ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 22 Principles of Digital Communications
Solutions to Problem Set 9 May 3, 2016

SOLUTION 1. First we compute T, which is the duration of one bit:

Now, we can calculate the energy of the signal (i.e. the energy per bit), which is the same
for every j:

& = VT,

The bit error probability is given by @ (@) In our case 0 = y/Ny/2 = 107}, thus we
need to solve

105:62(10T>1<b) Q (1072 x b) |

hence b = Q1(107°) x 10? ~ 426.5.

SOLUTION 2.
ere are various possibilities to choose an orthogonal basis. One is ¢, =
) Th ibili h h b 0 o1 (t H;;fot‘{
\/ 7 UJ[) ) and ¢o(t) = ku = /7 w2 . Another choice, that we prefer and will be
our ch01ce in this solution is
2
Ui(t) = iﬂ[o T;}(t)
2
Ua(t) = iﬂ[%,Ts](t)-

With the latter choice the signal space is
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(b) Uy € {1} and U; € {£1} are mapped into

U()\/gwl (t)+ Uy \/ng(t).

The mapping is shown below:

(L) \/§ 7777777 LD

(—1,-1) (1,-1)

The mapping is such that neighboring points differ by one bit. This minimizes the bit-
error probability since when we make an error chances are that we choose a neighbor
of the correct symbol. Notice that we may decode each bit independently. In fact the
first bit is decoded to a 1 iff the observation is to the right of the vertical axis and the
second bit is 1 iff it is above the horizontal axis. The bit error probability is therefore

n-o(%R) (/%)

(¢) Notice that ¥s(t) = 91 (t — £:). Hence one matched filter is enough. The receiver block
diagram is:

t="Ts/2 Y,
R(t) ——vy (% —1) 1 — 0

threshold
t = TS Y2 at 0

(d) & =% =L and the power is % = 1.
SOLUTION 3.

(a) Using the identity cos?(a) = 3[1 4 cos(2a)], the average energy can be computed as

00 T
/_ ()] dt = % /0 cos(2r(f, + IAS)E) dt

26 [t sin(dn(f.+iAf)]T
_?[5 87 (f. +iAf) }
sin(4miAfT)
AT (f. +iAf)

The last approximation follows since f. > Af implies the second term in the square
brackets is negligible.
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(b)

(e)

Orthogonality requires

9 (T
5—/ cos(27(fe + 1A f)t) cos(2m(f. + JAS)E) dt =0,
T Jo

for every i # j. Using the trigonometric identity cos(c) cos(3) = 5 cos(a+03)+3 cos(a—

2
B), an equivalent condition is

%/0 [cos(2m (i — j)Aft) + cos(2m(2f. + (i + 7)Af)t)] dt = 0.

Integrating we obtain

3 {sin(27r(z' —HAST) N sin(27(2f, + (i +j)Af)T)} _0
2m(i — j)Af 2m(2fc + (1 + J)AS) .

T
As f.T is assumed to be an integer, the result can be simplified to

3 [Sin(%r(i —DAST)  sin(2n(i + 7)AfT) ]
2m(i — j)Af 2m(2fc + (i + J)AS)

T

As i and j are integer, this is satisfied for ¢ # j if and only if 20 AfT is an integer
multiple of 7. Hence, we obtain the minimum value of Af if 2rAfT = 7w which gives

o 1 . . . 1 . . .
Af = 5. Note that once Af is an integer multiple of 5% the approximate equality in
(x) will be exact.

Proceeding similarly, we will have orthogonality if and only if

E [sin(2m(i — j)AfT + 6; — 0;) —sin(0; — 6;)

T 2m(i — j)AS

N sin(27 (i + j)AfT + 6; 4+ 0;) — sin(6; + 6;)

272fot (i + ))AS) -0

In this case we see that both parts become zero if and only if 20AfT is an even
multiple of 7, meaning that the smallest Af is Af = % which is twice the minimum
frequency separation needed in the previous part. Hence, the cost of phase uncertainty
is a bandwidth expansion by a factor of 2.

The condition for essential orthogonality is that

T 2n(i — J)AS
N 3 {sin(27r(2fc(i + )AfT)+ 6,4 0;) —sin(6; + 6,)
T 2m(2fc + (i + 7)AS)

£ [sin(2m(i — H)AST + 6; — 6;) — sin(f; — Hj)}

is small compared to the signal’s energy £. The first term vanishes if Af = % The
second term is very small compared to £ if f.T > 1.

