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2.4. The Pólya Urn Model 25
2.5. Birth-and-Death Chains 26
2.6. Random Walks on Groups 27
2.7. Random Walks on Z and Reflection Principles 30
Exercises 34
Notes 35

Chapter 3. Markov Chain Monte Carlo: Metropolis and Glauber Chains 37
3.1. Introduction 37
3.2. Metropolis Chains 37
3.3. Glauber Dynamics 40
Exercises 44
Notes 44

Chapter 4. Introduction to Markov Chain Mixing 47
4.1. Total Variation Distance 47

v



vi CONTENTS

4.2. Coupling and Total Variation Distance 49
4.3. The Convergence Theorem 52
4.4. Standardizing Distance from Stationarity 53
4.5. Mixing Time 55
4.6. Mixing and Time Reversal 55
4.7. Ergodic Theorem* 58
Exercises 59
Notes 60

Chapter 5. Coupling 63
5.1. Definition 63
5.2. Bounding Total Variation Distance 64
5.3. Examples 65
5.4. Grand Couplings 70
Exercises 73
Notes 74

Chapter 6. Strong Stationary Times 75
6.1. Top-to-Random Shuffle 75
6.2. Definitions 76
6.3. Achieving Equilibrium 77
6.4. Strong Stationary Times and Bounding Distance 78
6.5. Examples 80
6.6. Stationary Times and Cesaro Mixing Time* 83
Exercises 84
Notes 85

Chapter 7. Lower Bounds on Mixing Times 87
7.1. Counting and Diameter Bounds 87
7.2. Bottleneck Ratio 88
7.3. Distinguishing Statistics 92
7.4. Examples 96
Exercises 98
Notes 98

Chapter 8. The Symmetric Group and Shuffling Cards 99
8.1. The Symmetric Group 99
8.2. Random Transpositions 101
8.3. Riffle Shuffles 106
Exercises 109
Notes 111

Chapter 9. Random Walks on Networks 115
9.1. Networks and Reversible Markov Chains 115
9.2. Harmonic Functions 116
9.3. Voltages and Current Flows 117
9.4. Effective Resistance 118
9.5. Escape Probabilities on a Square 123
Exercises 124
Notes 125



CONTENTS vii

Chapter 10. Hitting Times 127
10.1. Definition 127
10.2. Random Target Times 128
10.3. Commute Time 130
10.4. Hitting Times for the Torus 133
10.5. Bounding Mixing Times via Hitting Times 134
10.6. Mixing for the Walk on Two Glued Graphs 138
Exercises 139
Notes 141

Chapter 11. Cover Times 143
11.1. Cover Times 143
11.2. The Matthews Method 143
11.3. Applications of the Matthews Method 147
Exercises 151
Notes 152

Chapter 12. Eigenvalues 153
12.1. The Spectral Representation of a Reversible Transition Matrix 153
12.2. The Relaxation Time 154
12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks 156
12.4. Product Chains 160
12.5. An ℓ2 Bound 163
12.6. Time Averages 165
Exercises 167
Notes 168

Part II: The Plot Thickens 169

Chapter 13. Eigenfunctions and Comparison of Chains 171
13.1. Bounds on Spectral Gap via Contractions 171
13.2. Wilson’s Method for Lower Bounds 172
13.3. The Dirichlet Form and the Bottleneck Ratio 175
13.4. Simple Comparison of Markov Chains 179
13.5. The Path Method 182
13.6. Expander Graphs* 185
Exercises 187
Notes 187

Chapter 14. The Transportation Metric and Path Coupling 189
14.1. The Transportation Metric 189
14.2. Path Coupling 191
14.3. Fast Mixing for Colorings 193
14.4. Approximate Counting 195
Exercises 198
Notes 199

Chapter 15. The Ising Model 201
15.1. Fast Mixing at High Temperature 201
15.2. The Complete Graph 203



viii CONTENTS

15.3. The Cycle 204
15.4. The Tree 206
15.5. Block Dynamics 208
15.6. Lower Bound for Ising on Square* 211
Exercises 213
Notes 214

Chapter 16. From Shuffling Cards to Shuffling Genes 217
16.1. Random Adjacent Transpositions 217
16.2. Shuffling Genes 221
Exercise 226
Notes 227

Chapter 17. Martingales and Evolving Sets 229
17.1. Definition and Examples 229
17.2. Optional Stopping Theorem 231
17.3. Applications 233
17.4. Evolving Sets 235
17.5. A General Bound on Return Probabilities 239
17.6. Harmonic Functions and the Doob h-Transform 241
17.7. Strong Stationary Times from Evolving Sets 243
Exercises 245
Notes 245

Chapter 18. The Cutoff Phenomenon 247
18.1. Definition 247
18.2. Examples of Cutoff 248
18.3. A Necessary Condition for Cutoff 252
18.4. Separation Cutoff 254
Exercise 255
Notes 255

Chapter 19. Lamplighter Walks 257
19.1. Introduction 257
19.2. Relaxation Time Bounds 258
19.3. Mixing Time Bounds 260
19.4. Examples 262
Notes 263

Chapter 20. Continuous-Time Chains* 265
20.1. Definitions 265
20.2. Continuous-Time Mixing 266
20.3. Spectral Gap 268
20.4. Product Chains 269
Exercises 273
Notes 273

Chapter 21. Countable State Space Chains* 275
21.1. Recurrence and Transience 275
21.2. Infinite Networks 277



CONTENTS ix

21.3. Positive Recurrence and Convergence 279
21.4. Null Recurrence and Convergence 283
21.5. Bounds on Return Probabilities 284
Exercises 285
Notes 286

Chapter 22. Coupling from the Past 287
22.1. Introduction 287
22.2. Monotone CFTP 288
22.3. Perfect Sampling via Coupling from the Past 293
22.4. The Hardcore Model 294
22.5. Random State of an Unknown Markov Chain 296
Exercise 297
Notes 297

Chapter 23. Open Problems 299
23.1. The Ising Model 299
23.2. Cutoff 300
23.3. Other Problems 301

Appendix A. Background Material 303
A.1. Probability Spaces and Random Variables 303
A.2. Metric Spaces 308
A.3. Linear Algebra 308
A.4. Miscellaneous 309

Appendix B. Introduction to Simulation 311
B.1. What Is Simulation? 311
B.2. Von Neumann Unbiasing* 312
B.3. Simulating Discrete Distributions and Sampling 313
B.4. Inverse Distribution Function Method 314
B.5. Acceptance-Rejection Sampling 314
B.6. Simulating Normal Random Variables 317
B.7. Sampling from the Simplex 318
B.8. About Random Numbers 318
B.9. Sampling from Large Sets* 319
Exercises 322
Notes 325

Appendix C. Solutions to Selected Exercises 327

Bibliography 353

Notation Index 363

Index 365





Preface

Markov first studied the stochastic processes that came to be named after him
in 1906. Approximately a century later, there is an active and diverse interdisci-
plinary community of researchers using Markov chains in computer science, physics,
statistics, bioinformatics, engineering, and many other areas.

The classical theory of Markov chains studied fixed chains, and the goal was
to estimate the rate of convergence to stationarity of the distribution at time t, as
t → ∞. In the past two decades, as interest in chains with large state spaces has
increased, a different asymptotic analysis has emerged. Some target distance to
the stationary distribution is prescribed; the number of steps required to reach this
target is called the mixing time of the chain. Now, the goal is to understand how
the mixing time grows as the size of the state space increases.

The modern theory of Markov chain mixing is the result of the convergence, in
the 1980’s and 1990’s, of several threads. (We mention only a few names here; see
the chapter Notes for references.)

For statistical physicists Markov chains become useful in Monte Carlo simu-
lation, especially for models on finite grids. The mixing time can determine the
running time for simulation. However, Markov chains are used not only for sim-
ulation and sampling purposes, but also as models of dynamical processes. Deep
connections were found between rapid mixing and spatial properties of spin systems,
e.g., by Dobrushin, Shlosman, Stroock, Zegarlinski, Martinelli, and Olivieri.

In theoretical computer science, Markov chains play a key role in sampling and
approximate counting algorithms. Often the goal was to prove that the mixing
time is polynomial in the logarithm of the state space size. (In this book, we are
generally interested in more precise asymptotics.)

At the same time, mathematicians including Aldous and Diaconis were inten-
sively studying card shuffling and other random walks on groups. Both spectral
methods and probabilistic techniques, such as coupling, played important roles.
Alon and Milman, Jerrum and Sinclair, and Lawler and Sokal elucidated the con-
nection between eigenvalues and expansion properties. Ingenious constructions of
“expander” graphs (on which random walks mix especially fast) were found using
probability, representation theory, and number theory.

In the 1990’s there was substantial interaction between these communities, as
computer scientists studied spin systems and as ideas from physics were used for
sampling combinatorial structures. Using the geometry of the underlying graph to
find (or exclude) bottlenecks played a key role in many results.

There are many methods for determining the asymptotics of convergence to
stationarity as a function of the state space size and geometry. We hope to present
these exciting developments in an accessible way.

xi



xii PREFACE

We will only give a taste of the applications to computer science and statistical
physics; our focus will be on the common underlying mathematics. The prerequi-
sites are all at the undergraduate level. We will draw primarily on probability and
linear algebra, but we will also use the theory of groups and tools from analysis
when appropriate.

Why should mathematicians study Markov chain convergence? First of all, it is
a lively and central part of modern probability theory. But there are ties to several
other mathematical areas as well. The behavior of the random walk on a graph
reveals features of the graph’s geometry. Many phenomena that can be observed in
the setting of finite graphs also occur in differential geometry. Indeed, the two fields
enjoy active cross-fertilization, with ideas in each playing useful roles in the other.
Reversible finite Markov chains can be viewed as resistor networks; the resulting
discrete potential theory has strong connections with classical potential theory. It
is amusing to interpret random walks on the symmetric group as card shuffles—and
real shuffles have inspired some extremely serious mathematics—but these chains
are closely tied to core areas in algebraic combinatorics and representation theory.

In the spring of 2005, mixing times of finite Markov chains were a major theme
of the multidisciplinary research program Probability, Algorithms, and Statistical
Physics, held at the Mathematical Sciences Research Institute. We began work on
this book there.

Overview

We have divided the book into two parts.
In Part I, the focus is on techniques, and the examples are illustrative and

accessible. Chapter 1 defines Markov chains and develops the conditions necessary
for the existence of a unique stationary distribution. Chapters 2 and 3 both cover
examples. In Chapter 2, they are either classical or useful—and generally both;
we include accounts of several chains, such as the gambler’s ruin and the coupon
collector, that come up throughout probability. In Chapter 3, we discuss Glauber
dynamics and the Metropolis algorithm in the context of “spin systems.” These
chains are important in statistical mechanics and theoretical computer science.

Chapter 4 proves that, under mild conditions, Markov chains do, in fact, con-
verge to their stationary distributions and defines total variation distance and
mixing time, the key tools for quantifying that convergence. The techniques of
Chapters 5, 6, and 7, on coupling, strong stationary times, and methods for lower
bounding distance from stationarity, respectively, are central to the area.

In Chapter 8, we pause to examine card shuffling chains. Random walks on the
symmetric group are an important mathematical area in their own right, but we
hope that readers will appreciate a rich class of examples appearing at this stage
in the exposition.

Chapter 9 describes the relationship between random walks on graphs and
electrical networks, while Chapters 10 and 11 discuss hitting times and cover times.

Chapter 12 introduces eigenvalue techniques and discusses the role of the re-
laxation time (the reciprocal of the spectral gap) in the mixing of the chain.

In Part II, we cover more sophisticated techniques and present several detailed
case studies of particular families of chains. Much of this material appears here for
the first time in textbook form.
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Chapter 13 covers advanced spectral techniques, including comparison of Dirich-
let forms and Wilson’s method for lower bounding mixing.

Chapters 14 and 15 cover some of the most important families of “large” chains
studied in computer science and statistical mechanics and some of the most impor-
tant methods used in their analysis. Chapter 14 introduces the path coupling
method, which is useful in both sampling and approximate counting. Chapter 15
looks at the Ising model on several different graphs, both above and below the
critical temperature.

Chapter 16 revisits shuffling, looking at two examples—one with an application
to genomics—whose analysis requires the spectral techniques of Chapter 13.

Chapter 17 begins with a brief introduction to martingales and then presents
some applications of the evolving sets process.

Chapter 18 considers the cutoff phenomenon. For many families of chains where
we can prove sharp upper and lower bounds on mixing time, the distance from
stationarity drops from near 1 to near 0 over an interval asymptotically smaller
than the mixing time. Understanding why cutoff is so common for families of
interest is a central question.

Chapter 19, on lamplighter chains, brings together methods presented through-
out the book. There are many bounds relating parameters of lamplighter chains
to parameters of the original chain: for example, the mixing time of a lamplighter
chain is of the same order as the cover time of the base chain.

Chapters 20 and 21 introduce two well-studied variants on finite discrete time
Markov chains: continuous time chains and chains with countable state spaces.
In both cases we draw connections with aspects of the mixing behavior of finite
discrete-time Markov chains.

Chapter 22, written by Propp and Wilson, describes the remarkable construc-
tion of coupling from the past, which can provide exact samples from the stationary
distribution.

Chapter 23 closes the book with a list of open problems connected to material
covered in the book.

For the Reader

Starred sections contain material that either digresses from the main subject
matter of the book or is more sophisticated than what precedes them and may be
omitted.

Exercises are found at the ends of chapters. Some (especially those whose
results are applied in the text) have solutions at the back of the book. We of course
encourage you to try them yourself first!

The Notes at the ends of chapters include references to original papers, sugges-
tions for further reading, and occasionally “complements.” These generally contain
related material not required elsewhere in the book—sharper versions of lemmas or
results that require somewhat greater prerequisites.

The Notation Index at the end of the book lists many recurring symbols.
Much of the book is organized by method, rather than by example. The reader

may notice that, in the course of illustrating techniques, we return again and again
to certain families of chains—random walks on tori and hypercubes, simple card
shuffles, proper colorings of graphs. In our defense we offer an anecdote.



xiv PREFACE

In 1991 one of us (Y. Peres) arrived as a postdoc at Yale and visited Shizuo
Kakutani, whose rather large office was full of books and papers, with bookcases
and boxes from floor to ceiling. A narrow path led from the door to Kakutani’s desk,
which was also overflowing with papers. Kakutani admitted that he sometimes had
difficulty locating particular papers, but he proudly explained that he had found a
way to solve the problem. He would make four or five copies of any really interesting
paper and put them in different corners of the office. When searching, he would be
sure to find at least one of the copies. . . .

Cross-references in the text and the Index should help you track earlier occur-
rences of an example. You may also find the chapter dependency diagrams below
useful.

We have included brief accounts of some background material in Appendix A.
These are intended primarily to set terminology and notation, and we hope you
will consult suitable textbooks for unfamiliar material.

Be aware that we occasionally write symbols representing a real number when
an integer is required (see, e.g., the

(
n
δk

)
’s in the proof of Proposition 13.31). We

hope the reader will realize that this omission of floor or ceiling brackets (and the
details of analyzing the resulting perturbations) is in her or his best interest as
much as it is in ours.

For the Instructor

The prerequisites this book demands are a first course in probability, linear
algebra, and, inevitably, a certain degree of mathematical maturity. When intro-
ducing material which is standard in other undergraduate courses—e.g., groups—we
provide definitions, but often hope the reader has some prior experience with the
concepts.

In Part I, we have worked hard to keep the material accessible and engaging for
students. (Starred sections are more sophisticated and are not required for what
follows immediately; they can be omitted.)

Here are the dependencies among the chapters of Part I:

1 : M a r k o vC h a i n s 2 : C l a s s i c a lE x a m p l e s3 : M e t r o p o l i sa n d G l a u b e r 4 : M i x i n g 5 : C o u p l i n g
6 : S t r o n gS t a t i o n a r y T i m e s 7 : L o w e rB o u n d s 8 : S h u f fl i n g

9 : N e t w o r k s 1 0 : H i t t i n gT i m e s 1 1 : C o v e rT i m e s
1 2 : E i g e n v a l u e s

Chapters 1 through 7, shown in gray, form the core material, but there are
several ways to proceed afterwards. Chapter 8 on shuffling gives an early rich
application but is not required for the rest of Part I. A course with a probabilistic
focus might cover Chapters 9, 10, and 11. To emphasize spectral methods and
combinatorics, cover Chapters 8 and 12 and perhaps continue on to Chapters 13
and 17.



FOR THE INSTRUCTOR xv1 : M a r k o vC h a i n s 2 : C l a s s i c a lE x a m p l e s3 : M e t r o p o l i sa n d G l a u b e r 4 : M i x i n g5 : C o u p l i n g 6 : S t r o n gS t a t i o n a r y T i m e s
7 : L o w e rB o u n d s8 : S h u f fl i n g

9 : N e t w o r k s
1 0 : H i t t i n gT i m e s1 1 : C o v e rT i m e s1 2 : E i g e n v a l u e s1 3 : E i g e n f u n c t i o n sa n d C o m p a r i s o n1 4 : P a t h C o u p l i n g

1 5 : I s i n gM o d e l 1 6 : S h u f fl i n gG e n e s 1 7 : M a r t i n g a l e s 1 8 : C u t o f f 1 9 : L a m p l i g h t e r2 0 : C o n t i n u o u s T i m e

2 1 : C o u n t a b l eS t a t e S p a c e

2 2 : C o u p l i n gf r o m t h e P a s t
The logical dependencies of chapters. The core Chapters 1
through 7 are in dark gray, the rest of Part I is in light gray,
and Part II is in white.

While our primary focus is on chains with finite state spaces run in discrete time,
continuous-time and countable-state-space chains are both discussed—in Chapters
20 and 21, respectively.

