
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Solution 1.

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will
select, and your decision will be based on the observation of ĤL and ĤR. Let H take
value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can
write the MAP decision rule as follows:

Pr{H = 1|ĤL = 1, ĤR = 2}
Ĥ=1

R
Ĥ=2

Pr{H = 2|ĤL = 1, ĤR = 2}

From the problem setting we know the priors Pr{H = 1} and Pr{H = 2}; we can
also determine the conditional probabilities Pr{ĤL = 1|H = 1}, Pr{ĤL = 1|H = 2},
Pr{ĤR = 2|H = 1} and Pr{ĤR = 2|H = 2} (we have Pr{ĤL = 1|H = 1} = 0.9 and
Pr{ĤL = 1|H = 2} = 0.1). Introducing these quantities and using the Bayes rule we
can formulate the MAP decision rule as

Pr{ĤL = 1, ĤR = 2|H = 1}Pr{H = 1}
Pr{ĤL = 1, ĤR = 2}

Ĥ=1

R
Ĥ=2

Pr{ĤL = 1, ĤR = 2|H = 2}Pr{H = 2}
Pr{ĤL = 1, ĤR = 2}

Now, assuming that the event {ĤL = 1} is independent of the event {ĤR = 2} and
simplifying the expression, we obtain

Pr{ĤL = 1|H = 1}Pr{ĤR = 2|H = 1}Pr{H = 1}
Ĥ=1

R
Ĥ=2

Pr{ĤL = 1|H = 2}Pr{ĤR = 2|H = 2}Pr{H = 2},

which is our final decision rule.

(b) Evaluating the previous decision rule, we have

0.9× 0.3× 0.25
Ĥ=1

R
Ĥ=2

0.1× 0.7× 0.75,

which gives

0.0675
Ĥ=1

R
Ĥ=2

0.0525

This implies that the answer Ĥ is equal to 1.



Solution 2.

(a) We can write the MAP decision rule in the following way:

PY |H(y|1)

PY |H(y|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)

Plugging in, we find

λy1e
−λ1

λy0e
−λ0

Ĥ=1

R
Ĥ=0

p0
1− p0

,

and then (
λ1
λ0

)y Ĥ=1

R
Ĥ=0

p0
1− p0

eλ1−λ0

Taking logarithms on both sides does not change the direction of the inequalities,
therefore

y log

(
λ1
λ0

) Ĥ=1

R
Ĥ=0

log

(
p0

1− p0
eλ1−λ0

)
Attention: the term log(λ1/λ0) can be negative, and if it is, then dividing by it involves
changing the direction of the inequality.

Suppose λ1 > λ0. Then, log(λ1/λ0) > 0, and the decision rule becomes

y
Ĥ=1

R
Ĥ=0

log
(

p0
1−p0 e

λ1−λ0
)

log
(
λ1
λ0

) def
= θ

(b) We compute

Pe(0) = Pr{Y > θ|H = 0} =
∞∑

y=dθe

PY |H(y|0)

= 1−
bθc∑
y=0

λy0
y!
e−λ0 ,

and by analogy

Pe(1) = Pr{Y < θ|H = 1} =

bθc∑
y=0

PY |H(y|1)

=

bθc∑
y=0

λy1
y!
e−λ1

Thus, the probability of error becomes

Pe = p0

1−
bθc∑
y=0

λy0
y!
e−λ0

+ (1− p0)
bθc∑
y=0

λy1
y!
e−λ1
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Now, suppose that λ1 < λ0. Then, log(λ1/λ0) < 0, and we have to swap the inequality
sign, thus

y
Ĥ=0

R
Ĥ=1

log
(

p0
1−p0 e

λ1−λ0
)

log
(
λ1
λ0

) def
= θ

The rest of the analysis goes along the same lines, and finally, we obtain

Pe = p0

bθc∑
y=0

λy0
y!
e−λ0 + (1− p0)

1−
bθc∑
y=0

λy1
y!
e−λ1


The case λ0 = λ1 yields log(λ1/λ0) = 0, so the decision rule becomes 0

Ĥ=1

R
Ĥ=0

θ, regardless

of y. Thus, we can exclude the case λ0 = λ1 from our discussion.

(c) Here, we are in the case λ1 > λ0, and we find θ ≈ 4.54. We thus evaluate

Pe =
1

3

(
1−

4∑
y=0

2y

y!
e−2

)
+

2

3

4∑
y=0

(
10y

y!
e−10

)
≈ 0.03705

(d) We find θ ≈ 7.5163

Pe =
1

3

(
1−

7∑
y=0

2y

y!
e−2

)
+

2

3

7∑
y=0

(
20y

y!
e−20

)
≈ 0.000885

The two Poisson distributions are much better separated than in (c); therefore, it
becomes considerably easier to distinguish them based on one single observation y.

Solution 3. We use the Fisher–Neyman factorization theorem.

(a) Since Y is an i.i.d. sequence,

PY |H(y|i) =
n∏
k=1

PYk|H(yk|i) =
λ
∑n

k=1 yk
i∏n
k=1(yk)!

e−nλi

= e−nλiλ
n( 1

n

∑n
k=1 yk)

i︸ ︷︷ ︸
gi(T (y))

1∏n
k=1(yk)!︸ ︷︷ ︸
h(y)

(b) Since Z1, . . . , Zn are i.i.d. additive noise samples,

fY |H(y|i) =
n∏
k=1

fZk|H(yk − θi) =
n∏
k=1

λie
−λi(yk−θi)1{yk ≥ θi}

= λni e
nλiθie−nλi(

1
n

∑n
k=1 yk)1 {min{y1, . . . , yn} ≥ θi}︸ ︷︷ ︸

gi(T (y))

with h(y) = 1.
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Solution 4.

(a) It is straightforward to check that w0(t) has unit norm, i.e., ‖w0(t)‖ = 1, thus ψ1(t) =
w0(t). With ψ1(t) we can reproduce the first portion of w1(t) (for t between 0 and 1).
With ψ2(t) we need to be able to describe the remaining part of w1(t). Clearly ψ2(t) is
as illustrated below. With ψ1(t) and ψ2(t) we also describe the part of w2(t) between
t = 0 and t = 2. Hence ψ3(t) is selected as the unit-norm function that matches the
part of w2(t) between t = 2 and t = 3. We immediately see that w3(t) is also a linear
combination of ψi(t), i = 1, 2, 3.

t

ψ1(t)

1

1
t

ψ2(t)

1

2
t

ψ3(t)

1

3

(b) Using the basis {ψ1(t), ψ2(t), ψ3(t)}, one can give the following representation for the
waveforms wi(t), i = 0, . . . , 3:

w0 = (1, 0, 0)T, w1 = (−1, 1, 0)T, w2 = (1, 1, 1)T, w3 = (1, 1,−1)T
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