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Handout 30 Information Theory and Coding
Final Exam Jan. 11, 2016

4 problems, 60 points
180 minutes
2 sheets (4 pages) of notes allowed.

Good Luck!

Please write your name on each sheet of your answers.

Please write the solution of each problem on a separate sheet.



Problem 1. (12 points) Let X1, X2, . . . be a stationary binary source. An observer tries
to guess the current source symbol on the basis of his past observations of the source. For
n = 1, 2, . . . let X̂n = fn(X1, . . . , Xn−1) denote the guess by the observer for Xn after
observing Xn−1 = (X1, . . . , Xn−1). Here each fn : {0, 1}n−1 → {0, 1} is a deterministic
function, in particular, X̂1 is a constant.

(a) (4 pts) Let Zn be the indicator variable of the event X̂n 6= Xn, i.e., Zn = 0 if the
observer guesses the correctly, Zn = 1 otherwise. Express the entropy rate of the
process Z1, Z2, . . . in terms of the entropy rate of the source.

(b) (4 pts) Let pn = Pr(Zn = 1) denote the probability that the observer guesses incor-
rectly. Show that h2(pn) ≥ H(Xn|Xn−1), where h2 is the binary entropy function.

(c) (4 pts) Let p = lim infn→∞ pn denote the ‘error rate’ of the observer. Show that h2(p)
cannot be smaller than the entropy rate of the source.
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Problem 2. (16 points) Consider a two-way communication system where two parties
communicate via a common output they both can observe and influence. Denote the
common output by Y , and the signals emitted by the two parties by x1 and x2 respectively.
Let p(y|x1, x2) model the memoryless channel through which the two parties influence the
output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding
functions of the form

enc1 : {1, . . . , 2nR1} → X n
1 dec1 : Yn × {1, . . . , 2nR1} → {1, . . . , 2nR2}

enc2 : {1, . . . , 2nR2} → X n
2 dec2 : Yn × {1, . . . , 2nR2} → {1, . . . , 2nR1}

with which the parties encode their own message and decode the other party’s messages.
(Note that when a party is decoding the other party’s message, it can make use of the
knowledge of its own message).

We will say that the rate pair (R1, R2) is achievable, if for any ε > 0, there exist encoders
and decoders with the above form for which the average error probability is less than ε.

Consider the following ‘random coding’ method to construct the encoders:

(i) Choose probability distributions pj on Xj, j = 1, 2.

(ii) Choose {enc1(m1)i : m1 = 1, . . . , 2nR1 , i = 1, . . . , n} i.i.d., each having distribution as
p1. Similarly, choose {enc2(m2)i : m2 = 1, . . . , 2nR2 , i = 1, . . . , n} i.i.d., each having
distribution as p2, independently of the choices for enc1.

For the decoders we will use typicality decoders:

(i) Set p(x1, x2, y) = p1(x1)p2(x2)p(y|x1, x2). Choose a small ε > 0 and consider the set
T of ε-typical (xn1 , xn2 , yn)’s with respect to p.

(ii) For decoder 1: given yn and the correct m1, dec1 will declare m̂2 if it is the unique
m2 for which (enc1(m1), enc2(m2), y

n) ∈ T . If there is no such m2, dec1 outputs 0.
(Similar description applies to Decoder 2.)

(a) (3 pts) Given that m1 and m2 are the transmitted messages, show that
(enc1(m1), enc2(m2), Y

n) ∈ T with high probability.

(b) (3 pts) Given that m1 and m2 are the transmitted messages, and m̃1 6= m1 what is
the probability distribution of (enc1(m̃1), enc(m2), Y

n)?

(c) (3 pts) Under the assumptions in (b) show that the

Pr{(enc1(m̃1), enc2(m2), Y
n) ∈ T} .= 2−nI(X1;X2Y ).

(d) (3 pts) Show that all rate pairs satisfying

R1 ≤ I(X1;Y X2), R2 ≤ I(X2;Y X1)

for some p(x1, x2) = p(x1)p(x2) are achievable.

(e) (4 pts) For the case when X1, X2, Y are all binary and Y is the product of X1 and
X2, show that the achievable region is strictly larger than what we can obtain by
‘half duplex communication’ (i.e., the set of rates that satisfy R1 +R2 ≤ 1.)
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Problem 3. (16 pts) Suppose {(Xi, Yi) : i = 1, 2, . . . } is an i.i.d. sequence of pairs of
discrete random variables. Let p(x, y) denote the probability mass function of each pair.
Suppose X1, X2, . . . is observed by Alice and Y1, Y2, . . . is observed by Bob. Alice needs
to inform Bob of the sequence she has seen. Consider the following method to accomplish
this:

(i) To each ε-typical X sequence of length n assign a ‘label’ randomly and uniformly
chosen from {1, . . . , 2nR}. The assignments are made independently. Let label(xn)
denote the label assigned to the sequence xn by this process.

(ii) Upon observing Xn, Alice checks if it is typical and if so, sends label(Xn) to Bob.

(iii) Upon observing Y n and receiving the label ` from Alice, Bob makes a list of all X
sequences x̂n for which (x̂n, Y n) is jointly typical and label(x̂n) = `. If the list contains
a single sequence, Bob decides that it is what Alice observed.

(a) (4 pts) As n gets large, what is the chance that the true sequence Xn does not appear
on Bob’s list?

(b) (4 pts) For a given typical sequence yn, find an upper bound on the number of xn
sequences that are jointly typical with yn.

[Hint: mimic the proof for bounding the size of the typical set, noting that for such
sequences p(xn, yn) ≈ 2−nH(X,Y ) and p(yn) ≈ 2−nH(Y ).]

(c) (4 pts) For a typical yn, upper bound the expected number of wrong sequences that
appear on Bob’s list.

(d) (4 pts) Find a condition of the form R > R0 that guarantees that Bob will decide
correctly with high probability.
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Problem 4. (16 points) Suppose C is a Reed–Solomon code defined on a field F with
blocklength n, |F|k codewords. Let α1 ∈ F, . . . , αn ∈ F denote the evaluation points
that define this code — recall that the Reed–Solomon code maps k information symbols
(u0, . . . , uk−1) ∈ Fk to the codeword (x1, . . . , xn) ∈ Fn by setting xi = u(αi) where u(D) =
u0 + u1D + · · ·+ uk−1D

k−1.
Consider now the code C ′ of blocklength n+1 that assigns to the information sequence

(u0, . . . , uk−1) the codeword x′ = (uk−1, x1, . . . , xn), where the xi’s are as above.

(a) (4 pts) Show that C ′ is linear.

(b) (4 pts) Suppose u0, . . . , uk−1 are not all zero, but uk−1 = 0. Show that weight(x′) ≥
n+ 2− k.

(c) (4 pts) Suppose uk−1 6= 0. Show that weight(x′) ≥ n+ 2− k.

(d) (4 pts) Show that the code C ′ satisfies the Singleton bound with equality.
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