UO . Wo + Wy
1= = )
Jwi = (wi,vo)voll  [[wo + wi]

(b) Let Zy = (N,vp) and Z; = (N,v1). Zp and Z; are independent because vy and vy are
orthogonal. We have:

[lwo+w1 ]

(w, poemite) + 71 if 1 s sent.

Ul — <R7 U1> —

{mmWMM>+z if 0 is sent,

llwo+wi|]
{w1,wo)+[|wo |? + Zl

[lwo+w |

{M + 7 if 0 is sent,

{M + 7 if 0 is sent,

if 1 is sent.

[lwo+w1|]
Etlwown) | 7 if 1 is sent.

[lwo+w1]

This shows that the distribution of U; is independent from the transmitted bit (and
from Up). Therefore, U; can be thrown away. Hence, Uy is sufficient statistics for the
hypothesis testing problem.



(¢) We have:

_wo—w; e s
Up = (R, vg) = (wo, ”wO—le> + Zo if 0 is sent,
(wr, n%(%> + Zo if 1 is sent.

[lwo —w1 ||

% + Zs if 1 is sent.

{M + Z if 0 is sent,

[lwo—wr ||

fwowy)=& 4 7 if 1 is sent.

[lwo—w1 ]

{M + 7, if 0 is sent,

Note that |Jwy — wy]|? = |Jwol|? + |Jw: ||* — 2{wq, w1) = 2E — 2{wg, w;). Therefore,

— 2
e {QWT?ZSOW%JF § ?f " %S sont
Dlwo—wn]| T Zy if 1 is sent.
~ 3llwe —will + Zg if 0 is sent,
- {_%Hwﬂ —wi|| + Zo if 1 is sent.

Now since Zy = (N, v9) ~ N(0, %), the probability of error of the MAP decoder is

given by
leo—le [|wo — w||
Pe = —2 —= - .
< / No “ ( V2No )
2

(d) The Cauchy—Schwarz inequality gives |(wg, w1)| < ||wol|-[|w1|| = €. Therefore, (wq, wq) >
—&. Hence,
”’wo - U)1||2 =2 — 2<w0,w1> S 2 + 2E = 4€.

We conclude that |jwe — wy|| < 2v/E. Therefore, the probability of error of the MAP
decoder is lower-bounded as follows:

neo(tia) o 356) o (V)

Moreover, (x) becomes an equality when (wg, w1) = —€ = —||wg]| - ||w: ]|, which is true
if wy = —wy.
SOLUTION 4.

(a) Looking at the waveforms we realize that the four signals ¥y(t) = 1{0 < ¢t < 1},
Wo(t) = 1 (t — 1), P3(t) = 1 (t — 2), and ¥3(t) = Y1 (t — 2) form an orthonormal basis
for the signal space spanned by the waveforms. In this basis wy(t), wo(t), ws(t), and
wy(t) correspond to the codewords ¢; = (2,1,3,2), co = (1,0,2,1), ¢35 = (0,—1,1,0)
and ¢y = (—1,—2,0, —1) respectively.

An ML receiver (which is optimal because of equiprobable hypotheses) first projects
the received signal R(t) = w;(t) + N(t) onto the orthonormal basis and forms the 4-
tuple (Y1,Y5,Y3,Y,) with Y, = (R(t),¥x(t)), k = 1,2,3,4. This reduces the problem
to the hypothesis testing problem in discrete additive white Gaussian noise channel,

under H =14,1=1,2,3,4: Y=c¢+7



where ¢;’s are defined above and Z ~ N/(0, M21]4)_ We know that the ML receiver

should chose H = argmin, ||Y — ¢]|.

We finally realize that since h(t) = 11(1 — t) and the remaining basis vectors are the
shifted versions of 91 (t), the n-tuple former can be implemented by sampling the output
of a single filter at times t = 1,2,3 and 4 to compute Y7, Y5, Y3, and Y, respectively:

49—/
t:&‘
oo Yo
R(t) = w;i(t) + N(t) — 1{0 <t < 1} t:ﬁ argmin ||Y —¢|| — F
R ey
— Y,
i

The union bound gives

d .
Pr{error|w; is sent} < Z Q < =
V2N

J#i

where d;; = ||[w; — w;|| = ||e; — ¢j||. In the following table we have computed those
values

di; |1 2 3 4

110 2 4 6

212 0 2 4

314 2 0 2

4 16 4 2 0
Consequently,

Pr{error|w; is sent} = Pr{error|wy is sent} = @ (

7m) @ () @ ()

and

Pr{error|wy is sent} = Pr{error|ws is sent} = 2Q) (

am) ¢ (am)

Therefore,

4
Pr{error} = Z Pr{w; is sent} Pr{error|w; is sent}
i=1

<2(vam) * () 20 (am)

The minimum energy signal set is obtained by subtracting from each signal the average

Hwi(t) + wa(t) + ws(t) + wa(t)] which is depicted below



i[wl (t) + ’wz(t) + wg(t) + w4(t)]
21

Therefore the minimum energy signal set is

wy (t) s (t)
21 21
1 1
> ¢ ——J—> t
1 2 3 4 1 2 3 4
w3 (t Wy (t
J( ) 1 2 3 4 ; ;( ) 1 2 3 4 .
-1 —1
-9 —2

(d) It is easy to verify that the new signal set spans a one-dimensional space with basis

U(t) = 51{0 < ¢t < 4}. Indeed, the new signal set corresponds to 4-PAM constellation

For the 4-PAM constellation,

2
Pr{error|w; is sent} = Pr{error|w, is sent} = @ ( :
V2N

and

2
Pr{error|w, is sent} = Pr{error|w; is sent} = 2Q) ( :
V2N,

which yields

Pr{error} = ;Q (%) :
0

(e) Since translation is an isometric transform and does not change the probability of error,

the probability of error for the receiver in part (a) will also be equal to 2Q < 22N0>.