We have also included Appendix B, an introduction to simulation methods, to
help motivate the study of Markov chains for students with more applied interests.
A course leaning towards theoretical computer science and/or statistical mechan-
ics might start with Appendix B, cover the core material, and then move on to
Chapters 14, 15, and 22.

Of course, depending on the interests of the instructor and the ambitions and
abilities of the students, any of the material can be taught! Above we include
a full diagram of dependencies of chapters. Its tangled nature results from the
interconnectedness of the area: a given technique can be applied in many situations,
while a particular problem may require several techniques for full analysis.
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For the Expert

Several other recent books treat Markov chain mixing. Our account is more
comprehensive than those of Häggström (2002), Jerrum (2003), or Montenegro and
Tetali (2006), yet not as exhaustive as Aldous and Fill (1999). Norris (1998) gives
an introduction to Markov chains and their applications, but does not focus on mix-
ing. Since this is a textbook, we have aimed for accessibility and comprehensibility,
particularly in Part I.

What is different or novel in our approach to this material?

– Our approach is probabilistic whenever possible. We introduce the ran-
dom mapping representation of chains early and use it in formalizing ran-
domized stopping times and in discussing grand coupling and evolving
sets. We also integrate “classical” material on networks, hitting times,
and cover times and demonstrate its usefulness for bounding mixing times.

– We provide an introduction to several major statistical mechanics models,
most notably the Ising model, and collect results on them in one place.

– We give expository accounts of several modern techniques and examples,
including evolving sets, the cutoff phenomenon, lamplighter chains, and
the L-reversal chain.

– We systematically treat lower bounding techniques, including several ap-
plications of Wilson’s method.

– We use the transportation metric to unify our account of path coupling
and draw connections with earlier history.

– We present an exposition of coupling from the past by Propp and Wilson,
the originators of the method.
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Part I: Basic Methods and Examples

Everything should be made as simple as possible, but not simpler.

–Paraphrase of a quotation from Einstein (1934).





CHAPTER 1

Introduction to Finite Markov Chains

1.1. Finite Markov Chains

A finite Markov chain is a process which moves among the elements of a finite
set Ω in the following manner: when at x ∈ Ω, the next position is chosen according
to a fixed probability distribution P (x, ·). More precisely, a sequence of random
variables (X0, X1, . . .) is a Markov chain with state space Ω and transition

matrix P if for all x, y ∈ Ω, all t ≥ 1, and all events Ht−1 =
⋂t−1
s=0{Xs = xs}

satisfying P(Ht−1 ∩ {Xt = x}) > 0, we have

P {Xt+1 = y | Ht−1 ∩ {Xt = x} } = P {Xt+1 = y | Xt = x} = P (x, y). (1.1)

Equation (1.1), often called the Markov property , means that the conditional
probability of proceeding from state x to state y is the same, no matter what
sequence x0, x1, . . . , xt−1 of states precedes the current state x. This is exactly why
the |Ω| × |Ω| matrix P suffices to describe the transitions.

The x-th row of P is the distribution P (x, ·). Thus P is stochastic, that is,
its entries are all non-negative and

∑

y∈Ω

P (x, y) = 1 for all x ∈ Ω.

Example 1.1. A certain frog lives in a pond with two lily pads, east and west.
A long time ago, he found two coins at the bottom of the pond and brought one
up to each lily pad. Every morning, the frog decides whether to jump by tossing
the current lily pad’s coin. If the coin lands heads up, the frog jumps to the other
lily pad. If the coin lands tails up, he remains where he is.

Let Ω = {e, w}, and let (X0, X1, . . . ) be the sequence of lily pads occupied by
the frog on Sunday, Monday, . . .. Given the source of the coins, we should not
assume that they are fair! Say the coin on the east pad has probability p of landing

Figure 1.1. A randomly jumping frog. Whenever he tosses heads,
he jumps to the other lily pad.

3
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Figure 1.2. The probability of being on the east pad (started
from the east pad) plotted versus time for (a) p = q = 1/2, (b)
p = 0.2 and q = 0.1, (c) p = 0.95 and q = 0.7. The long-term
limiting probabilities are 1/2, 1/3, and 14/33 ≈ 0.42, respectively.

heads up, while the coin on the west pad has probability q of landing heads up.
The frog’s rules for jumping imply that if we set

P =

(
P (e, e) P (e, w)
P (w, e) P (w,w)

)
=

(
1− p p
q 1− q

)
, (1.2)

then (X0, X1, . . . ) is a Markov chain with transition matrix P . Note that the first
row of P is the conditional distribution of Xt+1 given that Xt = e, while the second
row is the conditional distribution of Xt+1 given that Xt = w.

Assume that the frog spends Sunday on the east pad. When he awakens Mon-
day, he has probability p of moving to the west pad and probability 1−p of staying
on the east pad. That is,

P{X1 = e | X0 = e} = 1− p, P{X1 = w | X0 = e} = p. (1.3)

What happens Tuesday? By considering the two possibilities for X1, we see that

P{X2 = e | X0 = e} = (1− p)(1− p) + pq (1.4)

and

P{X2 = w | X0 = e} = (1 − p)p+ p(1− q). (1.5)

While we could keep writing out formulas like (1.4) and (1.5), there is a more
systematic approach. We can store our distribution information in a row vector

µt := (P{Xt = e | X0 = e}, P{Xt = w | X0 = e}) .
Our assumption that the frog starts on the east pad can now be written as µ0 =
(1, 0), while (1.3) becomes µ1 = µ0P .

Multiplying by P on the right updates the distribution by another step:

µt = µt−1P for all t ≥ 1. (1.6)

Indeed, for any initial distribution µ0,

µt = µ0P
t for all t ≥ 0. (1.7)

How does the distribution µt behave in the long term? Figure 1.2 suggests that
µt has a limit π (whose value depends on p and q) as t → ∞. Any such limit
distribution π must satisfy

π = πP,
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which implies (after a little algebra) that

π(e) =
q

p+ q
, π(w) =

p

p+ q
.

If we define

∆t = µt(e)−
q

p+ q
for all t ≥ 0,

then by the definition of µt+1 the sequence (∆t) satisfies

∆t+1 = µt(e)(1 − p) + (1− µt(e))(q)−
q

p+ q
= (1− p− q)∆t. (1.8)

We conclude that when 0 < p < 1 and 0 < q < 1,

lim
t→∞

µt(e) =
q

p+ q
and lim

t→∞
µt(w) =

p

p+ q
(1.9)

for any initial distribution µ0. As we suspected, µt approaches π as t→∞.

Remark 1.2. The traditional theory of finite Markov chains is concerned with
convergence statements of the type seen in (1.9), that is, with the rate of conver-
gence as t → ∞ for a fixed chain. Note that 1 − p − q is an eigenvalue of the
frog’s transition matrix P . Note also that this eigenvalue determines the rate of
convergence in (1.9), since by (1.8) we have

∆t = (1− p− q)t∆0.

The computations we just did for a two-state chain generalize to any finite
Markov chain. In particular, the distribution at time t can be found by matrix
multiplication. Let (X0, X1, . . . ) be a finite Markov chain with state space Ω and
transition matrix P , and let the row vector µt be the distribution of Xt:

µt(x) = P{Xt = x} for all x ∈ Ω.

By conditioning on the possible predecessors of the (t+ 1)-st state, we see that

µt+1(y) =
∑

x∈Ω

P{Xt = x}P (x, y) =
∑

x∈Ω

µt(x)P (x, y) for all y ∈ Ω.

Rewriting this in vector form gives

µt+1 = µtP for t ≥ 0

and hence

µt = µ0P
t for t ≥ 0. (1.10)

Since we will often consider Markov chains with the same transition matrix but
different starting distributions, we introduce the notation Pµ and Eµ for probabil-
ities and expectations given that µ0 = µ. Most often, the initial distribution will
be concentrated at a single definite starting state x. We denote this distribution
by δx:

δx(y) =

{
1 if y = x,

0 if y 6= x.

We write simply Px and Ex for Pδx and Eδx , respectively.
These definitions and (1.10) together imply that

Px{Xt = y} = (δxP
t)(y) = P t(x, y).
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Figure 1.3. Random walk on Z10 is periodic, since every step
goes from an even state to an odd state, or vice-versa. Random
walk on Z9 is aperiodic.

That is, the probability of moving in t steps from x to y is given by the (x, y)-th
entry of P t. We call these entries the t-step transition probabilities.

Notation. A probability distribution µ on Ω will be identified with a row
vector. For any event A ⊂ Ω, we write

π(A) =
∑

x∈A
µ(x).

For x ∈ Ω, the row of P indexed by x will be denoted by P (x, ·).
Remark 1.3. The way we constructed the matrix P has forced us to treat

distributions as row vectors. In general, if the chain has distribution µ at time t,
then it has distribution µP at time t + 1. Multiplying a row vector by P on the
right takes you from today’s distribution to tomorrow’s distribution.

What if we multiply a column vector f by P on the left? Think of f as a
function on the state space Ω (for the frog of Example 1.1, we might take f(x) to
be the area of the lily pad x). Consider the x-th entry of the resulting vector:

Pf(x) =
∑

y

P (x, y)f(y) =
∑

y

f(y)Px{X1 = y} = Ex(f(X1)).

That is, the x-th entry of Pf tells us the expected value of the function f at
tomorrow’s state, given that we are at state x today. Multiplying a column vector
by P on the left takes us from a function on the state space to the expected value of
that function tomorrow.

1.2. Random Mapping Representation

We begin this section with an example.

Example 1.4 (Random walk on the n-cycle). Let Ω = Zn = {0, 1, . . . , n− 1},
the set of remainders modulo n. Consider the transition matrix

P (j, k) =





1/2 if k ≡ j + 1 (mod n),

1/2 if k ≡ j − 1 (mod n),

0 otherwise.

(1.11)

The associated Markov chain (Xt) is called random walk on the n-cycle. The
states can be envisioned as equally spaced dots arranged in a circle (see Figure 1.3).
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Rather than writing down the transition matrix in (1.11), this chain can be
specified simply in words: at each step, a coin is tossed. If the coin lands heads up,
the walk moves one step clockwise. If the coin lands tails up, the walk moves one
step counterclockwise.

More precisely, suppose that Z is a random variable which is equally likely to
take on the values −1 and +1. If the current state of the chain is j ∈ Zn, then the
next state is j + Z mod n. For any k ∈ Zn,

P{(j + Z) mod n = k} = P (j, k).

In other words, the distribution of (j + Z) mod n equals P (j, ·).
A random mapping representation of a transition matrix P on state space

Ω is a function f : Ω×Λ→ Ω, along with a Λ-valued random variable Z, satisfying

P{f(x, Z) = y} = P (x, y).

The reader should check that if Z1, Z2, . . . is a sequence of independent random
variables, each having the same distribution as Z, and X0 has distribution µ, then
the sequence (X0, X1, . . . ) defined by

Xn = f(Xn−1, Zn) for n ≥ 1

is a Markov chain with transition matrix P and initial distribution µ.
For the example of the simple random walk on the cycle, setting Λ = {1,−1},

each Zi uniform on Λ, and f(x, z) = x+ z mod n yields a random mapping repre-
sentation.

Proposition 1.5. Every transition matrix on a finite state space has a random
mapping representation.

Proof. Let P be the transition matrix of a Markov chain with state space
Ω = {x1, . . . , xn}. Take Λ = [0, 1]; our auxiliary random variables Z,Z1, Z2, . . .

will be uniformly chosen in this interval. Set Fj,k =
∑k

i=1 P (xj , xi) and define

f(xj , z) := xk when Fj,k−1 < z ≤ Fj,k.

We have

P{f(xj , Z) = xk} = P{Fj,k−1 < Z ≤ Fj,k} = P (xj , xk).

�

Note that, unlike transition matrices, random mapping representations are far
from unique. For instance, replacing the function f(x, z) in the proof of Proposition
1.5 with f(x, 1− z) yields a different representation of the same transition matrix.

Random mapping representations are crucial for simulating large chains. They
can also be the most convenient way to describe a chain. We will often give rules for
how a chain proceeds from state to state, using some extra randomness to determine
where to go next; such discussions are implicit random mapping representations.
Finally, random mapping representations provide a way to coordinate two (or more)
chain trajectories, as we can simply use the same sequence of auxiliary random
variables to determine updates. This technique will be exploited in Chapter 5, on
coupling Markov chain trajectories, and elsewhere.
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1.3. Irreducibility and Aperiodicity

We now make note of two simple properties possessed by most interesting
chains. Both will turn out to be necessary for the Convergence Theorem (The-
orem 4.9) to be true.

A chain P is called irreducible if for any two states x, y ∈ Ω there exists an
integer t (possibly depending on x and y) such that P t(x, y) > 0. This means
that it is possible to get from any state to any other state using only transitions of
positive probability. We will generally assume that the chains under discussion are
irreducible. (Checking that specific chains are irreducible can be quite interesting;
see, for instance, Section 2.6 and Example B.5. See Section 1.7 for a discussion of
all the ways in which a Markov chain can fail to be irreducible.)

Let T (x) := {t ≥ 1 : P t(x, x) > 0} be the set of times when it is possible for
the chain to return to starting position x. The period of state x is defined to be
the greatest common divisor of T (x).

Lemma 1.6. If P is irreducible, then gcd T (x) = gcdT (y) for all x, y ∈ Ω.

Proof. Fix two states x and y. There exist non-negative integers r and ℓ such
that P r(x, y) > 0 and P ℓ(y, x) > 0. Letting m = r+ℓ, we havem ∈ T (x)∩T (y) and
T (x) ⊂ T (y)−m, whence gcdT (y) divides all elements of T (x). We conclude that
gcdT (y) ≤ gcd T (x). By an entirely parallel argument, gcdT (x) ≤ gcdT (y). �

For an irreducible chain, the period of the chain is defined to be the period
which is common to all states. The chain will be called aperiodic if all states have
period 1. If a chain is not aperiodic, we call it periodic.

Proposition 1.7. If P is aperiodic and irreducible, then there is an integer r
such that P r(x, y) > 0 for all x, y ∈ Ω.

Proof. We use the following number-theoretic fact: any set of non-negative
integers which is closed under addition and which has greatest common divisor 1
must contain all but finitely many of the non-negative integers. (See Lemma 1.27
in the Notes of this chapter for a proof.) For x ∈ Ω, recall that T (x) = {t ≥ 1 :
P t(x, x) > 0}. Since the chain is aperiodic, the gcd of T (x) is 1. The set T (x)
is closed under addition: if s, t ∈ T (x), then P s+t(x, x) ≥ P s(x, x)P t(x, x) > 0,
and hence s + t ∈ T (x). Therefore there exists a t(x) such that t ≥ t(x) implies
t ∈ T (x). By irreducibility we know that for any y ∈ Ω there exists r = r(x, y)
such that P r(x, y) > 0. Therefore, for t ≥ t(x) + r,

P t(x, y) ≥ P t−r(x, x)P r(x, y) > 0.

For t ≥ t′(x) := t(x) + maxy∈Ω r(x, y), we have P t(x, y) > 0 for all y ∈ Ω. Finally,
if t ≥ maxx∈Ω t

′(x), then P t(x, y) > 0 for all x, y ∈ Ω. �

Suppose that a chain is irreducible with period two, e.g. the simple random walk
on a cycle of even length (see Figure 1.3). The state space Ω can be partitioned into
two classes, say even and odd , such that the chain makes transitions only between
states in complementary classes. (Exercise 1.6 examines chains with period b.)

Let P have period two, and suppose that x0 is an even state. The probability
distribution of the chain after 2t steps, P 2t(x0, ·), is supported on even states,
while the distribution of the chain after 2t+ 1 steps is supported on odd states. It
is evident that we cannot expect the distribution P t(x0, ·) to converge as t→∞.
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Fortunately, a simple modification can repair periodicity problems. Given an
arbitrary transition matrix P , let Q = I+P

2 (here I is the |Ω|× |Ω| identity matrix).
(One can imagine simulating Q as follows: at each time step, flip a fair coin. If it
comes up heads, take a step in P ; if tails, then stay at the current state.) Since
Q(x, x) > 0 for all x ∈ Ω, the transition matrix Q is aperiodic. We call Q a lazy

version of P . It will often be convenient to analyze lazy versions of chains.

Example 1.8 (The n-cycle, revisited). Recall random walk on the n-cycle,
defined in Example 1.4. For every n ≥ 1, random walk on the n-cycle is irreducible.

Random walk on any even-length cycle is periodic, since gcd{t : P t(x, x) >
0} = 2 (see Figure 1.3). Random walk on an odd-length cycle is aperiodic.

The transition matrix Q for lazy random walk on the n-cycle is

Q(j, k) =





1/4 if k ≡ j + 1 (mod n),

1/2 if k ≡ j (mod n),

1/4 if k ≡ j − 1 (mod n),

0 otherwise.

(1.12)

Lazy random walk on the n-cycle is both irreducible and aperiodic for every n.

Remark 1.9. Establishing that a Markov chain is irreducible is not always
trivial; see Example B.5, and also Thurston (1990).

1.4. Random Walks on Graphs

Random walk on the n-cycle, which is shown in Figure 1.3, is a simple case of
an important type of Markov chain.

A graph G = (V,E) consists of a vertex set V and an edge set E, where
the elements of E are unordered pairs of vertices: E ⊂ {{x, y} : x, y ∈ V, x 6= y}.
We can think of V as a set of dots, where two dots x and y are joined by a line if
and only if {x, y} is an element of the edge set. When {x, y} ∈ E, we write x ∼ y
and say that y is a neighbor of x (and also that x is a neighbor of y). The degree

deg(x) of a vertex x is the number of neighbors of x.
Given a graph G = (V,E), we can define simple random walk on G to be

the Markov chain with state space V and transition matrix

P (x, y) =

{
1

deg(x) if y ∼ x,
0 otherwise.

