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Problem 1.
Yi = Xi ⊕ Zi,

where

Zi =

{
1 with probability p
0 with probability 1− p

and Zi are not necessarily independent.

I(X1, . . . , Xn;Y1, . . . , Yn) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y1, . . . , Yn)

= H(X1, . . . , Xn)−H(Z1, . . . , Zn|Y1, . . . , Yn)

≥ H(X1, . . . , Xn)−H(Z1, . . . , Zn)

≥ H(X1, . . . , Xn)−
∑

H(Zi)

= H(X1, . . . , Xn)− nH(p)

= n− nH(p),

if X1, . . . , Xn are chosen i.i.d. ∼ Bern(1/2). The capacity of the channel with memory over
n uses of the channel is

nC(n) = max
p(x1,...,xn)

I(X1, . . . , Xn;Y1, . . . , Yn)

≥ I(X1, . . . , Xn;Y1, . . . , Yn)
p(x1,...,xn)=Bern(1/2)

≥ n(1−H(p))

= nC.

Hence channels with memory have higher capacity. The intuitive explanation for this result
is that the correlation between the noise decreases the effective noise; one could use the
information from the past samples of the noise to combat the present noise.

Problem 2. To find the capacity of the product channel, we must find the distribution
p(x1, x2) on the input alphabet X1 × X2 that maximizes I(X1, X2;Y1, Y2). Since the joint
distribution

p(x1, x2, y1, y2) = p(x1, x2)p(y1|x1)p(y2|x2),

Y1 → X1 → X2 → Y2 forms a Markov chain and therefore

I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2) (1)

= H(Y1, Y2)−H(Y1|X1, X2)−H(Y2|X1, X2) (2)

= H(Y1, Y2)−H(Y1|X1)−H(Y2|X2) (3)

≤ H(Y1) +H(Y2)−H(Y1|X1)−H(Y2|X2) (4)

= I(X1;Y1) + I(X2;Y2), (5)



where (2) and (3) follow from Markovity, and we have equality in (4) if Y1 and Y2 are
independent. Equality occurs when X1 and X2 are independent. Hence

C = max
p(x1,x2)

I(X1, X2;Y1, Y2)

≤ max
p(x1,x2)

I(X1;Y1) + max
p(x1,x2)

I(X2;Y2)

= max
p(x1)

I(X1;Y1) + max
p(x2)

I(X2;Y2)

= C1 + C2.

with equality iff p(x1, x2) = p∗(x1)p
∗(x2) and p∗(x1) and p∗(x2) are the distributions for

which C1 = I(X1;Y2) and C2 = I(X2;Y2) respectively.

Problem 3.

(a)

I(X;Y ) = I(Xk, K;Yk, K) = I(K;Yk, K) + I(Xk;YK , K|K) = H(K) + I(Xk;Yk|K)

= h2(α) + PK [1].I(Xk;Yk|K = 1) + PK [2]I(Xk;Yk|K = 2)

= h2(α) + α.I(X1;Y1) + (1− α)I(X2;Y2)

(b) The distribution of X is determined by α and by the distributions of X1 and X2.
It is clear from the expression in (a) that for any given α, I(X;Y ) is maximized
when I(X1;Y1) and I(X2;Y2) are maximized, i.e., when the distribution of X1 (resp.
X2) achieves the capacity of P1 (resp. P2). We conclude that the value of α in
the capacity achieving distribution is the one that maximizes the function f(α) =
h2(α) + αC1 + (1− α)C2. The derivative of f is:

f ′(α) = − log2(α)− 1

ln 2
+ log2(1− α) +

1

ln 2
+ C1 − C2 = C1 − C2 + log2

1− α
α

.

We have f ′(α) = 0 (resp. f ′(α) > 0, f ′(α) < 0) if α = α∗ (resp. α < α∗, α > α∗),

where α∗ =
2C1

2C1 + 2C2
. This means that f(α) is maximized at α = α∗. Therefore,

the capacity achieving distribution is such that α =
2C1

2C1 + 2C2
and X1 (resp. X2)

achieves the capacity of the channel P1 (resp. P2).

(c) From (b), we have:

C = − 2C1

2C1 + 2C2
log2

2C1

2C1 + 2C2
− 2C2

2C1 + 2C2
log2

2C2

2C1 + 2C2
+

2C1C1

2C1 + 2C2
+

2C2C2

2C1 + 2C2

= − 2C1

2C1 + 2C2
C1 +

2C1

2C1 + 2C2
log2(2

C1 + 2C2)− 2C2

2C1 + 2C2
C2

+
2C2

2C1 + 2C2
log2(2

C1 + 2C2) +
2C1C1

2C1 + 2C2
+

2C2C2

2C1 + 2C2

= log2(2
C1 + 2C2).

Therefore, 2C = 2C1 + 2C2 .
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Problem 4. The assertion is clearly true with n = 1. To complete the proof by induction
we need to show that the cascade of a BSC with parameter q = 1

2
(1 − (1 − 2p)n) with a

BSC with parameter p is equivalent to a BSC with parameter 1
2
(1− (1−2p)n+1). To do so,

observe that for a cascade of a BSC with parameter q and a BSC with parameter p, when
a bit is sent, the opposite bit will be received if exactly one of the channels makes a flip,
and this happens with probability (1 − q)p + (1 − p)q. Thus, the cascade is equivalent to
a BSC with this parameter. For q = 1

2
(1− (1− 2p)n),

(1− q)p+ (1− p)q =
1

2
(1 + (1− 2p)n)p+

1

2
(1− (1− 2p)n)(1− p) =

1

2
(1− (1− 2p)n+1),

and the assertion is proved.
Alternate proof: the cascade makes flips the incoming bit if an odd number of the

elements of the cascade flip. Thus the cascade is equivalent to a BSC with parameter

a =
∑

k:k odd

(
n

k

)
pk(1− p)n−k.

Let b =
∑

k:k even

(
n
k

)
pk(1− p)n−k. Observe that

a+ b =
∑
k

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1,

and

−a+ b =
∑
k

(
n

k

)
(−p)k(1− p)n−k = (−p+ 1− p)n = (1− 2p)n.

Subtracting the two equalities and dividing by two, we get a = 1
2
(1 + (1− 2p)n).

Problem 5. Let P ′X,Y (x, y) = PY |X(y|x)Q′(x), P ′Y (y) =
∑

x∈X P
′
X,Y (x, y) and PY (y) =∑

x∈X PY |X(y|x)Q(x). We then have for any Q′

∑
x∈X

Q′(x)
∑
y∈Y

PY |X(y|x) log

(
PY |X(y|x)∑

x′∈X PY |X(y|x′)Q(x′)

)
− I(Q′)

= EP ′
X,Y

log
PY |X

PY

− I(Q′)

= EP ′
X,Y

(
log

PY |X

PY

− log
P ′X,Y

Q′XP
′
Y

)
= EP ′

X,Y
log

P ′Y
PY

= EP ′
Y

log
P ′Y
PY

= D(P ′Y ||PY ) ≥ 0

with equality if and only if Q′ = Q. To prove (b), notice in the upper bound of part (a),
that the inner summation is a function of x and that the outer summation is an average
of this function with respect to the distribution Q′(x). The average of a function is upper
bounded by the maximum value that the function takes, and hence (b) follows.
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