## ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

| Handout 30 | Information Theory and Coding |
|------------|-------------------------------|
| Final Exam | Jan. 11, 2016                 |

4 problems, 60 points 180 minutes 2 sheets (4 pages) of notes allowed.

Good Luck!

PLEASE WRITE YOUR NAME ON EACH SHEET OF YOUR ANSWERS.

PLEASE WRITE THE SOLUTION OF EACH PROBLEM ON A SEPARATE SHEET.

PROBLEM 1. (12 points) Let  $X_1, X_2, \ldots$  be a stationary binary source. An observer tries to guess the current source symbol on the basis of his past observations of the source. For  $n = 1, 2, \ldots$  let  $\hat{X}_n = f_n(X_1, \ldots, X_{n-1})$  denote the guess by the observer for  $X_n$  after observing  $X^{n-1} = (X_1, \ldots, X_{n-1})$ . Here each  $f_n : \{0, 1\}^{n-1} \to \{0, 1\}$  is a deterministic function, in particular,  $\hat{X}_1$  is a constant.

- (a) (4 pts) Let  $Z_n$  be the indicator variable of the event  $X_n \neq X_n$ , i.e.,  $Z_n = 0$  if the observer guesses the correctly,  $Z_n = 1$  otherwise. Express the entropy rate of the process  $Z_1, Z_2, \ldots$  in terms of the entropy rate of the source.
- (b) (4 pts) Let  $p_n = \Pr(Z_n = 1)$  denote the probability that the observer guesses incorrectly. Show that  $h_2(p_n) \ge H(X_n | X^{n-1})$ , where  $h_2$  is the binary entropy function.
- (c) (4 pts) Let  $p = \liminf_{n \to \infty} p_n$  denote the 'error rate' of the observer. Show that  $h_2(p)$  cannot be smaller than the entropy rate of the source.

PROBLEM 2. (16 points) Consider a two-way communication system where two parties communicate via a *common* output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by  $x_1$  and  $x_2$  respectively. Let  $p(y|x_1, x_2)$  model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

enc<sub>1</sub>:  $\{1, ..., 2^{nR_1}\} \to \mathcal{X}_1^n$  dec<sub>1</sub>:  $\mathcal{Y}^n \times \{1, ..., 2^{nR_1}\} \to \{1, ..., 2^{nR_2}\}$ enc<sub>2</sub>:  $\{1, ..., 2^{nR_2}\} \to \mathcal{X}_2^n$  dec<sub>2</sub>:  $\mathcal{Y}^n \times \{1, ..., 2^{nR_2}\} \to \{1, ..., 2^{nR_1}\}$ 

with which the parties encode their own message and decode the other party's messages. (Note that when a party is decoding the other party's message, it can make use of the knowledge of its own message).

We will say that the rate pair  $(R_1, R_2)$  is achievable, if for any  $\epsilon > 0$ , there exist encoders and decoders with the above form for which the average error probability is less than  $\epsilon$ .

Consider the following 'random coding' method to construct the encoders:

- (i) Choose probability distributions  $p_j$  on  $\mathcal{X}_j$ , j = 1, 2.
- (ii) Choose  $\{ enc_1(m_1)_i : m_1 = 1, \ldots, 2^{nR_1}, i = 1, \ldots, n \}$  i.i.d., each having distribution as  $p_1$ . Similarly, choose  $\{ enc_2(m_2)_i : m_2 = 1, \ldots, 2^{nR_2}, i = 1, \ldots, n \}$  i.i.d., each having distribution as  $p_2$ , independently of the choices for  $enc_1$ .

For the decoders we will use typicality decoders:

- (i) Set  $p(x_1, x_2, y) = p_1(x_1)p_2(x_2)p(y|x_1, x_2)$ . Choose a small  $\epsilon > 0$  and consider the set T of  $\epsilon$ -typical  $(x_1^n, x_2^n, y^n)$ 's with respect to p.
- (ii) For decoder 1: given  $y^n$  and the correct  $m_1$ , dec<sub>1</sub> will declare  $\hat{m}_2$  if it is the unique  $m_2$  for which  $(\text{enc}_1(m_1), \text{enc}_2(m_2), y^n) \in T$ . If there is no such  $m_2$ , dec<sub>1</sub> outputs 0. (Similar description applies to Decoder 2.)
- (a) (3 pts) Given that  $m_1$  and  $m_2$  are the transmitted messages, show that  $(\text{enc}_1(m_1), \text{enc}_2(m_2), Y^n) \in T$  with high probability.
- (b) (3 pts) Given that  $m_1$  and  $m_2$  are the transmitted messages, and  $\tilde{m}_1 \neq m_1$  what is the probability distribution of  $(\text{enc}_1(\tilde{m}_1), \text{enc}(m_2), Y^n)$ ?
- (c) (3 pts) Under the assumptions in (b) show that the

$$\Pr\{(\mathrm{enc}_1(\tilde{m}_1), \mathrm{enc}_2(m_2), Y^n) \in T\} \doteq 2^{-nI(X_1; X_2Y)}.$$