(1.13)

That is to say, when the chain is at vertex x, it examines all the neighbors of x,
picks one uniformly at random, and moves to the chosen vertex.

Example 1.10. Consider the graph G shown in Figure 1.4. The transition
matrix of simple random walk on G is

P =




0 1
2

1
2 0 0

1
3 0 1

3
1
3 0

1
4

1
4 0 1

4
1
4

0 1
2

1
2 0 0

0 0 1 0 0



.
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1

2

3

4

5

Figure 1.4. An example of a graph with vertex set {1, 2, 3, 4, 5}
and 6 edges.

Remark 1.11. We have chosen a narrow definition of “graph” for simplicity.
It is sometimes useful to allow edges connecting a vertex to itself, called loops. It
is also sometimes useful to allow multiple edges connecting a single pair of vertices.
Loops and multiple edges both contribute to the degree of a vertex and are counted
as options when a simple random walk chooses a direction. See Section 6.5.1 for an
example.

We will have much more to say about random walks on graphs throughout this
book—but especially in Chapter 9.

1.5. Stationary Distributions

1.5.1. Definition. We saw in Example 1.1 that a distribution π on Ω satis-
fying

π = πP (1.14)

can have another interesting property: in that case, π was the long-term limiting
distribution of the chain. We call a probability π satisfying (1.14) a stationary

distribution of the Markov chain. Clearly, if π is a stationary distribution and
µ0 = π (i.e. the chain is started in a stationary distribution), then µt = π for all
t ≥ 0.

Note that we can also write (1.14) elementwise. An equivalent formulation is

π(y) =
∑

x∈Ω

π(x)P (x, y) for all y ∈ Ω. (1.15)

Example 1.12. Consider simple random walk on a graph G = (V,E). For any
vertex y ∈ V ,

∑

x∈V
deg(x)P (x, y) =

∑

x∼y

deg(x)

deg(x)
= deg(y). (1.16)

To get a probability, we simply normalize by
∑
y∈V deg(y) = 2|E| (a fact the reader

should check). We conclude that the probability measure

π(y) =
deg(y)

2|E| for all y ∈ Ω,

which is proportional to the degrees, is always a stationary distribution for the
walk. For the graph in Figure 1.4,

π =
(

2
12 ,

3
12 ,

4
12 ,

2
12 ,

1
12

)
.
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If G has the property that every vertex has the same degree d, we call G d-regular .
In this case 2|E| = d|V | and the uniform distribution π(y) = 1/|V | for every y ∈ V
is stationary.

A central goal of this chapter and of Chapter 4 is to prove a general yet precise
version of the statement that “finite Markov chains converge to their stationary
distributions.” Before we can analyze the time required to be close to stationar-
ity, we must be sure that it is finite! In this section we show that, under mild
restrictions, stationary distributions exist and are unique. Our strategy of building
a candidate distribution, then verifying that it has the necessary properties, may
seem cumbersome. However, the tools we construct here will be applied in many
other places. In Section 4.3, we will show that irreducible and aperiodic chains do,
in fact, converge to their stationary distributions in a precise sense.

1.5.2. Hitting and first return times. Throughout this section, we assume
that the Markov chain (X0, X1, . . . ) under discussion has finite state space Ω and
transition matrix P . For x ∈ Ω, define the hitting time for x to be

τx := min{t ≥ 0 : Xt = x},

the first time at which the chain visits state x. For situations where only a visit to
x at a positive time will do, we also define

τ+
x := min{t ≥ 1 : Xt = x}.

When X0 = x, we call τ+
x the first return time.

Lemma 1.13. For any states x and y of an irreducible chain, Ex(τ
+
y ) <∞.

Proof. The definition of irreducibility implies that there exist an integer r > 0
and a real ε > 0 with the following property: for any states z, w ∈ Ω, there exists a
j ≤ r with P j(z, w) > ε. Thus for any value of Xt, the probability of hitting state
y at a time between t and t+ r is at least ε. Hence for k > 0 we have

Px{τ+
y > kr} ≤ (1− ε)Px{τ+

y > (k − 1)r}. (1.17)

Repeated application of (1.17) yields

Px{τ+
y > kr} ≤ (1− ε)k. (1.18)

Recall that when Y is a non-negative integer-valued random variable, we have

E(Y ) =
∑

t≥0

P{Y > t}.

Since Px{τ+
y > t} is a decreasing function of t, (1.18) suffices to bound all terms of

the corresponding expression for Ex(τ
+
y ):

Ex(τ
+
y ) =

∑

t≥0

Px{τ+
y > t} ≤

∑

k≥0

rPx{τ+
y > kr} ≤ r

∑

k≥0

(1− ε)k <∞.

�
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1.5.3. Existence of a stationary distribution. The Convergence Theo-
rem (Theorem 4.9 below) implies that the “long-term” fractions of time a finite
irreducible aperiodic Markov chain spends in each state coincide with the chain’s
stationary distribution. However, we have not yet demonstrated that stationary
distributions exist! To build a candidate distribution, we consider a sojourn of the
chain from some arbitrary state z back to z. Since visits to z break up the trajec-
tory of the chain into identically distributed segments, it should not be surprising
that the average fraction of time per segment spent in each state y coincides with
the “long-term” fraction of time spent in y.

Proposition 1.14. Let P be the transition matrix of an irreducible Markov
chain. Then

(i) there exists a probability distribution π on Ω such that π = πP and π(x) > 0
for all x ∈ Ω, and moreover,

(ii) π(x) = 1
Ex(τ+

x )
.

Remark 1.15. We will see in Section 1.7 that existence of π does not need
irreducibility, but positivity does.

Proof. Let z ∈ Ω be an arbitrary state of the Markov chain. We will closely
examine the time the chain spends, on average, at each state in between visits to
z. Hence define

π̃(y) := Ez(number of visits to y before returning to z)

=

∞∑

t=0

Pz{Xt = y, τ+
z > t}. (1.19)

For any state y, we have π̃(y) ≤ Ezτ
+
z . Hence Lemma 1.13 ensures that π̃(y) <∞

for all y ∈ Ω. We check that π̃ is stationary, starting from the definition:

∑

x∈Ω

π̃(x)P (x, y) =
∑

x∈Ω

∞∑

t=0

Pz{Xt = x, τ+
z > t}P (x, y). (1.20)

Because the event {τ+
z ≥ t+ 1} = {τ+

z > t} is determined by X0, . . . , Xt,

Pz{Xt = x, Xt+1 = y, τ+
z ≥ t+ 1} = Pz{Xt = x, τ+

z ≥ t+ 1}P (x, y). (1.21)

Reversing the order of summation in (1.20) and using the identity (1.21) shows that

∑

x∈Ω

π̃(x)P (x, y) =

∞∑

t=0

Pz{Xt+1 = y, τ+
z ≥ t+ 1}

=
∞∑

t=1

Pz{Xt = y, τ+
z ≥ t}. (1.22)
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The expression in (1.22) is very similar to (1.19), so we are almost done. In fact,
∞∑

t=1

Pz{Xt = y, τ+
z ≥ t}

= π̃(y)−Pz{X0 = y, τ+
z > 0}+

∞∑

t=1

Pz{Xt = y, τ+
z = t}

= π̃(y)−Pz{X0 = y}+ Pz{Xτ+
z

= y}. (1.23)

= π̃(y). (1.24)

The equality (1.24) follows by considering two cases:

y = z: Since X0 = z and Xτ+
z

= z, the last two terms of (1.23) are both 1, and
they cancel each other out.

y 6= z: Here both terms of (1.23) are 0.

Therefore, combining (1.22) with (1.24) shows that π̃ = π̃P .
Finally, to get a probability measure, we normalize by

∑
x π̃(x) = Ez(τ

+
z ):

π(x) =
π̃(x)

Ez(τ
+
z )

satisfies π = πP. (1.25)

In particular, for any x ∈ Ω,

π(x) =
1

Ex(τ
+
x )
. (1.26)

�

The computation at the heart of the proof of Proposition 1.14 can be general-
ized. A stopping time τ for (Xt) is a {0, 1, . . . , } ∪ {∞}-valued random variable
such that, for each t, the event {τ = t} is determined by X0, . . . , Xt. (Stopping
times are discussed in detail in Section 6.2.1.) If a stopping time τ replaces τ+

z in
the definition (1.19) of π̃, then the proof that π̃ satisfies π̃ = π̃P works, provided
that τ satisfies both Pz{τ <∞} = 1 and Pz{Xτ = z} = 1.

If τ is a stopping time, then an immediate consequence of the definition and
the Markov property is

Px0{(Xτ+1, Xτ+2, . . . , Xℓ) ∈ A | τ = k and (X1, . . . , Xk) = (x1, . . . , xk)}
= Pxk

{(X1, . . . , Xℓ) ∈ A}, (1.27)

for any A ⊂ Ωℓ. This is referred to as the strong Markov property . Informally,
we say that the chain “starts afresh” at a stopping time. While this is an easy fact
for countable state space, discrete-time Markov chains, establishing it for processes
in the continuum is more subtle.

1.5.4. Uniqueness of the stationary distribution. Earlier this chapter we
pointed out the difference between multiplying a row vector by P on the right and
a column vector by P on the left: the former advances a distribution by one step
of the chain, while the latter gives the expectation of a function on states, one step
of the chain later. We call distributions invariant under right multiplication by P
stationary . What about functions that are invariant under left multiplication?

Call a function h : Ω→ R harmonic at x if

h(x) =
∑

y∈Ω

P (x, y)h(y). (1.28)
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A function is harmonic on D ⊂ Ω if it is harmonic at every state x ∈ D. If h is
regarded as a column vector, then a function which is harmonic on all of Ω satisfies
the matrix equation Ph = h.

Lemma 1.16. Suppose that P is irreducible. A function h which is harmonic
at every point of Ω is constant.

Proof. Since Ω is finite, there must be a state x0 such that h(x0) = M is
maximal. If for some state z such that P (x0, z) > 0 we have h(z) < M , then

h(x0) = P (x0, z)h(z) +
∑

y 6=z
P (x0, y)h(y) < M, (1.29)

a contradiction. It follows that h(z) = M for all states z such that P (x0, z) > 0.
For any y ∈ Ω, irreducibility implies that there is a sequence x0, x1, . . . , xn = y

with P (xi, xi+1) > 0. Repeating the argument above tells us that h(y) = h(xn−1) =
· · · = h(x0) = M . Thus h is constant. �

Corollary 1.17. Let P be the transition matrix of an irreducible Markov
chain. There exists a unique probability distribution π satisfying π = πP .

Proof. By Proposition 1.14 there exists at least one such measure. Lemma 1.16
implies that the kernel of P − I has dimension 1, so the column rank of P − I is
|Ω| − 1. Since the row rank of any square matrix is equal to its column rank, the
row-vector equation ν = νP also has a one-dimensional space of solutions. This
space contains only one vector whose entries sum to 1. �

Remark 1.18. Another proof of Corollary 1.17 follows from the Convergence
Theorem (Theorem 4.9, proved below). Another simple direct proof is suggested in
Exercise 1.13.

1.6. Reversibility and Time Reversals

Suppose a probability π on Ω satisfies

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω. (1.30)

The equations (1.30) are called the detailed balance equations.

Proposition 1.19. Let P be the transition matrix of a Markov chain with
state space Ω. Any distribution π satisfying the detailed balance equations (1.30) is
stationary for P .

Proof. Sum both sides of (1.30) over all y:
∑

y∈Ω

π(y)P (y, x) =
∑

y∈Ω

π(x)P (x, y) = π(x),

since P is stochastic. �

Checking detailed balance is often the simplest way to verify that a particular
distribution is stationary. Furthermore, when (1.30) holds,

π(x0)P (x0, x1) · · ·P (xn−1, xn) = π(xn)P (xn, xn−1) · · ·P (x1, x0). (1.31)

We can rewrite (1.31) in the following suggestive form:

Pπ{X0 = x0, . . . , Xn = xn} = Pπ{X0 = xn, X1 = xn−1, . . . , Xn = x0}. (1.32)
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In other words, if a chain (Xt) satisfies (1.30) and has stationary initial distribu-
tion, then the distribution of (X0, X1, . . . , Xn) is the same as the distribution of
(Xn, Xn−1, . . . , X0). For this reason, a chain satisfying (1.30) is called reversible.

Example 1.20. Consider the simple random walk on a graph G. We saw in
Example 1.12 that the distribution π(x) = deg(x)/2|E| is stationary.

Since

π(x)P (x, y) =
deg(x)

2|E|
1{x∼y}
deg(x)

=
1{x∼y}
2|E| = π(y)P (x, y),

the chain is reversible. (Note: here the notation 1A represents the indicator

function of a set A, for which 1A(a) = 1 if and only if a ∈ A; otherwise 1A(a) = 0.)

Example 1.21. Consider the biased random walk on the n-cycle: a parti-
cle moves clockwise with probability p and moves counterclockwise with probability
q = 1− p.

The stationary distribution remains uniform: if π(k) = 1/n, then
∑

j∈Zn

π(j)P (j, k) = π(k − 1)p+ π(k + 1)q =
1

n
,

whence π is the stationary distribution. However, if p 6= 1/2, then

π(k)P (k, k + 1) =
p

n
6= q

n
= π(k + 1)P (k + 1, k).

The time reversal of an irreducible Markov chain with transition matrix P
and stationary distribution π is the chain with matrix

P̂ (x, y) :=
π(y)P (y, x)

π(x)
. (1.33)

The stationary equation π = πP implies that P̂ is a stochastic matrix. Proposition
1.22 shows that the terminology “time reversal” is deserved.

Proposition 1.22. Let (Xt) be an irreducible Markov chain with transition

matrix P and stationary distribution π. Write (X̂t) for the time-reversed chain

with transition matrix P̂ . Then π is stationary for P̂ , and for any x0, . . . , xt ∈ Ω
we have

Pπ{X0 = x0, . . . , Xt = xt} = Pπ{X̂0 = xt, . . . , X̂t = x0}.

Proof. To check that π is stationary for P̂ , we simply compute

∑

y∈Ω

π(y)P̂ (y, x) =
∑

y∈Ω

π(y)
π(x)P (x, y)

π(y)
= π(x).

To show the probabilities of the two trajectories are equal, note that

Pπ{X0 = x0, . . . , Xn = xn} = π(x0)P (x0, x1)P (x1, x2) · · ·P (xn−1, xn)

= π(xn)P̂ (xn, xn−1) · · · P̂ (x2, x1)P̂ (x1, x0)

= Pπ{X̂0 = xn, . . . , X̂n = x0},

since P (xi−1, xi) = π(xi)P̂ (xi, xi−1)/π(xi−1) for each i. �

Observe that if a chain with transition matrix P is reversible, then P̂ = P .
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1.7. Classifying the States of a Markov Chain*

We will occasionally need to study chains which are not irreducible—see, for
instance, Sections 2.1, 2.2 and 2.4. In this section we describe a way to classify
the states of a Markov chain. This classification clarifies what can occur when
irreducibility fails.

Let P be the transition matrix of a Markov chain on a finite state space Ω.
Given x, y ∈ Ω, we say that y is accessible from x and write x→ y if there exists
an r > 0 such that P r(x, y) > 0. That is, x → y if it is possible for the chain to
move from x to y in a finite number of steps. Note that if x→ y and y → z, then
x→ z.

A state x ∈ Ω is called essential if for all y such that x → y it is also true
that y → x. A state x ∈ Ω is inessential if it is not essential.

We say that x communicates with y and write x ↔ y if and only if x → y
and y → x. The equivalence classes under ↔ are called communicating classes.
For x ∈ Ω, the communicating class of x is denoted by [x].

Observe that when P is irreducible, all the states of the chain lie in a single
communicating class.

Lemma 1.23. If x is an essential state and x→ y, then y is essential.

Proof. If y → z, then x→ z. Therefore, because x is essential, z → x, whence
z → y. �

It follows directly from the above lemma that the states in a single communi-
cating class are either all essential or all inessential. We can therefore classify the
communicating classes as either essential or inessential.

If [x] = {x} and x is inessential, then once the chain leaves x, it never returns.
If [x] = {x} and x is essential, then the chain never leaves x once it first visits x;
such states are called absorbing .

Lemma 1.24. Every finite chain has at least one essential class.

Proof. Define inductively a sequence (y0, y1, . . .) as follows: Fix an arbitrary
initial state y0. For k ≥ 1, given (y0, . . . , yk−1), if yk−1 is essential, stop. Otherwise,
find yk such that yk−1 → yk but yk 6→ yk−1.

There can be no repeated states in this sequence, because if j < k and yk → yj,
then yk → yk−1, a contradiction.

Since the state space is finite and the sequence cannot repeat elements, it must
eventually terminate in an essential state. �

Note that a transition matrix P restricted to an essential class [x] is stochastic.
That is,

∑
y∈[x] P (x, y) = 1, since P (x, z) = 0 for z 6∈ [x].

Proposition 1.25. If π is stationary for the finite transition matrix P , then
π(y0) = 0 for all inessential states y0.

Proof. Let C be an essential communicating class. Then

πP (C) =
∑

z∈C
(πP )(z) =

∑

z∈C


∑

y∈C
π(y)P (y, z) +

∑

y 6∈C
π(y)P (y, z)


 .
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Figure 1.5. The directed graph associated to a Markov chain. A
directed edge is placed between v and w if and only if P (v, w) > 0.
Here there is one essential class, which consists of the filled vertices.

We can interchange the order of summation in the first sum, obtaining

πP (C) =
∑

y∈C
π(y)

∑

z∈C
P (y, z) +

∑

z∈C

∑

y 6∈C
π(y)P (y, z).