We have m signals separated by A f. The approximate bandwidth is mA f. This means

bandwidth % without random phase, and bandwidth % with random phase. We see
that in both cases, WT is proportional to 2%, i.e. it grows exponentially with .

SOLUTION 4.



(a) The block diagram is shown below:

R(t) —— wo(T 1) Y 2 0/——4gH

(b) Given A = a, the distance of signals is 2a+/&,, hence

a0 (o)

Py =E[P.(a)] = /000 Q (a %&)) 20~ da.

0

2

We integrate by parts, noting that f2ae*a2 da = —e %"

P&\ o 28\ _.:
Pr=—-Q|ay/—|e® +/ Q' |ay/= | e * da.
! < No ) 0 0 No
Taking the derivative of an integral with respect to the lower boundary gives the
negative of the value of the integrand evaluated at the lower boundary, i.e.,

[V

Q'(x) = - \/12—76

Thus, for the derivative of () (a@ / %) with respect to a, we can write

d 0 [2&, 1 s [28
— a\| — | = — e Noy[—.
da N() \/% NO

Plugging this in, we find

1 <1 28, _a2(&
2 0 vV 2 NO

which we now reshape to make it an integral over a Gaussian density, as follows:

a2

1 2&, 1 o 1
nw T e s
2(%+1) " VE ()

Now, it is clear that the integral evaluates to one half (since the integral is only over
half of the real line), and we find

bl 1 &N _1f &/ No
T=a 2\l1+e/Ny 2\ \1+e/N )
b 0 b 0

da.




m=E[A] = / 2a%¢ " a = 2\/7?/ a®
0 0

Thus, using the formula from part (b):

o) (5)

For the given example we get

-1 —5\\2
ﬁ = 2(Q(107)) ~ 10.6 dB.
NQ ™

1 a2 NZS
€ 22 da = \J/mo? = Y—.
V2T \/_ 2

For the fading we use the result of part (c) to get

& (1-2-107%°

= ~ 44 dB.
No  1—(1—-2x-5)?

The difference is quite significant! It is clear that this behaviour is fundamentally
different from the non-fading case.

SOLUTION 5.

(a) We pass R(t) through a whitening filter h(t) such that the output R'(t) looks like the
output of an AWGN channel. After this step we are facing a familiar situation and can
implement a matched filter receiver. The receiver architecture is shown below:

R(t R'(t t=T Y
SO ho D - -
t=T Y,
s wi (T —t) - Select N
arg max; Y; — —”wé'” o H
t=T Y;
» wi(T —t) -
Let N'(t) = [ N(a)h(t — ) da be the noise at the output of the whitening filter. We
want to select the ﬁlter h(t) such that &2 = G(f)|hz(f)[% ie
No
hr(f)I? = :

The output of the filter is
R'(t) = /R(a)h(t —a) da= /wi(a)h(t — ) da+ /N(a)h(t —a) da
— ui(t) + N'(0),

where N’(t) is white Gaussian noise and wj(t) = [w;(a)h(t—a) da. We need to design
the matched filter for the signals wi(t).



(b) To minimize both the noise and the energy of the signal, we need to select an antipodal
signal pair that is frequency-limited to [a,b] and has energy £.

SOLUTION 6.

(a) Clearly,
EC(k) =22 —1.

1075

(b)

(From the suggested approximation we get a = 4.80.)

(¢) For comparison, see the following table.

k| E7(k) | £C(F)
11954 3
2| 9768 | 15
4| 1660 | 255

(d) We see that
ECk+1) EP(k+1) 220D 1
EC(k)y — EP(k) 2%k —-1 7

thus ECk+1 EP(k+1
lim—S( + ):lim—S( +1)

TS R - 75 B

(e) If we send one bit per symbol, then coding allows us to significantly reduce the required
energy per symbol. For every additional bit per symbol we need to multiply & by
roughly 4 (exactly 4 asymptotically) with or without coding. So as the number of bits
per symbol increases, there is essentially a constant gap (in dB) between the energy
per symbol required by (uncoded) PAM and that required by the best possible code.

Notice that to keep the error probability at a constant level, we need to increase &,/0?
exponentially with the number k£ of bits per symbol. In Example 4.3 in the book we
increase it linearly with &k (hence the error probability goes to 1).



