Problem 1. Let \(\{f_i : \mathbb{R} \to \mathbb{R}\}_{1 \leq i \leq n} \) be a set of convex functions on \(\mathbb{R} \) and \(c_i \geq 0 \) for all \(i \in \{1, 2, \ldots, n\} \).

(a) Show that the function \(f : x \mapsto \sum_{i=1}^{n} c_i f_i(x) \) is convex.

(b) Show that the function \(g : (x_1, x_2, \ldots, x_n) \mapsto \sum_{i=1}^{n} c_i f_i(x_i) \) is convex.

Problem 2. Let \(\{f_i(x)\}_{i \in I} \) be a set of convex real-valued functions defined over a convex domain \(D \). Assuming that \(f(x) = \sup_{i \in I} f_i(x) \) is finite for all \(x \in D \), show that \(f(x) \) is convex.

Problem 3. Let \(f : U \to \mathbb{R} \) be a convex function on \(U \) and assume that there exists \(a, b \in \mathbb{R} \) such that \(a \leq f(x) \leq b \) for all \(x \in U \). Let \(h \) be an increasing convex function defined on the interval \([a, b] \). Show that the function \(g = h \circ f \) is convex on \(U \).

Problem 4. A function \(f(v) \) is defined on a convex region \(R \) of a vector space. Show that \(f(v) \) is convex iff the function \(f(\lambda v_1 + (1 - \lambda)v_2) \) is a convex function of \(\lambda \), \(0 \leq \lambda \leq 1 \), for all \(v_1, v_2 \in R \).

Problem 5.

(a) Show that \(I(U;V) \geq I(U;V|T) \) if \(T, U, V \) form a Markov chain, i.e., conditional on \(U \), the random variables \(T \) and \(V \) are independent.

Fix a conditional probability distribution \(p(y|x) \), and suppose \(p_1(x) \) and \(p_2(x) \) are two probability distributions on \(X \).

For \(k \in \{1, 2\} \), let \(I_k \) denote the mutual information between \(X \) and \(Y \) when the distribution of \(X \) is \(p_k(\cdot) \).

For \(0 \leq \lambda \leq 1 \), let \(W \) be a random variable, taking values in \(\{1, 2\} \), with
\[
\Pr(W = 1) = \lambda, \quad \Pr(W = 2) = 1 - \lambda.
\]

Define
\[
p_{W,X,Y}(w, x, y) = \begin{cases}
\lambda p_1(x)p(y|x) & \text{if } w = 1 \\
(1 - \lambda)p_2(x)p(y|x) & \text{if } w = 2.
\end{cases}
\]

(b) Express \(I(X;Y|W) \) in terms of \(I_1, I_2 \) and \(\lambda \).

(c) Express \(p(x) \) in terms of \(p_1(x), p_2(x) \) and \(\lambda \).

(d) Using (a), (b) and (c) show that, for every fixed conditional distribution \(p_{Y|X} \), the mutual information \(I(X;Y) \) is a concave \(\cap \) function of \(p_X \).

Problem 6. Suppose \(Z \) is uniformly distributed on \([-1, 1] \), and \(X \) is a random variable, independent of \(Z \), constrained to take values in \([-1, 1] \). What distribution for \(X \) maximizes the entropy of \(X + Z \)? What distribution of \(X \) maximizes the entropy of \(XZ \)?
Problem 7. Show that among all non-negative random variables with mean \(\lambda \) the exponential random variable has the largest differential entropy. Hint: let \(p(x) = e^{-x/\lambda}/\lambda \) be the density of the exponential random variable and let \(q(x) \) be some other density with mean \(\lambda \). Consider \(D(q\|p) \) and mimic the proof in class for the maximal entropy of the Gaussian.

Problem 8. Consider an additive noise channel with input \(x \in \mathbb{R} \), and output

\[
Y = x + Z
\]

where \(Z \) is a real random variable independent of the input \(x \), has zero mean and variance equal to \(\sigma^2 \).

In this problem we prove in two different ways that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance. Let \(\mathcal{N}_\sigma \) denote the Gaussian density with zero mean and variance \(\sigma^2 \).

First Method

Let \(X \) be a Gaussian random variable with zero-mean and variance \(P \). Let \(\mathcal{N}_P \) denote its density \(\mathcal{N}_P(x) = \frac{1}{\sqrt{2\pi P}} e^{-x^2/2P} \).

(a) Show that \(I(X;Y) = H(X) - H(X - \alpha Y | Y) \) for any \(\alpha \in \mathbb{R} \).

(b) Show that \(H(X - \alpha Y) \leq \frac{1}{2} \log 2\pi e E((X - \alpha Y)^2) \) for any \(\alpha \in \mathbb{R} \).

(c) Deduce from (a) and (b) that

\[
I(X;Y) \geq H(X) - \frac{1}{2} \log 2\pi e E((X - \alpha Y)^2)
\]

for any \(\alpha \in \mathbb{R} \).

(d) Show that \(E((X - \alpha Y)^2) \geq \frac{\sigma^2 P}{\sigma^2 + P} \) with equality if and only if \(\alpha = P / (P + \sigma^2) \).

(e) Deduce from (c) and (d) that

\[
I(X;Y) \geq \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right)
\]

and conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.

Second Method

(a) Denote the input probability density by \(p_X \). Verify that

\[
I(X;Y) = \int \int p_X(x)p_Z(y-x) \ln \frac{p_Z(y-x)}{p_Y(y)} \, dx \, dy \text{ nats.}
\]

where \(p_Y \) is the density of the output when the input has density \(p_X \).

(b) Now set \(p_X = \mathcal{N}_P \). Verify that

\[
\frac{1}{2} \ln(1 + P/\sigma^2) = \int \int p_X(x)p_Z(y-x) \ln \frac{\mathcal{N}_\sigma^2(y-x)}{\mathcal{N}_P+\sigma^2(y)} \, dx \, dy.
\]

(c) Still with \(p_X = \mathcal{N}_P \), show that

\[
\frac{1}{2} \ln(1 + P/\sigma^2) - I(X;Y) \leq 0.
\]

[Hint: use (a) and (b) and \(\ln t \leq t - 1 \).]

(d) Show that an additive noise channel with noise variance \(\sigma^2 \) and input power \(P \) has capacity at least \(\frac{1}{2} \log_2(1 + P/\sigma^2) \) bits per channel use. Conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.