For y ∈ C we have
∑
z∈C P (y, z) = 1, so

πP (C) = π(C) +
∑

z∈C

∑

y 6∈C
π(y)P (y, z). (1.34)

Since π is invariant, πP (C) = π(C). In view of (1.34) we must have π(y)P (y, z) = 0
for all y 6∈ C and z ∈ C.

Suppose that y0 is inessential. The proof of Lemma 1.24 shows that there is a se-
quence of states y0, y1, y2, . . . , yr satisfying P (yi−1, yi) > 0, the states y0, y1, . . . , yr−1

are inessential, and yr ∈ C, where C is an essential communicating class. Since
P (yr−1, yr) > 0 and we just proved that π(yr−1)P (yr−1, yr) = 0, it follows that
π(yr−1) = 0. If π(yk) = 0, then

0 = π(yk) =
∑

y∈Ω

π(y)P (y, yk).

This implies π(y)P (y, yk) = 0 for all y. In particular, π(yk−1) = 0. By induction
backwards along the sequence, we find that π(y0) = 0. �

Finally, we conclude with the following proposition:

Proposition 1.26. The stationary distribution π for a transition matrix P is
unique if and only if there is a unique essential communicating class.

Proof. Suppose that there is a unique essential communicating class C. We
write P|C for the restriction of the matrix P to the states in C. Suppose x ∈ C and
P (x, y) > 0. Then since x is essential and x → y, it must be that y → x also,
whence y ∈ C. This implies that P|C is a transition matrix, which clearly must be

irreducible on C. Therefore, there exists a unique stationary distribution πC for
P|C . Let π be a probability on Ω with π = πP . By Proposition 1.25, π(y) = 0 for



18 1. INTRODUCTION TO FINITE MARKOV CHAINS

y 6∈ C, whence π is supported on C. Consequently, for x ∈ C,

π(x) =
∑

y∈Ω

π(y)P (y, x) =
∑

y∈C
π(y)P (y, x) =

∑

y∈C
π(y)P|C(y, x),

and π restricted to C is stationary for P|C . By uniqueness of the stationary distri-

bution for P|C , it follows that π(x) = πC(x) for all x ∈ C. Therefore,

π(x) =

{
πC(x) if x ∈ C,
0 if x 6∈ C,

and the solution to π = πP is unique.
Suppose there are distinct essential communicating classes for P , say C1 and

C2. The restriction of P to each of these classes is irreducible. Thus for i = 1, 2,
there exists a measure π supported on Ci which is stationary for P|Ci

. Moreover,
it is easily verified that each πi is stationary for P , and so P has more than one
stationary distribution. �

Exercises

Exercise 1.1. Let P be the transition matrix of random walk on the n-cycle,
where n is odd. Find the smallest value of t such that P t(x, y) > 0 for all states x
and y.

Exercise 1.2. A graph G is connected when, for two vertices x and y of G,
there exists a sequence of vertices x0, x1, . . . , xk such that x0 = x, xk = y, and
xi ∼ xi+1 for 0 ≤ i ≤ k− 1. Show that random walk on G is irreducible if and only
if G is connected.

Exercise 1.3. We define a graph to be a tree if it is connected but contains
no cycles. Prove that the following statements about a graph T with n vertices and
m edges are equivalent:

(a) T is a tree.
(b) T is connected and m = n− 1.
(c) T has no cycles and m = n− 1.

Exercise 1.4. Let T be a tree. A leaf is a vertex of degree 1.

(a) Prove that T contains a leaf.
(b) Prove that between any two vertices in T there is a unique simple path.
(c) Prove that T has at least 2 leaves.

Exercise 1.5. Let T be a tree. Show that the graph whose vertices are proper
3-colorings of T and whose edges are pairs of colorings which differ at only a single
vertex is connected.

Exercise 1.6. Let P be an irreducible transition matrix of period b. Show
that Ω can be partitioned into b sets C1, C2, . . . , Cb in such a way that P (x, y) > 0
only if x ∈ Ci and y ∈ Ci+1. (The addition i+ 1 is modulo b.)

Exercise 1.7. A transition matrix P is symmetric if P (x, y) = P (y, x) for
all x, y ∈ Ω. Show that if P is symmetric, then the uniform distribution on Ω is
stationary for P .
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Exercise 1.8. Let P be a transition matrix which is reversible with respect
to the probability distribution π on Ω. Show that the transition matrix P 2 corre-
sponding to two steps of the chain is also reversible with respect to π.

Exercise 1.9. Let π be a stationary distribution for an irreducible transition
matrix P . Prove that π(x) > 0 for all x ∈ Ω, without using the explicit formula
(1.25).

Exercise 1.10. Check carefully that equation (1.19) is true.

Exercise 1.11. Here we outline another proof, more analytic, of the existence
of stationary distributions. Let P be the transition matrix of a Markov chain on a
finite state space Ω. For an arbitrary initial distribution µ on Ω and n > 0, define
the distribution νn by

νn =
1

n

(
µ+ µP + · · ·+ µPn−1

)
.

(a) Show that for any x ∈ Ω and n > 0,

|νnP (x)− νn(x)| ≤ 2

n
.

(b) Show that there exists a subsequence (νnk
)k≥0 such that limk →∞ νnk

(x) exists
for every x ∈ Ω.

(c) For x ∈ Ω, define ν(x) = limk →∞ νnk
(x). Show that ν is a stationary distri-

bution for P .

Exercise 1.12. Let P be the transition matrix of an irreducible Markov chain
with state space Ω. Let B ⊂ Ω be a non-empty subset of the state space, and
assume h : Ω→ R is a function harmonic at all states x 6∈ B.

Prove that if h is non-constant and h(y) = maxx∈Ω h(x), then y ∈ B.
(This is a discrete version of the maximum principle.)

Exercise 1.13. Give a direct proof that the stationary distribution for an
irreducible chain is unique.

Hint: Given stationary distributions π1 and π2, consider the state x that min-
imizes π1(x)/π2(x) and show that all y with P (x, y) > 0 have π1(y)/π2(y) =
π1(x)/π2(x).

Exercise 1.14. Show that any stationary measure π of an irreducible chain
must be strictly positive.

Hint: Show that if π(x) = 0, then π(y) = 0 whenever P (x, y) > 0.

Exercise 1.15. For a subset A ⊂ Ω, define f(x) = Ex(τA). Show that

(a)
f(x) = 0 for x ∈ A. (1.35)

(b)

f(x) = 1 +
∑

y∈Ω

P (x, y)f(y) for x 6∈ A. (1.36)

(c) f is uniquely determined by (1.35) and (1.36).

The following exercises concern the material in Section 1.7.

Exercise 1.16. Show that ↔ is an equivalence relation on Ω.

Exercise 1.17. Show that the set of stationary measures for a transition matrix
forms a polyhedron with one vertex for each essential communicating class.
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Notes

Markov first studied the stochastic processes that came to be named after
him in Markov (1906). See Basharin, Langville, and Naumov (2004) for the early
history of Markov chains.

The right-hand side of (1.1) does not depend on t. We take this as part of the
definition of a Markov chain; note that other authors sometimes regard this as a
special case, which they call time homogeneous. (This simply means that the
transition matrix is the same at each step of the chain. It is possible to give a more
general definition in which the transition matrix depends on t. We will not consider
such chains in this book.)

Aldous and Fill (1999, Chapter 2, Proposition 4) present a version of the key
computation for Proposition 1.14 which requires only that the initial distribution
of the chain equals the distribution of the chain when it stops. We have essentially
followed their proof.

The standard approach to demonstrating that irreducible aperiodic Markov
chains have unique stationary distributions is through the Perron-Frobenius theo-
rem. See, for instance, Karlin and Taylor (1975) or Seneta (2006).

See Feller (1968, Chapter XV) for the classification of states of Markov chains.

Complements. The following lemma is needed for the proof of Proposition 1.7.
We include a proof here for completeness.

Lemma 1.27. If S ⊂ Z+ has gcd(S) = gS, then there is some integer mS such
that for all m ≥ mS the product mgS can be written as a linear combination of
elements of S with non-negative integer coefficients.

Proof. Step 1. Given S ⊂ Z+ nonempty, define g⋆S as the smallest positive
integer which is an integer combination of elements of S (the smallest positive
element of the additive group generated by S). Then g⋆S divides every element of
S (otherwise, consider the remainder) and gS must divide g⋆S, so g⋆S = gS .

Step 2. For any set S of positive integers, there is a finite subset F such that
gcd(S) = gcd(F ). Indeed the non-increasing sequence gcd(S ∩ [1, n]) can strictly
decrease only finitely many times, so there is a last time. Thus it suffices to prove
the fact for finite subsets F of Z+; we start with sets of size 2 (size 1 is a tautology)
and then prove the general case by induction on the size of F .

Step 3. Let F = {a, b} ⊂ Z+ have gcd(F ) = g. Givenm > 0, writemg = ca+db
for some integers c, d. Observe that c, d are not unique since mg = (c + kb)a +
(d − ka)b for any k. Thus we can write mg = ca + db where 0 ≤ c < b. If
mg > (b − 1)a − b, then we must have d ≥ 0 as well. Thus for F = {a, b} we can
take mF = (ab− a− b)/g + 1.

Step 4 (The induction step). Let F be a finite subset of Z
+ with gcd(F ) = gF .

Then for any a ∈ Z+ the definition of gcd yields that g := gcd({a}∪F ) = gcd(a, gF ).
Suppose that n satisfies ng ≥ m{a,gF }g+mF gF . Then we can write ng−mF gF =
ca+ dgF for integers c, d ≥ 0. Therefore ng = ca+ (d+mF )gF = ca+

∑
f∈F cff

for some integers cf ≥ 0 by the definition of mF . Thus we can take m{a}∪F =
m{a,gF } +mF gF /g. �



CHAPTER 2

Classical (and Useful) Markov Chains

Here we present several basic and important examples of Markov chains. The
results we prove in this chapter will be used in many places throughout the book.

This is also the only chapter in the book where the central chains are not always
irreducible. Indeed, two of our examples, gambler’s ruin and coupon collecting,
both have absorbing states. For each we examine closely how long it takes to be
absorbed.

2.1. Gambler’s Ruin

Consider a gambler betting on the outcome of a sequence of independent fair
coin tosses. If the coin comes up heads, she adds one dollar to her purse; if the coin
lands tails up, she loses one dollar. If she ever reaches a fortune of n dollars, she
will stop playing. If her purse is ever empty, then she must stop betting.

The gambler’s situation can be modeled by a random walk on a path with
vertices {0, 1, . . . , n}. At all interior vertices, the walk is equally likely to go up by
1 or down by 1. That states 0 and n are absorbing, meaning that once the walk
arrives at either 0 or n, it stays forever (cf. Section 1.7).

There are two questions that immediately come to mind: how long will it take
for the gambler to arrive at one of the two possible fates? What are the probabilities
of the two possibilities?

Proposition 2.1. Assume that a gambler making fair unit bets on coin flips
will abandon the game when her fortune falls to 0 or rises to n. Let Xt be gambler’s
fortune at time t and let τ be the time required to be absorbed at one of 0 or n.
Assume that X0 = k, where 0 ≤ k ≤ n. Then

Pk{Xτ = n} = k/n (2.1)

and

Ek(τ) = k(n− k). (2.2)

Proof. Let pk be the probability that the gambler reaches a fortune of n before
ruin, given that she starts with k dollars. We solve simultaneously for p0, p1, . . . , pn.
Clearly p0 = 0 and pn = 1, while

pk =
1

2
pk−1 +

1

2
pk+1 for 1 ≤ k ≤ n− 1. (2.3)

Why? With probability 1/2, the walk moves to k+1. The conditional probability of
reaching n before 0, starting from k+1, is exactly pk+1. Similarly, with probability
1/2 the walk moves to k − 1, and the conditional probability of reaching n before
0 from state k − 1 is pk−1.

Solving the system (2.3) of linear equations yields pk = k/n for 0 ≤ k ≤ n.

21
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n0 1 2

Figure 2.1. How long until the walk reaches either 0 or n? What
is the probability of each?

For (2.2), again we try to solve for all the values at once. To this end, write
fk for the expected time Ek(τ) to be absorbed, starting at position k. Clearly,
f0 = fn = 0; the walk is started at one of the absorbing states. For 1 ≤ k ≤ n− 1,
it is true that

fk =
1

2
(1 + fk+1) +

1

2
(1 + fk−1) . (2.4)

Why? When the first step of the walk increases the gambler’s fortune, then the
conditional expectation of τ is 1 (for the initial step) plus the expected additional
time needed. The expected additional time needed is fk+1, because the walk is
now at position k + 1. Parallel reasoning applies when the gambler’s fortune first
decreases.

Exercise 2.1 asks the reader to solve this system of equations, completing the
proof of (2.2). �

Remark 2.2. See Chapter 9 for powerful generalizations of the simple methods
we have just applied.

2.2. Coupon Collecting

A company issues n different types of coupons. A collector desires a complete
set. We suppose each coupon he acquires is equally likely to be each of the n types.
How many coupons must he obtain so that his collection contains all n types?

It may not be obvious why this is a Markov chain. Let Xt denote the number
of different types represented among the collector’s first t coupons. Clearly X0 = 0.
When the collector has coupons of k different types, there are n− k types missing.
Of the n possibilities for his next coupon, only n − k will expand his collection.
Hence

P{Xt+1 = k + 1 | Xt = k} =
n− k
n

and

P{Xt+1 = k | Xt = k} =
k

n
.

Every trajectory of this chain is non-decreasing. Once the chain arrives at state n
(corresponding to a complete collection), it is absorbed there. We are interested in
the number of steps required to reach the absorbing state.

Proposition 2.3. Consider a collector attempting to collect a complete set of
coupons. Assume that each new coupon is chosen uniformly and independently from
the set of n possible types, and let τ be the (random) number of coupons collected
when the set first contains every type. Then

E(τ) = n
n∑

k=1

1

k
.



2.3. THE HYPERCUBE AND THE EHRENFEST URN MODEL 23

Proof. The expectation E(τ) can be computed by writing τ as a sum of
geometric random variables. Let τk be the total number of coupons accumulated
when the collection first contains k distinct coupons. Then

τ = τn = τ1 + (τ2 − τ1) + · · ·+ (τn − τn−1). (2.5)

Furthermore, τk − τk−1 is a geometric random variable with success probability
(n−k+1)/n: after collecting τk−1 coupons, there are n−k+1 types missing from the
collection. Each subsequent coupon drawn has the same probability (n− k + 1)/n
of being a type not already collected, until a new type is finally drawn. Thus
E(τk − τk−1) = n/(n− k + 1) and

E(τ) =

n∑

k=1

E(τk − τk−1) = n

n∑

k=1

1

n− k + 1
= n

n∑

k=1

1

k
. (2.6)

�

While the argument for Proposition 2.3 is simple and vivid, we will often
need to know more about the distribution of τ in future applications. Recall that
|∑n

k=1 1/k − log n| ≤ 1, whence |E(τ) − n logn| ≤ n (see Exercise 2.4 for a bet-
ter estimate). Proposition 2.4 says that τ is unlikely to be much larger than its
expected value.

Proposition 2.4. Let τ be a coupon collector random variable, as in Proposi-
tion 2.3. For any c > 0,

P{τ > ⌈n logn+ cn⌉} ≤ e−c. (2.7)

Proof. Let Ai be the event that the i-th type does not appear among the first
⌈n logn+ cn⌉ coupons drawn. Observe first that

P{τ > ⌈n logn+ cn⌉} = P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai).

Since each trial has probability 1− n−1 of not drawing coupon i and the trials are
independent, the right-hand side above is bounded above by

n∑

i=1

(
1− 1

n

)⌈n logn+cn⌉
≤ n exp

(
−n logn+ cn

n

)
= e−c,

proving (2.7). �

2.3. The Hypercube and the Ehrenfest Urn Model

The n-dimensional hypercube is a graph whose vertices are the binary n-
tuples {0, 1}n. Two vertices are connected by an edge when they differ in exactly one
coordinate. See Figure 2.2 for an illustration of the three-dimensional hypercube.

The simple random walk on the hypercube moves from a vertex (x1, x2, . . . , xn)
by choosing a coordinate j ∈ {1, 2, . . . , n} uniformly at random and setting the new
state equal to (x1, . . . , xj−1, 1 − xj , xj+1, . . . , xn). That is, the bit at the walk’s
chosen coordinate is flipped. (This is a special case of the walk defined in Section
1.4.)

Unfortunately, the simple random walk on the hypercube is periodic, since every
move flips the parity of the number of 1’s. The lazy random walk , which does not
have this problem, remains at its current position with probability 1/2 and moves



24 2. CLASSICAL (AND USEFUL) MARKOV CHAINS

000 100

010 110

001 101

011 111

Figure 2.2. The three-dimensional hypercube.

as above with probability 1/2. This chain can be realized by choosing a coordinate
uniformly at random and refreshing the bit at this coordinate by replacing it with
an unbiased random bit independent of time, current state, and coordinate chosen.

Since the hypercube is an n-regular graph, Example 1.12 implies that the sta-
tionary distribution of both the simple and lazy random walks is uniform on {0, 1}n.

We now consider a process, the Ehrenfest urn , which at first glance appears
quite different. Suppose n balls are distributed among two urns, I and II. At each
move, a ball is selected uniformly at random and transferred from its current urn
to the other urn. If Xt is the number of balls in urn I at time t, then the transition
matrix for (Xt) is

P (j, k) =





n−j
n if k = j + 1,
j
n if k = j − 1,

0 otherwise.

(2.8)

Thus (Xt) is a Markov chain with state space Ω = {0, 1, 2, . . . , n} that moves by
±1 on each move and is biased towards the middle of the interval. The stationary
distribution for this chain is binomial with parameters n and 1/2 (see Exercise 2.5).