(d) (3 pts) Show that all rate pairs satisfying

$$R_1 \leq I(X_1; YX_2), \quad R_2 \leq I(X_2; YX_1)$$

for some  $p(x_1, x_2) = p(x_1)p(x_2)$  are achievable.

(e) (4 pts) For the case when  $X_1$ ,  $X_2$ , Y are all binary and Y is the product of  $X_1$  and  $X_2$ , show that the achievable region is strictly larger than what we can obtain by 'half duplex communication' (i.e., the set of rates that satisfy  $R_1 + R_2 \leq 1$ .)

PROBLEM 3. (16 pts) Suppose  $\{(X_i, Y_i) : i = 1, 2, ...\}$  is an i.i.d. sequence of pairs of discrete random variables. Let p(x, y) denote the probability mass function of each pair. Suppose  $X_1, X_2, ...$  is observed by Alice and  $Y_1, Y_2, ...$  is observed by Bob. Alice needs to inform Bob of the sequence she has seen. Consider the following method to accomplish this:

- (i) To each  $\epsilon$ -typical X sequence of length n assign a 'label' randomly and uniformly chosen from  $\{1, \ldots, 2^{nR}\}$ . The assignments are made independently. Let  $label(x^n)$  denote the label assigned to the sequence  $x^n$  by this process.
- (ii) Upon observing  $X^n$ , Alice checks if it is typical and if so, sends  $label(X^n)$  to Bob.
- (iii) Upon observing  $Y^n$  and receiving the label  $\ell$  from Alice, Bob makes a list of all X sequences  $\hat{x}^n$  for which  $(\hat{x}^n, Y^n)$  is jointly typical and  $\text{label}(\hat{x}^n) = \ell$ . If the list contains a single sequence, Bob decides that it is what Alice observed.
- (a) (4 pts) As n gets large, what is the chance that the true sequence  $X^n$  does not appear on Bob's list?
- (b) (4 pts) For a given typical sequence  $y^n$ , find an upper bound on the number of  $x^n$  sequences that are jointly typical with  $y^n$ .

[Hint: mimic the proof for bounding the size of the typical set, noting that for such sequences  $p(x^n, y^n) \approx 2^{-nH(X,Y)}$  and  $p(y^n) \approx 2^{-nH(Y)}$ .]

- (c) (4 pts) For a typical  $y^n$ , upper bound the expected number of wrong sequences that appear on Bob's list.
- (d) (4 pts) Find a condition of the form  $R > R_0$  that guarantees that Bob will decide correctly with high probability.

PROBLEM 4. (16 points) Suppose C is a Reed–Solomon code defined on a field  $\mathbb{F}$  with blocklength n,  $|\mathbb{F}|^k$  codewords. Let  $\alpha_1 \in \mathbb{F}, \ldots, \alpha_n \in \mathbb{F}$  denote the evaluation points that define this code — recall that the Reed–Solomon code maps k information symbols  $(u_0, \ldots, u_{k-1}) \in \mathbb{F}^k$  to the codeword  $(x_1, \ldots, x_n) \in \mathbb{F}^n$  by setting  $x_i = u(\alpha_i)$  where  $u(D) = u_0 + u_1 D + \cdots + u_{k-1} D^{k-1}$ .

Consider now the code  $\mathcal{C}'$  of blocklength n + 1 that assigns to the information sequence  $(u_0, \ldots, u_{k-1})$  the codeword  $\mathbf{x}' = (u_{k-1}, x_1, \ldots, x_n)$ , where the  $x_i$ 's are as above.

- (a) (4 pts) Show that C' is linear.
- (b) (4 pts) Suppose  $u_0, \ldots, u_{k-1}$  are not all zero, but  $u_{k-1} = 0$ . Show that weight  $(\mathbf{x}') \ge n+2-k$ .
- (c) (4 pts) Suppose  $u_{k-1} \neq 0$ . Show that weight  $(\mathbf{x}') \geq n+2-k$ .
- (d) (4 pts) Show that the code  $\mathcal{C}'$  satisfies the Singleton bound with equality.