
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 11-2 Statistical Physics for Communication and Computer Science
Final Project May 13th, 2015, Due Date: June 22th

Problem 1 (Source Coding). In this project you will consider the problem of lossy source
coding. This problem is quite similar to the K-SAT problem.

Consider a binary symmetric source, emitting i.i.d. Bernoulli random variables Xi,
i = 1, . . . , n, with parameter 1

2
. We write Xi if we think that the source takes values in

{0, 1} and Si if we think of the corresponding spin model, with Si ∈ {±1}.
We want to compress this source but keep the distortion as small as possible. More

precisely, for x, y ∈ {0, 1}n, let dH(x, y) =
∑n

i=1 1{xi 6=yi} denote the Hamming distortion.

Let f : {0, 1}n 7→ {0, 1}k, 1 ≤ k ≤ n, be the encoding function and g : {0, 1}k 7→ {0, 1}n
be the decoding function. This means that the encoding function f compresses the n bits
into k bits, and the decoding function g takes the k bits and reconstructs a codeword of
length n. As a measure of faith fullness of the reconstruction we pick

E[
1

n
dH(g(f(X)), X)],

i.e., we pick the average distortion where the average is over all source outcomes. Our aim
is to minimize this distortion for a fixed k/n. More precisely, if we fix R = k/n, the rate
of the compression, and if we let n tend to infinity, then we want to minimize the average
distortion, call it D(R). Equivalently, we want to minimize the rate R as a function of D.

If you took the information theory class you know that for the above case this rate-
distortion function (the best possible trade-off) is given by

R(D) =

{
1− h2(D), 0 ≤ D ≤ 1

2
,

0, D ≥ 1
2
.

In words, 1− h2(D) is the smallest rate which we can have (regardless of the algorithm we
use) if we want to represent the source with average distortion at most D.

Our aim is to construct and analyze a practical lossy source compression scheme using
low-density generator-matrix (LDGM) ensembles and message-passing guided decimation
(similar to what was used for the K-SAT problem). We do not aim to get close to the
optimal rate-distortion curve. As for standard channel coding, this could be done by
optimization over the ensemble. We skip this part, since we are interested mainly in the
basic analysis.

• We will use LDGM ensembles. Such an ensemble is defined as follows. We start with
k code bits, k < n, call them Y1, Y2, . . . , Yk. These are the bits which represent the
source in compressed form.

We expand those into n bits, call them X̂1, X̂2, . . . , X̂n. These n bits will be our
reconstruction of the source word X1, X2, . . . , Xn.

The relationship between these two is given by a bipartite graph. We have k code
bit nodes (for Y1, . . . , Yk), n generator nodes, and n source reconstruction nodes
(for X̂1, . . . , X̂n). In the (l, r)-regular case each code bit node has degree r, each
source reconstruction node has degree 1, and each generator node has degree l + 1.



X̂1

X̂2

X̂3

X̂4

X̂5

X̂6

X̂7

X1

X2

X3

X4

X5

X6

X7

Y1

Y2

Y3

Y4

Figure 1: The factor graph associated to the source coding problem.

Further, each generator node is connected to l code bit nodes and exactly one source
reconstruction node. This means that each source reconstruction variable is the XOR
of l code bits: Yj1 + . . . Yjl = X̂j, j = 1, . . . n. We write the relationship as X̂ = g(Y ).
The corresponding factor graph is shown in Fig. 1.

Decoding: The decoding part is easy. Take the k code bits Y and generate from these
the n code reconstruction bits X̂. In terms of our map, X̂ = g(Y ).

Encoding: Assume we are given the source wordX of length n. Our aim is to represent
it as faithfully as possible by a reconstruction word X̂ by setting the k code bits Y
to appropriate values. In principle we can try out all 2k possible values of Y and pick
one of those which minimize the distortion. I.e., we define the encoding function as

f(X) = argminY {dH(g(Y ), X)}

= argminY

{ n∑
j=1

1{Yj1+···+Yjl 6=Xj}
}
.

Message-Passing Guided Decimation: We want to compute the following expression

µi(Yi) = min
Y ∼i

n∑
j=1

1{Yj1+···+Yjl 6=Xj}.

Note, here Yjk, k = 1, . . . , l, are the l code bits which the j-th generator node is
attached to. The function µi(Yi) has the following interpretation. When we set
Yi = 0 then µi(Yi) gives us the minimum distortion which we can achieve by picking
the remaining k − 1 code bits and when Yi is frozen to 0. The interpretation for
µi(Yi = 1) is similar.

The above function is the minimization over a function which consists of many sum-
mands. This is in analogy to our usual sum-product set-up where we sum (marginal-
ize) a function which is highly factorized. Formally, these two problems can be
translated into each other if we replace multiplication by summation and summation
(marginalization) by minimization. The resulting message-passing rules are identical
modulo this mapping. The resulting algorithm is called the min-sum algorithm for
obvious reasons (our original algorithm was called sum-product algorithm). As for
the sum-product algorithm, the min-sum algorithm is optimal on trees.

We proceed now as follows. We run the min-sum algorithm. After a certain number
of iterations we assume that the messages have converged. Pick a variable which has
a difference µi(Yi = 0) − µi(Yi = 1) 6= 0. Set this variable to that value of Yi which

2



gives the smaller value of µi. Propagate this value of Yi to the generator nodes and
update the Xj. Then expurgate the graph.

If you implement this algorithm you will see that at the very beginning the algorithm
does not get started. All messages stay trivial. Can you explain why this happens?
To avoid this problem. Whenever the messages stay trivial, simply pick a code bit
at random and set it to a random value. Update the system and then expurgate the
graph and start anew.

Simulation: Use message passing guided decimation as explained above and run
simulations for the (3, 6) ensemble for n = 104. What is the average distortion? How
does this compare to the optimal trade-off?

Analysis:

(i) Write down the expression for the Bethe ground state energy. This is supposed
to approximate the minimal average distortion, and would be exact on a tree.
Note, similarly to the sum-product algorithm you get this expression - from the
usual Bethe free energy - by formally mapping multiplication to summation and
log-summation to minimization.

(ii) Use the population dynamics approach to compute density evolution. (Again,
you might need a small modification at the beginning to get started. E.g., you
might want to try a random initialization.)

(iii) Plug in the density which you get from the population dynamics approach into
the expression for the Bethe free energy. This gives you an expression which is
supposedly the distortion of this system (if you had used an optimal algorithm).

What number do you get? Does it make sense?

You are expected to hand in a small report before the due date.

3