The Ehrenfest urn is a projection (in a sense that will be defined precisely
in Section 2.3.1) of the random walk on the n-dimensional hypercube. This is
unsurprising given the standard bijection between {0, 1}n and subsets of {1, . . . , n},
under which a set corresponds to the vector with 1’s in the positions of its elements.
We can view the position of the random walk on the hypercube as specifying the
set of balls in Ehrenfest urn I; then changing a bit corresponds to moving a ball
into or out of the urn.

Define the Hamming weight W (x) of a vector x := (x1, . . . , xn) ∈ {0, 1}n to
be its number of coordinates with value 1:

W (x) =

n∑

j=1

xj . (2.9)

Let (Xt) be the simple random walk on the n-dimensional hypercube, and let
Wt = W (Xt) be the Hamming weight of the walk’s position at time t.

When Wt = j, the weight increments by a unit amount when one of the n− j
coordinates with value 0 is selected. Likewise, when one of the j coordinates with
value 1 is selected, the weight decrements by one unit. From this description, it is
clear that (Wt) is a Markov chain with transition probabilities given by (2.8).

2.3.1. Projections of chains. The Ehrenfest urn is a projection, which we
define in this section, of the simple random walk on the hypercube.
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Assume that we are given a Markov chain (X0, X1, . . . ) with state space Ω and
transition matrix P and also some equivalence relation that partitions Ω into equiv-
alence classes. We denote the equivalence class of x ∈ Ω by [x]. (For the Ehrenfest
example, two bitstrings are equivalent when they contain the same number of 1’s.)

Under what circumstances will ([X0], [X1], . . . ) also be a Markov chain? For
this to happen, knowledge of what equivalence class we are in at time t must suffice
to determine the distribution over equivalence classes at time t+1. If the probability
P (x, [y]) is always the same as P (x′, [y]) when x and x′ are in the same equivalence
class, that is clearly enough. We summarize this in the following lemma.

Lemma 2.5. Let Ω be the state space of a Markov chain (Xt) with transition
matrix P . Let ∼ be an equivalence relation on Ω with equivalence classes Ω♯ =
{[x] : x ∈ Ω}, and assume that P satisfies

P (x, [y]) = P (x′, [y]) (2.10)

whenever x ∼ x′. Then [Xt] is a Markov chain with state space Ω♯ and transition
matrix P ♯ defined by P ♯([x], [y]) := P (x, [y]).

The process of constructing a new chain by taking equivalence classes for an
equivalence relation compatible with the transition matrix (in the sense of (2.10))
is called projection , or sometimes lumping .

2.4. The Pólya Urn Model

Consider the following process, known as Pólya’s urn . Start with an urn
containing two balls, one black and one white. From this point on, proceed by
choosing a ball at random from those already in the urn; return the chosen ball to
the urn and add another ball of the same color. If there are j black balls in the
urn after k balls have been added (so that there are k + 2 balls total in the urn),
then the probability that another black ball is added is j/(k+ 2). The sequence of
ordered pairs listing the numbers of black and white balls is a Markov chain with
state space {1, 2, . . .}2.

Lemma 2.6. Let Bk be the number of black balls in Pólya’s urn after the addi-
tion of k balls. The distribution of Bk is uniform on {1, 2, . . . , k + 1}.

Proof. Let U0, U1, . . . , Un be independent and identically distributed random
variables, each uniformly distributed on the interval [0, 1]. Let

Lk := |{j ∈ {0, 1, . . . , k} : Uj ≤ U0}|
be the number of U0, U1, . . . , Uk which are less than or equal to U0.

The event {Lk = j, Lk+1 = j + 1} occurs if and only if U0 is the (j + 1)-st
smallest and Uk+1 is one of the j + 1 smallest among {U0, U1, . . . , Uk+1}. There
are j(k!) orderings of {U0, U1, . . . , Uk+1} making up this event; since all (k + 2)!
orderings are equally likely,

P{Lk = j, Lk+1 = j + 1} =
j(k!)

(k + 2)!
=

j

(k + 2)(k + 1)
. (2.11)

Since each relative ordering of U0, . . . , Uk is equally likely, we have P{Lk = j} =
1/(k + 1). Together with (2.11) this implies that

P{Lk+1 = j + 1 | Lk = j} =
j

k + 2
. (2.12)
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Since Lk+1 ∈ {j, j + 1} given Lk = j,

P{Lk+1 = j | Lk = j} =
k + 2− j
k + 2

. (2.13)

Note that L1 and B1 have the same distribution. By (2.12) and (2.13), the
sequences (Lk)

n
k=1 and (Bk)

n
k=1 have the same transition probabilities. Hence the

sequences (Lk)
n
k=1 and (Bk)

n
k=1 have the same distribution. In particular, Lk and

Bk have the same distribution.
Since the position of U0 among {U0, . . . , Uk} is uniform among the k+1 possible

positions, it follows that Lk is uniform on {1, . . . , k + 1}. Thus, Bk is uniform on
{1, . . . , k + 1}. �

Remark 2.7. Lemma 2.6 can also be proved by showing that P{Bk = j} =
1/(k + 1) for all j = 1, . . . , k + 1 using induction on k.

2.5. Birth-and-Death Chains

A birth-and-death chain has state space Ω = {0, 1, 2, . . . , n}. In one step the
state can increase or decrease by at most 1. The current state can be thought of as
the size of some population; in a single step of the chain there can be at most one
birth or death. The transition probabilities can be specified by {(pk, rk, qk)}nk=0,
where pk + rk + qk = 1 for each k and

• pk is the probability of moving from k to k + 1 when 0 ≤ k < n,
• qk is the probability of moving from k to k − 1 when 0 < k ≤ n,
• rk is the probability of remaining at k when 0 ≤ k ≤ n,
• q0 = pn = 0.

Proposition 2.8. Every birth-and-death chain is reversible.

Proof. A function w on Ω satisfies the detailed balance equations (1.30) if
and only if

pk−1wk−1 = qkwk

for 1 ≤ k ≤ n. For our birth-and-death chain, a solution is given by w0 = 1 and

wk =

k∏

i=1

pi−1

qi

for 1 ≤ k ≤ n. Normalizing so that the sum is unity yields

πk =
wk∑n
j=0 wj

for 0 ≤ k ≤ n. (By Proposition 1.19, π is also a stationary distribution.) �

Now, fix ℓ ∈ {0, 1, . . . , n}. Consider restricting the original chain to {0, 1, . . . , ℓ}:
• For any k ∈ {0, 1, . . . , ℓ−1}, the chain makes transitions from k as before,

moving down with probability qk, remaining in place with probability rk,
and moving up with probability pk.
• At ℓ, the chain either moves down or remains in place, with probabilities
qℓ and rℓ + pℓ, respectively.
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We write Ẽ for expectations for this new chain. By the proof of Proposition 2.8,
the stationary probability π̃ of the truncated chain is given by

π̃k =
wk∑ℓ
j=0 wj

for 0 ≤ k ≤ ℓ. Since in the truncated chain the only possible moves from ℓ are to
stay put or to step down to ℓ− 1, the expected first return time Ẽℓ(τ

+
ℓ ) satisfies

Ẽℓ(τ
+
ℓ ) = (rℓ + pℓ) · 1 + qℓ

(
Ẽℓ−1(τℓ) + 1

)
= 1 + qℓẼℓ−1(τℓ). (2.14)

By Proposition 1.14(ii),

Ẽℓ(τ
+
ℓ ) =

1

π̃(ℓ)
=

1

wℓ

ℓ∑

j=0

wj . (2.15)

We have constructed the truncated chain so that Ẽℓ−1(τℓ) = Eℓ−1(τℓ). Rearranging
(2.14) and (2.15) gives

Eℓ−1(τℓ) =
1

qℓ




ℓ∑

j=0

wj
wℓ
− 1


 =

1

qℓwℓ

l−1∑

j=0

wj . (2.16)

To find Ea(τb) for a < b, just sum:

Ea(τb) =

b∑

ℓ=a+1

Eℓ−1(τℓ).

Consider two important special cases. Suppose that

(pk, rk, qk) = (p, r, q) for 1 ≤ k < n,

(p0, r0, q0) = (p, r + q, 0), (pn, rn, qn) = (0, r + p, q)

for p, r, q ≥ 0 with p + r + q = 1. First consider the case where p 6= q. We have
wk = (p/q)k for 0 ≤ k ≤ n, and from (2.16), for 1 ≤ ℓ ≤ n,

Eℓ−1(τℓ) =
1

q(p/q)ℓ

ℓ−1∑

j=0

(p/q)j =
(p/q)ℓ − 1

q(p/q)ℓ[(p/q)− 1]
=

1

p− q

[
1−

(
q

p

)ℓ]
.

If p = q, then wj = 1 for all j and

Eℓ−1(τℓ) =
ℓ

p
.

2.6. Random Walks on Groups

Several of the examples we have already examined and many others we will
study in future chapters share important symmetry properties, which we make
explicit here. Recall that a group is a set G endowed with an associative operation
· : G×G→ G and an identity id ∈ G such that for all g ∈ G,

(i) id · g = g and g · id = g.
(ii) there exists an inverse g−1 ∈ G for which g · g−1 = g−1 · g = id.
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Given a probability distribution µ on a group (G, ·), we define the random

walk on G with increment distribution µ as follows: it is a Markov chain with
state space G and which moves by multiplying the current state on the left by a
random element of G selected according to µ. Equivalently, the transition matrix
P of this chain has entries

P (g, hg) = µ(h)

for all g, h ∈ G.

Remark 2.9. We multiply the current state by the increment on the left be-
cause it is generally more natural in non-commutative examples, such as the sym-
metric group—see Section 8.1.3. For commutative examples, such as the two de-
scribed immediately below, it of course does not matter on which side we multiply.

Example 2.10 (The n-cycle). Let µ assign probability 1/2 to each of 1 and
n−1 ≡ −1 (mod n) in the additive cyclic group Zn = {0, 1, . . . , n−1}. The simple

random walk on the n-cycle first introduced in Example 1.4 is the random walk
on Zn with increment distribution µ. Similarly, let ν assign weight 1/4 to both 1
and n−1 and weight 1/2 to 0. Then lazy random walk on the n-cycle, discussed
in Example 1.8, is the random walk on Zn with increment distribution ν.

Example 2.11 (The hypercube). The hypercube random walks defined in Sec-
tion 2.3 are random walks on the group Zn2 , which is the direct product of n copies
of the two-element group Z2 = {0, 1}. For the simple random walk the increment
distribution is uniform on the set {ei : 1 ≤ i ≤ n}, where the vector ei has a 1 in the
i-th place and 0 in all other entries. For the lazy version, the increment distribution
gives the vector 0 (with all zero entries) weight 1/2 and each ei weight 1/2n.

Proposition 2.12. Let P be the transition matrix of a random walk on a
finite group G and let U be the uniform probability distribution on G. Then U is a
stationary distribution for P .

Proof. Let µ be the increment distribution of the random walk. For any
g ∈ G,

∑

h∈G
U(h)P (h, g) =

1

|G|
∑

k∈G
P (k−1g, g) =

1

|G|
∑

k∈G
µ(k) =

1

|G| = U(g).

For the first equality, we re-indexed by setting k = gh−1. �

2.6.1. Generating sets, irreducibility, Cayley graphs, and reversibil-

ity. For a set H ⊂ G, let 〈H〉 be the smallest group containing all the elements of
H ; recall that every element of 〈H〉 can be written as a product of elements in H
and their inverses. A set H is said to generate G if 〈H〉 = G.

Proposition 2.13. Let µ be a probability distribution on a finite group G.
The random walk on G with increment distribution µ is irreducible if and only if
S = {g ∈ G : µ(g) > 0} generates G.

Proof. Let a be an arbitrary element of G. If the random walk is irreducible,
then there exists an r > 0 such that P r(id, a) > 0. In order for this to occur,
there must be a sequence s1, . . . , sr ∈ G such that a = srsr−1 . . . s1 and si ∈ S for
i = 1, . . . , r. Thus a ∈ 〈S〉.

Now assume S generates G, and consider a, b ∈ G. We know that ba−1 can be
written as a word in the elements of S and their inverses. Since every element of G
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has finite order, any inverse appearing in the expression for ba−1 can be rewritten
as a positive power of the same group element. Let the resulting expression be
ba−1 = srsr−1 . . . s1, where si ∈ S for i = 1, . . . , r. Then

Pm(a, b) ≥ P (a, s1a)P (s1a, s2s1a) · · ·P (sr−1sr−2 . . . s1a, (ba
−1)a)

= µ(s1)µ(s2) . . . µ(sr) > 0.

�

When S is a set which generates a finite group G, the directed Cayley graph

associated to G and S is the directed graph with vertex set G in which (v, w) is an
edge if and only if v = sw for some generator s ∈ S.

We call a set S of generators of G symmetric if s ∈ S implies s−1 ∈ S.
When S is symmetric, all edges in the directed Cayley graph are bidirectional, and
it may be viewed as an ordinary graph. When G is finite and S is a symmetric
set that generates G, the simple random walk (as defined in Section 1.4) on the
corresponding Cayley graph is the same as the random walk on G with increment
distribution µ taken to be the uniform distribution on S.

In parallel fashion, we call a probability distribution µ on a groupG symmetric

if µ(g) = µ(g−1) for every g ∈ G.

Proposition 2.14. The random walk on a finite group G with increment dis-
tribution µ is reversible if µ is symmetric.

Proof. Let U be the uniform probability distribution on G. For any g, h ∈ G,
we have that

U(g)P (g, h) =
µ(hg−1)

|G| and U(h)P (h, g) =
µ(gh−1)

|G|
are equal if and only if µ(hg−1) = µ((hg−1)−1). �

Remark 2.15. The converse of Proposition 2.14 is also true; see Exercise 2.7.

2.6.2. Transitive chains. A Markov chain is called transitive if for each
pair (x, y) ∈ Ω× Ω there is a bijection ϕ = ϕ(x,y) : Ω→ Ω such that

ϕ(x) = y and P (z, w) = P (ϕ(z), ϕ(w)) for all z, w ∈ Ω. (2.17)

Roughly, this means the chain “looks the same” from any point in the state space Ω.
Clearly any random walk on a group is transitive; set ϕ(x,y)(g) = gx−1y. However,
there are examples of transitive chains that are not random walks on groups; see
McKay and Praeger (1996).

Many properties of random walks on groups generalize to the transitive case,
including Proposition 2.12.

Proposition 2.16. Let P be the transition matrix of a transitive Markov chain
on a finite state space Ω. Then the uniform probability distribution on Ω is station-
ary for P .

Proof. Fix x, y ∈ Ω and let ϕ : Ω→ Ω be a transition-probability-preserving
bijection for which ϕ(x) = y. Let U be the uniform probability on Ω. Then

∑

z∈Ω

U(z)P (z, x) =
∑

z∈Ω

U(ϕ(z))P (ϕ(z), y) =
∑

w∈Ω

U(w)P (w, y),
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where we have re-indexed with w = ϕ(z). We have shown that when the chain is
started in the uniform distribution and run one step, the total weight arriving at
each state is the same. Since

∑
x,z∈Ω U(z)P (z, x) = 1, we must have

∑

z∈Ω

U(z)P (z, x) =
1

|Ω| = U(x).

�

2.7. Random Walks on Z and Reflection Principles

A nearest-neighbor random walk on Z moves right and left by at most
one step on each move, and each move is independent of the past. More precisely,
if (∆t) is a sequence of independent and identically distributed {−1, 0, 1}-valued

random variables and Xt =
∑t
s=1 ∆s, then the sequence (Xt) is a nearest-neighbor

random walk with increments (∆t).
This sequence of random variables is a Markov chain with infinite state space

Z and transition matrix

P (k, k + 1) = p, P (k, k) = r, P (k, k − 1) = q,

where p+ r + q = 1.
The special case where p = q = 1/2, r = 0 is the simple random walk on Z, as

defined in Section 1.4. In this case

P0{Xt = k} =

{(
t

t−k
2

)
2−t if t− k is even,

0 otherwise,
(2.18)

since there are
(
t

t−k
2

)
possible paths of length t from 0 to k.

When p = q = 1/4 and r = 1/2, the chain is the lazy simple random walk on Z.
(Recall the definition of lazy chains in Section 1.3.)

Theorem 2.17. Let (Xt) be simple random walk on Z, and recall that

τ0 = min{t ≥ 0 : Xt = 0}
is the first time the walk hits zero. Then

Pk{τ0 > r} ≤ 12k√
r

(2.19)

for any integers k, r > 0.

We prove this by a sequence of lemmas which are of independent interest.

Lemma 2.18 (Reflection Principle). Let (Xt) be either the simple random walk
or the lazy simple random walk on Z. For any positive integers j, k, and r,

Pk{τ0 < r,Xr = j} = Pk{Xr = −j} (2.20)

and
Pk{τ0 < r,Xr > 0} = Pk{Xr < 0}. (2.21)

Proof. By the Markov property, the walk “starts afresh” from 0 when it hits
0, meaning that the walk viewed from the first time it hits zero is independent of
its past and has the same distribution as a walk started from zero. Hence for any
s < r and j > 0 we have

Pk{τ0 = s,Xr = j} = Pk{τ0 = s}P0{Xr−s = j}.
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Figure 2.3. A path hitting zero and ending above zero can be
transformed, by reflection, into a path ending below zero.

The distribution of Xt is symmetric when started at 0, so the right-hand side is
equal to

Pk{τ0 = s}P0{Xr−s = −j} = Pk{τ0 = s,Xr = −j}.
Summing over s < r, we obtain

Pk{τ0 < r,Xr = j} = Pk{τ0 < r,Xr = −j} = Pk{Xr = −j}.
To justify the last equality, note that a random walk started from k > 0 must pass
through 0 before reaching a negative integer.

Finally, summing (2.20) over all j > 0 yields (2.21). �

Remark 2.19. There is also a simple combinatorial interpretation of the proof
of Lemma 2.18. There is a one-to-one correspondence between walk paths which
hit 0 before time r and are positive at time r and walk paths which are negative at
time r. This is illustrated in Figure 2.3: to obtain a bijection from the former set
of paths to the latter set, reflect a path after the first time it hits 0.

Example 2.20 (First passage time for simple random walk). A nice application
of Lemma 2.18 gives the distribution of τ0 when starting from 1 for simple random
walk on Z. We have

P1{τ0 = 2m+ 1} = P1{τ0 > 2m,X2m = 1, X2m+1 = 0}
= P1{τ0 > 2m,X2m = 1} ·P1{X2m+1 = 0 | X2m = 1}

= P1{τ0 > 2m,X2m = 1} ·
(

1

2

)
.

Rewriting and using Lemma 2.18 yields

P1{τ0 = 2m+ 1} =
1

2

[
P1{X2m = 1} −P1{τ0 ≤ 2m,X2m = 1}

]

=
1

2

[
P1{X2m = 1} −P1{X2m = −1}

]
.
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Substituting using (2.18) shows that

P1{τ0 = 2m+ 1} =
1

2

[(
2m

m

)
2−2m −

(
2m

m− 1

)
2−2m

]
=

1

(m+ 1)22m+1

(
2m

m

)
.

The right-hand side above equals Cm/2
2m+1, where Cm is the m-th Catalan num-

ber .

Lemma 2.21. When (Xt) is simple random walk or lazy simple random walk
on Z, we have

Pk{τ0 > r} = P0{−k < Xr ≤ k}
for any k > 0.

Proof. Observe that

Pk{Xr > 0} = Pk{Xr > 0, τ0 ≤ r}+ Pk{τ0 > r}.
By Lemma 2.18,

Pk{Xr > 0} = Pk{Xr < 0}+ Pk{τ0 > r}.
By symmetry of the walk, Pk{Xr < 0} = Pk{Xr > 2k}, and so

Pk{τ0 > r} = Pk{Xr > 0} −Pk{Xr > 2k}
= Pk{0 < Xr ≤ 2k} = P0{−k < Xr ≤ k}.

�

Lemma 2.22. For the simple random walk (Xt) on Z,

P0{Xt = k} ≤ 3√
t
. (2.22)

Remark 2.23. By applying Stirling’s formula a bit more carefully than we do
in the proof below, one can see that in fact

P0{X2r = 2k} ≤ 1√
πr

[1 + o(1)] .

Hence the constant 3 is nowhere near the best possible. Our goal here is to give
an explicit upper bound valid for all k without working too hard to achieve the
best possible constant. Indeed, note that for simple random walk, if t and k have
different parities, the probability on the left-hand side of (2.22) is 0.

Proof. If X2r = 2k, there are r+k “up” moves and r−k “down” moves. The
probability of this is

(
2r
r+k

)
2−2r. The reader should check that

(
2r
r+k

)
is maximized

at k = 0, so for k = 0, 1, . . . , r,

P0{X2r = 2k} ≤
(

2r

r

)
2−2r =

(2r)!

(r!)222r
.

By Stirling’s formula (use the bounds 1 ≤ e1/(12n+1) ≤ e1/(12n) ≤ 2 in (A.10)), we
obtain the bound

P0{X2r = 2k} ≤
√

8

π

1√
2r
. (2.23)

To bound P0{X2r+1 = 2k + 1}, condition on the first step of the walk and use the

bound above. Then use the simple bound [t/(t− 1)]1/2 ≤
√

2 to see that

P0{X2r+1 = 2k + 1} ≤ 4√
π

1√
2r + 1

. (2.24)
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Ha,bL

Hb,aL

Figure 2.4. For the Ballot Theorem: reflecting a “bad” path after
the first time the vote counts are equal yields a path to (b, a).

Putting together (2.23) and (2.24) establishes (2.22), since 4/
√
π ≤ 3.

�

Proof of Theorem 2.17. Combining Lemma 2.21 and Lemma 2.22, we ob-
tain (2.19). �

2.7.1. The Ballot Theorem*. The bijection illustrated in Figure 2.3 has
another very nice consequence. Define an up-right path to be a path through the
two-dimensional grid in which every segment heads either up or to the right.

Theorem 2.24 (Ballot Theorem). Fix positive integers a and b with a < b. An
up-right path from (0, 0) to (a, b) chosen uniformly at random has probability b−a

a+b

of lying strictly above the line x = y (except for its initial point).

There is a vivid interpretation of Theorem 2.24. Imagine that a+ b votes are
being tallied. The up-right path graphs the progress of the pair (votes for candidate
A, votes for candidate B) as the votes are counted. Assume we are given that the
final totals are a votes for A and b votes for B. Then the probability that the
winning candidate was always ahead, from the first vote counted to the last, under
the assumption that all possible paths leading to these final totals are equally likely,
is exactly (b− a)/(a+ b).

Proof. The total number of up-right paths from (0, 0) to (a, b) is
(
a+b
b

)
, since

there are a+ b steps total, of which exactly b steps go right.
How many paths never touch the line x = y after the first step? Any such path

must have its first step up, and there are
(
a+b−1
b−1

)
such paths. How many of those

paths touch the line x = y?
Given a path whose first step is up and that touches the line x = y, reflecting

the portion after the first touch of x = y yields a path from (0, 0) whose first step is
up and which ends at (b, a). See Figure 2.4. Since every up-right path whose first
step is up and which ends at (b, a) must cross x = y, we obtain every such path via

this reflection. Hence there are
(
a+b−1
b

)
“bad” paths to subtract, and the desired

probability is
(
a+b−1
b−1

)
−
(
a+b−1
b

)
(
a+b
b

) =
a!b!

(a+ b)!

(
(a+ b− 1)!

a!(b− 1)!
− (a+ b− 1)!

(a− 1)!b!

)
=
b− a
a+ b

.

�
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Remark 2.25. Figures 2.3 and 2.4 clearly illustrate versions of the same bi-
jection. The key step in the proof of Theorem 2.24, counting the “bad” paths, is a
case of (2.20): look at the paths after their first step, and set k = 1, r = a+ b − 1
and j = b− a.

Exercises

Exercise 2.1. Show that the system of equations for 0 < k < n

fk =
1

2
(1 + fk+1) +

1

2
(1 + fk−1) , (2.25)

together with the boundary conditions f0 = fn = 0 has a unique solution fk =
k(n− k).

Hint: One approach is to define ∆k = fk − fk−1 for 1 ≤ k ≤ n. Check that
∆k = ∆k+1+2 (so the ∆k’s form an arithmetic progression) and that

∑n
k=1 ∆k = 0.

Exercise 2.2. Consider a hesitant gambler: at each time, she flips a coin with
probability p of success. If it comes up heads, she places a fair one dollar bet. If
tails, she does nothing that round, and her fortune stays the same. If her fortune
ever reaches 0 or n, she stops playing. Assuming that her initial fortune is k, find
the expected number of rounds she will play, in terms of n, k, and p.

Exercise 2.3. Consider a random walk on the path {0, 1, . . . , n} in which the
walk moves left or right with equal probability except when at n and 0. At n, it
remains at n with probability 1/2 and moves to n − 1 with probability 1/2, and
once the walk hits 0, it remains there forever. Compute the expected time of the
walk’s absorption at state 0, given that it starts at state n.

Exercise 2.4. By comparing the integral of 1/x with its Riemann sums, show
that

logn ≤
n∑

k=1

k−1 ≤ logn+ 1. (2.26)

Exercise 2.5. Let P be the transition matrix for the Ehrenfest chain described
in (2.8). Show that the binomial distribution with parameters n and 1/2 is the
stationary distribution for this chain.

Exercise 2.6. Give an example of a random walk on a finite abelian group
which is not reversible.

Exercise 2.7. Show that if a random walk on a group is reversible, then the
increment distribution is symmetric.

Exercise 2.8. Show that when the transition matrix P of a Markov chain is
transitive, then the transition matrix P̂ of its time reversal is also transitive.

Exercise 2.9. Fix n ≥ 1. Show that simple random walk on the n-cycle,
defined in Example 1.4, is a projection (in the sense of Section 2.3.1) of the simple
random walk on Z defined in Section 2.7.

Exercise 2.10 (Reflection Principle). Let (Sn) be the simple random walk on
Z. Show that

P

{
max

1≤j≤n
|Sj | ≥ c

}
≤ 2P {|Sn| ≥ c} .
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Notes

Many of the examples in this chapter are also discussed in Feller (1968). See
Chapter XIV for the gambler’s ruin, Section IX.3 for coupon collecting, Section V.2
for urn models, and Chapter III for the reflection principle. Grinstead and Snell
(1997, Chapter 12) discusses gambler’s ruin.

See any undergraduate algebra book, for example Herstein (1975) or Artin
(1991), for more information on groups. Much more can be said about random
walks on groups than for general Markov chains. Diaconis (1988) is a starting
place.

Pólya’s urn was introduced in Eggenberger and Pólya (1923) and Pólya (1931).
Urns are fundamental models for reinforced processes. See Pemantle (2007) for a
wealth of information and many references on urn processes and more generally
processes with reinforcement. The book Johnson and Kotz (1977) is devoted to
urn models.

See Stanley (1999, pp. 219–229) and Stanley (2008) for many interpretations
of the Catalan numbers.

Complements. Generalizations of Theorem 2.17 to walks on Z other than
simple random walks are very useful; we include one here.

Theorem 2.26. Let (∆i) be i.i.d. integer-valued variables with mean zero and

variance σ2. Let Xt =
∑t

i=1 ∆i. Then

P{Xt 6= 0 for 1 ≤ t ≤ r} ≤ 4σ√
r
. (2.27)

Remark 2.27. The constant in this estimate is not sharp, but we will give a
very elementary proof based on Chebyshev’s inequality.

Proof. For I ⊆ Z, let

Lr(I) := {t ∈ {0, 1, . . . , r} : Xt ∈ I}
be the set of times up to and including r when the walk visits I, and write Lr(v) =
Lr({v}). Define also

Ar := {t ∈ Lr(0) : Xt+u 6= 0 for 1 ≤ u ≤ r},
the set of times t in Lr(0) where the walk does not visit 0 for r steps after t. Since
the future of the walk after visiting 0 is independent of the walk up until this time,

P{t ∈ Ar} = P{t ∈ Lr(0)}αr,
where

αr := P0{Xt 6= 0, t = 1, . . . , r}.
Summing this over t ∈ {0, 1, . . . , r} and noting that |Ar| ≤ 1 gives

1 ≥ E|Ar| = E|Lr(0)|αr. (2.28)

It remains to estimate E|Lr(0)| from below, and this can be done using the local
Central Limit Theorem or (in special cases) Stirling’s formula.

A more direct (but less precise) approach is to first use Chebyshev’s inequality
to show that

P{|Xt| ≥ σ
√
r} ≤ t

r
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and then deduce for I = (−σ√r, σ√r) that

E|Lr(Ic)| ≤
r∑

t=1

t

r
=
r + 1

2
,

whence E|Lr(I)| ≥ r/2. For any v 6= 0, we have

E|Lr(v)| = E

(
r∑

t=0

1{Xt=v}

)
= E

(
r∑

t=τv

1{Xt=v}

)
. (2.29)

By the Markov property, the chain after time τv has the same distribution as the
chain started from v. Hence the right-hand side of (2.29) is bounded above by

Ev

(
r∑

t=0

1{Xt=v}

)
= E0

(
r∑

t=0

1{Xt=0}

)
.

We conclude that r/2 ≤ E|Lr(I)| ≤ 2σ
√
rE|Lr(0)|. Thus E|Lr(0)| ≥ √r/(4σ). In

conjunction with (2.28) this proves (2.27). �

Corollary 2.28. For the lazy simple random walk on Z started at height k,

Pk{τ+
0 > r} ≤ 8k√

r
. (2.30)

Proof. By conditioning on the first move of the walk and then using the fact
that the distribution of the walk is symmetric about 0, for r ≥ 1,

P0{τ+
0 > r} =

1

4
P1{τ+

0 > r−1}+ 1

4
P−1{τ+

0 > r−1} =
1

2
P1{τ+

0 > r−1}. (2.31)

Note that when starting from 1, the event that the walk hits height k before visiting
0 for the first time and subsequently does not hit 0 for r steps is contained in the
event that the walk started from 1 does not hit 0 for r− 1 steps. Thus, from (2.31)
and Theorem 2.26,

P1{τk < τ0}Pk{τ+
0 > r} ≤ P1{τ0 > r − 1} = 2P0{τ+

0 > r} ≤ 8√
r
. (2.32)

(The variance σ2 of the increments of the lazy random walk is 1/2, which we bound
by 1.) From the gambler’s ruin formula given in (2.1), the chance that a simple
random walk starting from height 1 hits k before visiting 0 is 1/k. The probability
is the same for a lazy random walk, so together with (2.32) this implies (2.30). �



CHAPTER 3

Markov Chain Monte Carlo: Metropolis and

Glauber Chains

3.1. Introduction

Given an irreducible transition matrix P , there is a unique stationary distribu-
tion π satisfying π = πP , which we constructed in Section 1.5. We now consider
the inverse problem: given a probability distribution π on Ω, can we find a tran-
sition matrix P for which π is its stationary distribution? The following example
illustrates why this is a natural problem to consider.

A random sample from a finite set Ω will mean a random uniform selection
from Ω, i.e., one such that each element has the same chance 1/|Ω| of being chosen.

Fix a set {1, 2, . . . , q} of colors. A proper q-coloring of a graph G = (V,E) is
an assignment of colors to the vertices V , subject to the constraint that neighboring
vertices do not receive the same color. There are (at least) two reasons to look for
an efficient method to sample from Ω, the set of all proper q-colorings. If a random
sample can be produced, then the size of Ω can be estimated (as we discuss in
detail in Section 14.4.2). Also, if it is possible to sample from Ω, then average
characteristics of colorings can be studied via simulation.

For some graphs, e.g. trees, there are simple recursive methods for generating
a random proper coloring (see Example 14.10). However, for other graphs it can
be challenging to directly construct a random sample. One approach is to use
Markov chains to sample: suppose that (Xt) is a chain with state space Ω and
with stationary distribution uniform on Ω (in Section 3.3, we will construct one
such chain). By the Convergence Theorem (Theorem 4.9, whose proof we have not
yet given but have often foreshadowed), Xt is approximately uniformly distributed
when t is large.

This method of sampling from a given probability distribution is called Markov

chain Monte Carlo. Suppose π is a probability distribution on Ω. If a Markov
chain (Xt) with stationary distribution π can be constructed, then, for t large
enough, the distribution of Xt is close to π. The focus of this book is to determine
how large t must be to obtain a sufficient approximation. In this chapter we will
focus on the task of finding chains with a given stationary distribution.

3.2. Metropolis Chains

Given some chain with state space Ω and an arbitrary stationary distribution,
can the chain be modified so that the new chain has the stationary distribution π?
The Metropolis algorithm accomplishes this.

3.2.1. Symmetric base chain. Suppose that Ψ is a symmetric transition
matrix. In this case, Ψ is reversible with respect to the uniform distribution on Ω.

37
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We now show how to modify transitions made according to Ψ to obtain a chain
with stationary distribution π, where π is any probability distribution on Ω.

The new chain evolves as follows: when at state x, a candidate move is gener-
ated from the distribution Ψ(x, ·). If the proposed new state is y, then the move
is censored with probability 1− a(x, y). That is, with probability a(x, y), the state
y is “accepted” so that the next state of the chain is y, and with the remaining
probability 1−a(x, y), the chain remains at x. Rejecting moves slows the chain and
can reduce its computational efficiency but may be necessary to achieve a specific
stationary distribution. We will discuss how to choose the acceptance probability
a(x, y) below, but for now observe that the transition matrix P of the new chain is

P (x, y) =





Ψ(x, y)a(x, y) if y 6= x,

1− ∑
z : z 6=x

Ψ(x, z)a(x, z) if y = x.

By Proposition 1.19, the transition matrix P has stationary distribution π if

π(x)Ψ(x, y)a(x, y) = π(y)Ψ(y, x)a(y, x) (3.1)

for all x 6= y. Since we have assumed Ψ is symmetric, equation (3.1) holds if and
only if

b(x, y) = b(y, x), (3.2)

where b(x, y) = π(x)a(x, y). Because a(x, y) is a probability and must satisfy
a(x, y) ≤ 1, the function b must obey the constraints

b(x, y) ≤ π(x),

b(x, y) = b(y, x) ≤ π(y).
(3.3)

Since rejecting the moves of the original chain Ψ is wasteful, a solution b to (3.2)
and (3.3) should be chosen which is as large as possible. Clearly, all solutions are
bounded above by b(x, y) = π(x) ∧ π(y) := min{π(x), π(y)}. For this choice, the
acceptance probability a(x, y) is equal to (π(y)/π(x)) ∧ 1.

The Metropolis chain for a probability π and a symmetric transition matrix
Ψ is defined as

P (x, y) =





Ψ(x, y)
[
1 ∧ π(y)

π(x)

]
if y 6= x,

1−∑z : z 6=xΨ(x, z)
[
1 ∧ π(z)

π(x)

]
if y = x.

Our discussion above shows that π is indeed a stationary distribution for the Me-
tropolis chain.

Remark 3.1. A very important feature of the Metropolis chain is that it only
depends on the ratios π(x)/π(y). Frequently π(x) has the form h(x)/Z, where the
function h : Ω → [0,∞) is known and Z =

∑
x∈Ω h(x) is a normalizing constant.

It may be difficult to explicitly compute Z, especially if Ω is large. Because the
Metropolis chain only depends on h(x)/h(y), it is not necessary to compute the
constant Z in order to simulate the chain. The optimization chains described below
(Example 3.2) are examples of this type.

Example 3.2 (Optimization). Let f be a real-valued function defined on the
vertex set Ω of a graph. In many applications it is desirable to find a vertex x
where f(x) is maximal. If the domain Ω is very large, then an exhaustive search
may be too expensive.
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0

f(x)

x

Figure 3.1. A hill climb algorithm may become trapped at a local
maximum.

A hill climb is an algorithm which attempts to locate the maximum values of
f as follows: when at x, if a neighbor y of x has f(y) > f(x), move to y. When f
has local maxima that are not also global maxima, then the climber may become
trapped before discovering a global maximum—see Figure 3.1.

One solution is to randomize moves so that instead of always remaining at a
local maximum, with some probability the climber moves to lower states.

Suppose for simplicity that Ω is a regular graph, so that simple random walk
on Ω has a symmetric transition matrix. Fix λ ≥ 1 and define

πλ(x) =
λf(x)

Z(λ)
,

where Z(λ) :=
∑

x∈Ω λ
f(x) is the normalizing constant that makes πλ a probabil-

ity measure (as mentioned in Remark 3.1, running the Metropolis chain does not
require computation of Z(λ), which may be prohibitively expensive to compute).
Since πλ(x) is increasing in f(x), the measure πλ favors vertices x for which f(x)
is large.

If f(y) < f(x), the Metropolis chain accepts a transition x→ y with probability
λ−[f(x)−f(y)]. As λ → ∞, the chain more closely resembles the deterministic hill
climb.

Define

Ω⋆ :=

{
x ∈ Ω : f(x) = f⋆ := max

y∈Ω
f(y)

}
.

Then

lim
λ→∞

πλ(x) = lim
λ→∞

λf(x)/λf
⋆

|Ω⋆|+∑x∈Ω\Ω⋆ λf(x)/λf⋆ =
1{x∈Ω⋆}
|Ω⋆| .

That is, as λ→∞, the stationary distribution πλ of this Metropolis chain converges
to the uniform distribution over the global maxima of f .

3.2.2. General base chain. The Metropolis chain can also be defined when
the initial transition matrix is not symmetric. For a general (irreducible) transition
matrix Ψ and an arbitrary probability distribution π on Ω, the Metropolized chain
is executed as follows. When at state x, generate a state y from Ψ(x, ·). Move to
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y with probability
π(y)Ψ(y, x)

π(x)Ψ(x, y)
∧ 1, (3.4)

and remain at x with the complementary probability. The transition matrix P for
this chain is

P (x, y) =





Ψ(x, y)
[
π(y)Ψ(y,x)
π(x)Ψ(x,y) ∧ 1

]
if y 6= x,

1− ∑
z : z 6=x

Ψ(x, z)
[
π(z)Ψ(z,x)
π(x)Ψ(x,z) ∧ 1

]
if y = x.

(3.5)

The reader should check that the transition matrix (3.5) defines a reversible Markov
chain with stationary distribution π (see Exercise 3.1).

Example 3.3. Suppose you know neither the vertex set V nor the edge set
E of a graph G. However, you are able to perform a simple random walk on
G. (Many computer and social networks have this form; each vertex knows who
its neighbors are, but not the global structure of the graph.) If the graph is not
regular, then the stationary distribution is not uniform, so the distribution of the
walk will not converge to uniform. You desire a uniform sample from V . We can use
the Metropolis algorithm to modify the simple random walk and ensure a uniform
stationary distribution. The acceptance probability in (3.4) reduces in this case to

deg(x)

deg(y)
∧ 1.

This biases the walk against moving to higher degree vertices, giving a uniform
stationary distribution. Note that it is not necessary to know the size of the ver-
tex set to perform this modification, which can be an important consideration in
applications.

3.3. Glauber Dynamics

We will study many chains whose state spaces are contained in a set of the form
SV , where V is the vertex set of a graph and S is a finite set. The elements of SV ,
called configurations, are the functions from V to S. We visualize a configuration
as a labeling of vertices with elements of S.

Given a probability distribution π on a space of configurations, the Glauber
dynamics for π, to be defined below, is a Markov chain which has stationary dis-
tribution π. This chain is often called the Gibbs sampler , especially in statistical
contexts.

3.3.1. Two examples. As we defined in Section 3.1, a proper q-coloring of
a graph G = (V,E) is an element x of {1, 2, . . . , q}V , the set of functions from V
to {1, 2, . . . , q}, such that x(v) 6= x(w) for all edges {v, w}. We construct here a
Markov chain on the set of proper q-colorings of G.

For a given configuration x and a vertex v, call a color j allowable at v if j is
different from all colors assigned to neighbors of v. That is, a color is allowable at
v if it does not belong to the set {x(w) : w ∼ v}. Given a proper q-coloring x, we
can generate a new coloring by

• selecting a vertex v ∈ V at random,
• selecting a color j uniformly at random from the allowable colors at v,

and
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• re-coloring vertex v with color j.

We claim that the resulting chain has uniform stationary distribution: why? Note
that transitions are permitted only between colorings differing at a single vertex.
If x and y agree everywhere except vertex v, then the chance of moving from x
to y equals |V |−1|Av(x)|−1, where Av(x) is the set of allowable colors at v in x.
Since Av(x) = Av(y), this probability equals the probability of moving from y to x.
Since P (x, y) = P (y, x), the detailed balance equations are satisfied by the uniform
distribution.

This chain is called the Glauber dynamics for proper q-colorings. Note
that when a vertex v is updated in coloring x, a coloring is chosen from π conditioned
on the set of colorings agreeing with x at all vertices different from v. This is the
general rule for defining Glauber dynamics for any set of configurations. Before
spelling out the details in the general case, we consider one other specific example.

A hardcore configuration is a placement of particles on the vertices V of a
graph so that each vertex is occupied by at most one particle and no two particles
are adjacent. Formally, a hardcore configuration x is an element of {0, 1}V , the
set of functions from V to {0, 1}, satisfying x(v)x(w) = 0 whenever v and w are
neighbors. The vertices v with x(v) = 1 are called occupied , and the vertices v
with x(v) = 0 are called vacant .

Consider the following transition rule:

• a vertex v is chosen uniformly at random, and, regardless of the current
status of v,
• if any neighbor of v is occupied, v is left unoccupied, while if no adjacent

vertex is occupied, a particle is placed at v with probability 1/2.

Remark 3.4. Note that the rule above has the same effect as the following
apparently simpler rule: if no neighbor of v is occupied, then, with probability 1/2,
flip the status of v. Our original description will be much more convenient when,
in the future, we attempt to couple multiple copies of this chain, since it provides a
way to ensure that the status at the chosen vertex v is the same in all copies after
an update. See Section 5.4.2.

The verification that this chain is reversible with respect to the uniform distri-
bution is similar to the coloring chain just considered and is left to the reader.

3.3.2. General definition. In general, let V and S be finite sets, and suppose
that Ω is a subset of SV (both the set of proper q-colorings and the set of hardcore
configurations are of this form). Let π be a probability distribution whose support
is Ω. The (single-site) Glauber dynamics for π is a reversible Markov chain
with state space Ω, stationary distribution π, and the transition probabilities we
describe below.

In words, the Glauber chain moves from state x as follows: a vertex v is chosen
uniformly at random from V , and a new state is chosen according to the measure
π conditioned on the set of states equal to x at all vertices different from v. We
give the details now. For x ∈ Ω and v ∈ V , let

Ω(x, v) = {y ∈ Ω : y(w) = x(w) for all w 6= v} (3.6)
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be the set of states agreeing with x everywhere except possibly at v, and define

πx,v(y) = π(y | Ω(x, v)) =

{
π(y)

π(Ω(x,v)) if y ∈ Ω(x, v),

0 if y 6∈ Ω(x, v)

to be the distribution π conditioned on the set Ω(x, v). The rule for updating a con-
figuration x is: pick a vertex v uniformly at random, and choose a new configuration
according to πx,v.

The distribution π is always stationary and reversible for the Glauber dynamics
(see Exercise 3.2).

3.3.3. Comparing Glauber dynamics and Metropolis chains. Suppose
now that π is a probability distribution on the state space SV , where S is a finite
set and V is the vertex set of a graph. We can always define the Glauber chain
as just described. Suppose on the other hand that we have a chain which picks
a vertex v at random and has some mechanism for updating the configuration at
v. (For example, the chain may pick an element of S at random to update at v.)
This chain may not have stationary distribution π, but it can be modified by the
Metropolis rule to obtain a chain with stationary distribution π. This chain can be
very similar to the Glauber chain, but may not coincide exactly. We consider our
examples.

Example 3.5 (Chains on q-colorings). Consider the following chain on (not
necessarily proper) q-colorings: a vertex v is chosen uniformly at random, a color
is selected uniformly at random among all q colors, and the vertex v is recolored
with the chosen color. We apply the Metropolis rule to this chain, where π is the
probability measure which is uniform over the space of proper q-colorings. When at
a proper coloring, if the color k is proposed to update a vertex, then the Metropolis
rule accepts the proposed re-coloring with probability 1 if it yields a proper coloring
and rejects otherwise.

The Glauber chain described in Section 3.3.1 is slightly different. Note in
particular that the chance of remaining at the same coloring differs for the two
chains. If there are a allowable colors at vertex v and this vertex v is selected for
updating in the Glauber dynamics, the chance that the coloring remains the same
is 1/a. For the Metropolis chain, if vertex v is selected, the chance of remaining in
the current coloring is (1 + q − a)/q.

Example 3.6 (Hardcore chains). Again identify elements of {0, 1}V with a
placement of particles onto the vertex set V , and consider the following chain on
{0, 1}V : a vertex is chosen at random, and a particle is placed at the selected
vertex with probability 1/2. This chain does not live on the space of hardcore
configurations, as there is no constraint against placing a particle on a vertex with
an occupied neighbor.

We can modify this chain with the Metropolis rule to obtain a chain with
stationary distribution π, where π is uniform over hardcore configurations. If x
is a hardcore configuration, the move x → y is rejected if and only if y is not a
hardcore configuration. The Metropolis chain and the Glauber dynamics agree in
this example.

3.3.4. Hardcore model with fugacity. Let G = (V,E) be a graph and let
Ω be the set of hardcore configurations on G. The hardcore model with fugacity
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λ is the probability π on hardcore configurations defined by

π(σ) =

{
λ

P
v∈V σ(v)

Z(λ) if σ(v)σ(w) = 0 for all {v, w} ∈ E,
0 otherwise.

The factor Z(λ) =
∑

σ∈Ω λ
P

v∈V σ(v) normalizes π to have unit total mass.
The Glauber dynamics for the hardcore model updates a configuration Xt = σ

to a new configuration Xt+1 as follows: a vertex w is chosen at random. Denote
the set of occupied neighbors of w by N , so that

N (w) := {v : v ∼ w and σ(v) = 1}.
If N (w) 6= ∅, then Xt+1 = σ. If N (w) = ∅, then set

Xt+1(w) =

{
1 with probability λ/(1 + λ),

0 with probability 1/(1 + λ).

Set Xt+1(v) = σ(v) for all v 6= w.

3.3.5. The Ising model. A spin system is a probability distribution on
Ω = {−1, 1}V , where V is the vertex set of a graph G = (V,E). The value σ(v)
is called the spin at v. The physical interpretation is that magnets, each having
one of the two possible orientations represented by +1 and −1, are placed on the
vertices of the graph; a configuration specifies the orientations of these magnets.

The nearest-neighbor Ising model is the most widely studied spin system. In
this system, the energy of a configuration σ is defined to be

H(σ) = −
∑

v,w∈V
v∼w

σ(v)σ(w). (3.7)

Clearly, the energy increases with the number of pairs of neighbors whose spins
disagree (anyone who has played with magnets has observed firsthand that it is
challenging to place neighboring magnets in opposite orientations and keep them
there).

The Gibbs distribution corresponding to the energy H is the probability
distribution µ on Ω defined by

µ(σ) =
1

Z(β)
e−βH(σ). (3.8)

Here the partition function Z(β) is the normalizing constant required to make
µ a probability distribution:

Z(β) :=
∑

σ∈Ω

e−βH(σ). (3.9)

The parameter β ≥ 0 determines the importance of the energy function. In the
physical interpretation, β is the reciprocal of temperature. At infinite temperature
(β = 0), the energy function H plays no role and µ is the uniform distribution on
Ω. In this case, there is no interaction between the spins at differing vertices and
the random variables {σ(v)}v∈V are independent. As β > 0 increases, the bias of µ
towards low-energy configurations also increases. See Figure 3.2 for an illustration
of the effect of β on configurations.

The Glauber dynamics for the Gibbs distribution µ move from a starting con-
figuration σ by picking a vertex w uniformly at random from V and then generating
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Figure 3.2. Glauber dynamics for the Ising model on the 250×
250 torus viewed at times t = 1,000, 16,500, and 1,000 at low, crit-
ical, and high temperature, respectively. Simulations and graphics
courtesy of Raissa D’Souza.

a new configuration according to µ conditioned on the set of configurations agreeing
with σ on vertices different from w.

The reader can check that the conditional µ-probability of spin +1 at w is

p(σ,w) :=
eβS(σ,w)

eβS(σ,w) + e−βS(σ,w)
=

1 + tanh(βS(σ,w))

2
, (3.10)

where S(σ,w) :=
∑
u :u∼w σ(u). Note that p(σ,w) depends only on the spins at

vertices adjacent to w. Therefore, the transition matrix on Ω is given by

P (σ, σ′) =
1

|V |
∑

v∈V

eβ σ
′(w)S(σ,w)

eβ σ′(w)S(σ,w) + e−β σ′(w)S(σ,w)
· 1{σ(v)=σ′(v) for v 6=w}. (3.11)

This chain has stationary distribution given by the Gibbs distribution µ.

Exercises

Exercise 3.1. Let Ψ be an irreducible transition matrix on Ω, and let π be a
probability distribution on Ω. Show that the transition matrix

P (x, y) =





Ψ(x, y)
[
π(y)Ψ(y,x)
π(x)Ψ(x,y) ∧ 1

]
if y 6= x,

1− ∑
z : z 6=x

Ψ(x, z)
[
π(z)Ψ(z,x)
π(x)Ψ(x,z) ∧ 1

]
if y = x

defines a reversible Markov chain with stationary distribution π.

Exercise 3.2. Verify that the Glauber dynamics for π is a reversible Markov
chain with stationary distribution π.

Notes

The Metropolis chain was introduced in Metropolis, Rosenbluth, Teller, and
Teller (1953) for a specific stationary distribution. Hastings (1970) extended the
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method to general chains and distributions. The survey by Diaconis and Saloff-
Coste (1998) contains more on the Metropolis algorithm. The textbook by Brémaud
(1999) also discusses the use of the Metropolis algorithm for Monte Carlo sampling.

Variations on the randomized hill climb in Example 3.2 used to locate extrema,
especially when the parameter λ is tuned as the walk progresses, are called sim-
ulated annealing algorithms. Significant references are Holley and Stroock (1988)
and Hajek (1988).

We will have much more to say about Glauber dynamics for colorings in Section
14.3 and about Glauber dynamics for the Ising model in Chapter 15.

Häggström (2007) proves interesting inequalities using the Markov chains of
this chapter.





CHAPTER 4

Introduction to Markov Chain Mixing

We are now ready to discuss the long-term behavior of finite Markov chains.
Since we are interested in quantifying the speed of convergence of families of Markov
chains, we need to choose an appropriate metric for measuring the distance between
distributions.

First we define total variation distance and give several characterizations
of it, all of which will be useful in our future work. Next we prove the Convergence
Theorem (Theorem 4.9), which says that for an irreducible and aperiodic chain
the distribution after many steps approaches the chain’s stationary distribution,
in the sense that the total variation distance between them approaches 0. In the
rest of the chapter we examine the effects of the initial distribution on distance
from stationarity, define the mixing time of a chain, consider circumstances under
which related chains can have identical mixing, and prove a version of the Ergodic
Theorem (Theorem 4.16) for Markov chains.

4.1. Total Variation Distance

The total variation distance between two probability distributions µ and ν
on Ω is defined by

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)| . (4.1)

This definition is explicitly probabilistic: the distance between µ and ν is the
maximum difference between the probabilities assigned to a single event by the
two distributions.

Example 4.1. Recall the coin-tossing frog of Example 1.1, who has probability
p of jumping from east to west and probability q of jumping from west to east. His

transition matrix is
( 1−p p

q 1−q
)

and his stationary distribution is π =
(

q
p+q ,

p
p+q

)
.

Assume the frog starts at the east pad (that is, µ0 = (1, 0)) and define

∆t = µt(e)− π(e).

Since there are only two states, there are only four possible events A ⊆ Ω. Hence
it is easy to check (and you should) that

‖µt − π‖TV = ∆t = P t(e, e)− π(e) = π(w) − P t(e, w).

We pointed out in Example 1.1 that ∆t = (1 − p − q)t∆0. Hence for this two-
state chain, the total variation distance decreases exponentially fast as t increases.
(Note that (1 − p − q) is an eigenvalue of P ; we will discuss connections between
eigenvalues and mixing in Chapter 12.)

The definition of total variation distance (4.1) is a maximum over all subsets
of Ω, so using this definition is not always the most convenient way to estimate

47
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I
II

B Bc

Μ

Ν

Figure 4.1. Recall that B = {x : µ(x) > ν(x)}. Region I has
area µ(B) − ν(B). Region II has area ν(Bc) − µ(Bc). Since the
total area under each of µ and ν is 1, regions I and II must have
the same area—and that area is ‖µ− ν‖TV .

the distance. We now give three extremely useful alternative characterizations.
Proposition 4.2 reduces total variation distance to a simple sum over the state
space. Proposition 4.7 uses coupling to give another probabilistic interpretation:
‖µ− ν‖TV measures how close to identical we can force two random variables re-
alizing µ and ν to be.

Proposition 4.2. Let µ and ν be two probability distributions on Ω. Then

‖µ− ν‖TV =
1

2

∑

x∈Ω

|µ(x) − ν(x)| . (4.2)

Proof. Let B = {x : µ(x) ≥ ν(x)} and let A ⊂ Ω be any event. Then

µ(A) − ν(A) ≤ µ(A ∩B)− ν(A ∩B) ≤ µ(B) − ν(B). (4.3)

The first inequality is true because any x ∈ A∩Bc satisfies µ(x)− ν(x) < 0, so the
difference in probability cannot decrease when such elements are eliminated. For
the second inequality, note that including more elements of B cannot decrease the
difference in probability.

By exactly parallel reasoning,

ν(A) − µ(A) ≤ ν(Bc)− µ(Bc). (4.4)

Fortunately, the upper bounds on the right-hand sides of (4.3) and (4.4) are actually
the same (as can be seen by subtracting them; see Figure 4.1). Furthermore, when
we take A = B (or Bc), then |µ(A)− ν(A)| is equal to the upper bound. Thus

‖µ− ν‖TV =
1

2
[µ(B)− ν(B) + ν(Bc)− µ(Bc)] =

1

2

∑

x∈Ω

|µ(x) − ν(x)|.

�

Remark 4.3. The proof of Proposition 4.2 also shows that

‖µ− ν‖TV =
∑

x∈Ω
µ(x)≥ν(x)

[µ(x)− ν(x)], (4.5)

which is a useful identity.
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Remark 4.4. From Proposition 4.2 and the triangle inequality for real num-
bers, it is easy to see that total variation distance satisfies the triangle inequality:
for probability distributions µ, ν and η,

‖µ− ν‖TV ≤ ‖µ− η‖TV + ‖η − ν‖TV . (4.6)

Proposition 4.5. Let µ and ν be two probability distributions on Ω. Then the
total variation distance between them satisfies

‖µ− ν‖TV

=
1

2
sup

{∑

x∈Ω

f(x)µ(x) −
∑

x∈Ω

f(x)ν(x) : f satisfying max
x∈Ω
|f(x)| ≤ 1

}
. (4.7)

Proof. When f satisfies maxx∈Ω |f(x)| ≤ 1, we have

1

2

∣∣∣∣∣
∑

x∈Ω

f(x)µ(x) −
∑

x∈Ω

f(x)ν(x)

∣∣∣∣∣ ≤
1

2

∑

x∈Ω

|f(x)[µ(x) − ν(x)]|

≤ 1

2

∑

x∈Ω

|µ(x) − ν(x)|

= ‖µ− ν‖TV ,
which shows that the right-hand side of (4.7) is not more than ‖µ− ν‖TV . Define

f⋆(x) =

{
1 if x satisfies µ(x) ≥ ν(x),
−1 if x satisfies µ(x) < ν(x).

Then

1

2

[∑

x∈Ω

f⋆(x)µ(x) −
∑

x∈Ω

f⋆(x)ν(x)

]
=

1

2

∑

x∈Ω

f⋆(x)[µ(x) − ν(x)]

=
1

2




∑

x∈Ω
µ(x)≥ν(x)

[µ(x) − ν(x)] +
∑

x∈Ω
ν(x)>µ(x)

[ν(x) − µ(x)]


 .

Using (4.5) shows that the right-hand side above equals ‖µ− ν‖TV . Hence the
right-hand side of (4.7) is at least ‖µ− ν‖TV . �

4.2. Coupling and Total Variation Distance

A coupling of two probability distributions µ and ν is a pair of random vari-
ables (X,Y ) defined on a single probability space such that the marginal distribu-
tion of X is µ and the marginal distribution of Y is ν. That is, a coupling (X,Y )
satisfies P{X = x} = µ(x) and P{Y = y} = ν(y).

Coupling is a general and powerful technique; it can be applied in many differ-
ent ways. Indeed, Chapters 5 and 14 use couplings of entire chain trajectories to
bound rates of convergence to stationarity. Here, we offer a gentle introduction by
showing the close connection between couplings of two random variables and the
total variation distance between those variables.

Example 4.6. Let µ and ν both be the “fair coin” measure giving weight 1/2
to the elements of {0, 1}.
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(i) One way to couple µ and ν is to define (X,Y ) to be a pair of independent
coins, so that P{X = x, Y = y} = 1/4 for all x, y ∈ {0, 1}.

(ii) Another way to couple µ and ν is to let X be a fair coin toss and define
Y = X . In this case, P{X = Y = 0} = 1/2, P{X = Y = 1} = 1/2, and
P{X 6= Y } = 0.

Given a coupling (X,Y ) of µ and ν, if q is the joint distribution of (X,Y ) on
Ω× Ω, meaning that q(x, y) = P{X = x, Y = y}, then q satisfies

∑

y∈Ω

q(x, y) =
∑

y∈Ω

P{X = x, Y = y} = P{X = x} = µ(x)

and ∑

x∈Ω

q(x, y) =
∑

x∈Ω

P{X = x, Y = y} = P{Y = y} = ν(y).

Conversely, given a probability distribution q on the product space Ω × Ω which
satisfies ∑

y∈Ω

q(x, y) = µ(x) and
∑

x∈Ω

q(x, y) = ν(y),

there is a pair of random variables (X,Y ) having q as their joint distribution – and
consequently this pair (X,Y ) is a coupling of µ and ν. In summary, a coupling
can be specified either by a pair of random variables (X,Y ) defined on a common
probability space or by a distribution q on Ω× Ω.

Returning to Example 4.6, the coupling in part (i) could equivalently be spec-
ified by the probability distribution q1 on {0, 1}2 given by

q1(x, y) =
1

4
for all (x, y) ∈ {0, 1}2.

Likewise, the coupling in part (ii) can be identified with the probability distribution
q2 given by

q2(x, y) =

{
1
2 if (x, y) = (0, 0), (x, y) = (1, 1),

0 if (x, y) = (0, 1), (x, y) = (1, 0).

Any two distributions µ and ν have an independent coupling. However, when µ
and ν are not identical, it will not be possible for X and Y to always have the same
value. How close can a coupling get to having X and Y identical? Total variation
distance gives the answer.

Proposition 4.7. Let µ and ν be two probability distributions on Ω. Then

‖µ− ν‖TV = inf {P{X 6= Y } : (X,Y ) is a coupling of µ and ν} . (4.8)

Remark 4.8. We will in fact show that there is a coupling (X,Y ) which attains
the infimum in (4.8). We will call such a coupling optimal .

Proof. First, we note that for any coupling (X,Y ) of µ and ν and any event
A ⊂ Ω,

µ(A)− ν(A) = P{X ∈ A} −P{Y ∈ A} (4.9)

≤ P{X ∈ A, Y 6∈ A} (4.10)

≤ P{X 6= Y }. (4.11)
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I
II

III

Μ

Ν

Figure 4.2. Since each of regions I and II has area ‖µ− ν‖TV
and µ and ν are probability measures, region III has area 1 −
‖µ− ν‖TV .

(Dropping the event {X 6∈ A, Y ∈ A} from the second term of the difference gives
the first inequality.) It immediately follows that

‖µ− ν‖TV ≤ inf {P{X 6= Y } : (X,Y ) is a coupling of µ and ν} . (4.12)

It will suffice to construct a coupling for which P{X 6= Y } is exactly equal to
‖µ− ν‖TV . We will do so by forcing X and Y to be equal as often as they possibly
can be. Consider Figure 4.2. Region III, bounded by µ(x)∧ν(x) = min{µ(x), ν(x)},
can be seen as the overlap between the two distributions. Informally, our coupling
proceeds by choosing a point in the union of regions I, II, and III. Whenever we
“land” in region III, we take X = Y . Otherwise, we accept that X must be in
region I and Y must be in region II; since those regions have disjoint support, X
and Y cannot be equal.

More formally, we use the following procedure to generate X and Y . Let

p =
∑

x∈Ω

µ(x) ∧ ν(x).

Write ∑

x∈Ω

µ(x) ∧ ν(x) =
∑

x∈Ω,
µ(x)≤ν(x)

µ(x) +
∑

x∈Ω,
µ(x)>ν(x)

ν(x).

Adding and subtracting
∑

x :µ(x)>ν(x) µ(x) to the right-hand side above shows that
∑

x∈Ω

µ(x) ∧ ν(x) = 1−
∑

x∈Ω,
µ(x)>ν(x)

[µ(x)− ν(x)].

By equation (4.5) and the immediately preceding equation,
∑

x∈Ω

µ(x) ∧ ν(x) = 1− ‖µ− ν‖TV = p. (4.13)

Flip a coin with probability of heads equal to p.

(i) If the coin comes up heads, then choose a value Z according to the probability
distribution

γIII(x) =
µ(x) ∧ ν(x)

p
,

and set X = Y = Z.
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(ii) If the coin comes up tails, choose X according to the probability distribution

γI(x) =

{
µ(x)−ν(x)
‖µ−ν‖TV

if µ(x) > ν(x),

0 otherwise,

and independently choose Y according to the probability distribution

γII(x) =

{
ν(x)−µ(x)
‖µ−ν‖TV

if ν(x) > µ(x),

0 otherwise.

Note that (4.5) ensures that γI and γII are probability distributions.
Clearly,

pγIII + (1− p)γI = µ,

pγIII + (1− p)γII = ν,

so that the distribution of X is µ and the distribution of Y is ν. Note that in the
case that the coin lands tails up, X 6= Y since γI and γII are positive on disjoint
subsets of Ω. Thus X = Y if and only if the coin toss is heads. We conclude that

P{X 6= Y } = ‖µ− ν‖TV .
�

4.3. The Convergence Theorem

We are now ready to prove that irreducible, aperiodic Markov chains converge
to their stationary distributions—a key step, as much of the rest of the book will be
devoted to estimating the rate at which this convergence occurs. The assumption
of aperiodicity is indeed necessary—recall the even n-cycle of Example 1.4.

As is often true of such fundamental facts, there are many proofs of the Conver-
gence Theorem. The one given here decomposes the chain into a mixture of repeated
independent sampling from the stationary distribution and another Markov chain.
See Exercise 5.1 for another proof using two coupled copies of the chain.

Theorem 4.9 (Convergence Theorem). Suppose that P is irreducible and ape-
riodic, with stationary distribution π. Then there exist constants α ∈ (0, 1) and
C > 0 such that

max
x∈Ω

∥∥P t(x, ·)− π
∥∥

TV
≤ Cαt. (4.14)

Proof. Since P is irreducible and aperiodic, by Proposition 1.7 there exists
an r such that P r has strictly positive entries. Let Π be the matrix with |Ω| rows,
each of which is the row vector π. For sufficiently small δ > 0, we have

P r(x, y) ≥ δπ(y)

for all x, y ∈ Ω. Let θ = 1− δ. The equation

P r = (1 − θ)Π + θQ (4.15)

defines a stochastic matrix Q.
It is a straightforward computation to check that MΠ = Π for any stochastic

matrix M and that ΠM = Π for any matrix M such that πM = π.
Next, we use induction to demonstrate that

P rk =
(
1− θk

)
Π + θkQk (4.16)
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for k ≥ 1. If k = 1, this holds by (4.15). Assuming that (4.16) holds for k = n,

P r(n+1) = P rnP r = [(1− θn)Π + θnQn]P r. (4.17)

Distributing and expanding P r in the second term (using (4.15)) gives

P r(n+1) = [1− θn] ΠP r + (1− θ)θnQnΠ + θn+1QnQ. (4.18)

Using that ΠP r = Π and QnΠ = Π shows that

P r(n+1) =
[
1− θn+1

]
Π + θn+1Qn+1. (4.19)

This establishes (4.16) for k = n + 1 (assuming it holds for k = n), and hence it
holds for all k.

Multiplying by P j and rearranging terms now yields

P rk+j −Π = θk
(
QkP j −Π

)
. (4.20)

To complete the proof, sum the absolute values of the elements in row x0 on both
sides of (4.20) and divide by 2. On the right, the second factor is at most the
largest possible total variation distance between distributions, which is 1. Hence
for any x0 we have ∥∥P rk+j(x0, ·)− π

∥∥
TV
≤ θk. (4.21)

�

Remark 4.10. Because of Theorem 4.9, the distribution π is also called the
equilibrium distribution .

4.4. Standardizing Distance from Stationarity

Bounding the maximal distance (over x0 ∈ Ω) between P t(x0, ·) and π is among
our primary objectives. It is therefore convenient to define

d(t) := max
x∈Ω

∥∥P t(x, ·) − π
∥∥

TV
. (4.22)

We will see in Chapter 5 that it is often possible to bound ‖P t(x, ·)− P t(y, ·)‖TV ,
uniformly over all pairs of states (x, y). We therefore make the definition

d̄(t) := max
x,y∈Ω

∥∥P t(x, ·) − P t(y, ·)
∥∥

TV
. (4.23)

The relationship between d and d̄ is given below:

Lemma 4.11. If d(t) and d̄(t) are as defined in (4.22) and (4.23), respectively,
then

d(t) ≤ d̄(t) ≤ 2d(t). (4.24)

Proof. It is immediate from the triangle inequality for the total variation
distance that d̄(t) ≤ 2d(t).

To show that d(t) ≤ d̄(t), note first that since π is stationary, we have π(A) =∑
y∈Ω π(y)P t(y,A) for any set A. (This is the definition of stationarity if A is a

singleton {x}. To get this for arbitrary A, just sum over the elements in A.) Using
this shows that

∥∥P t(x, ·) − π
∥∥

TV
= max

A⊂Ω
|P t(x,A) − π(A)|

= max
A⊂Ω

∣∣∣∣∣∣
∑

y∈Ω

π(y)
[
P t(x,A)− P t(y,A)

]
∣∣∣∣∣∣
.
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We can use the triangle inequality and the fact that the maximum of a sum is not
larger than the sum over a maximum to bound the right-hand side above by

max
A⊂Ω

∑

y∈Ω

π(y)|P t(x,A)− P t(y,A)| ≤
∑

y∈Ω

π(y)max
A⊂Ω
|P t(x,A) − P t(y,A)|

=
∑

y∈Ω

π(y)
∥∥P t(x, ·)− P t(y, ·)

∥∥
TV

. (4.25)

Since a weighted average of a set of numbers is never larger than its maximum
element, the right-hand side of (4.25) is bounded by maxy∈Ω ‖P t(x, ·)− P t(y, ·)‖TV .

�

Let P denote the collection of all probability distributions on Ω. Exercise 4.1
asks the reader to prove the following equalities:

d(t) = sup
µ∈P

∥∥µP t − π
∥∥

TV
,

d̄(t) = sup
µ,ν∈P

∥∥µP t − νP t
∥∥

TV
.

Lemma 4.12. The function d̄ is submultiplicative: d̄(s+ t) ≤ d̄(s)d̄(t).
Proof. Fix x, y ∈ Ω, and let (Xs, Ys) be the optimal coupling of P s(x, ·) and

P s(y, ·) whose existence is guaranteed by Proposition 4.7. Hence

‖P s(x, ·) − P s(y, ·)‖TV = P{Xs 6= Ys}.
As P s+t is the matrix product of P t and P s and the distribution of Xs is

P s(x, ·), we have

P s+t(x,w) =
∑

z

P s(x, z)P t(z, w) =
∑

z

P{Xs = z}P t(z, w) = E
(
P t(Xs, w)

)
.

(4.26)
Combining this with the similar identity P s+t(y, w) = E (P t(Ys, w)) allows us to
write

P s+t(x,w) − P s+t(y, w) = E
(
P t(Xs, w)

)
−E

(
P t(Ys, w)

)

= E
(
P t(Xs, w)− P t(Ys, w)

)
.

(4.27)

Combining the expectations is possible since Xs and Ys are defined together on the
same probability space.

Summing (4.27) over w ∈ Ω and applying Proposition 4.2 shows that
∥∥P s+t(x, ·) − P s+t(y, ·)

∥∥
TV

=
1

2

∑

w

∣∣E
(
P t(Xs, w)− P t(Ys, w)

)∣∣ . (4.28)

The right-hand side above is less than or equal to

E

(
1

2

∑

w

∣∣P t(Xs, w)− P t(Ys, w)
∣∣
)
. (4.29)

Applying Proposition 4.2 again, we see that the quantity inside the expectation is
exactly the distance ‖P t(Xs, ·)− P t(Ys, ·)‖TV , which is zero whenever Xs = Ys.
Moreover, this distance is always bounded by d̄(t). This shows that∥∥P s+t(x, ·)− P s+t(y, ·)

∥∥
TV
≤ d̄(t)E

(
1{Xs 6=Ys}

)
= d̄(t)P{Xs 6= Ys}. (4.30)

Finally, since (Xs, Ys) is an optimal coupling, the probability on the right-hand side
is equal to ‖P s(x, ·) − P s(y, ·)‖TV . Maximizing over x, y completes the proof. �
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Exercise 4.3 implies that d̄(t) is non-increasing in t. From this and Lemma 4.12
it follows that when c is any non-negative integer and t is any non-negative integer,
we have

d(ct) ≤ d̄(ct) ≤ d̄(t)c. (4.31)

4.5. Mixing Time

It is useful to introduce a parameter which measures the time required by a
Markov chain for the distance to stationarity to be small. The mixing time is
defined by

tmix(ε) := min{t : d(t) ≤ ε} (4.32)

and

tmix := tmix(1/4). (4.33)

Lemma 4.11 and (4.31) show that when ℓ is a non-negative integer,

d( ℓtmix(ε) ) ≤ d̄( ℓtmix(ε) ) ≤ d̄( tmix(ε) )ℓ ≤ (2ε)ℓ. (4.34)

In particular, taking ε = 1/4 above yields

d( ℓtmix ) ≤ 2−ℓ (4.35)

and

tmix(ε) ≤
⌈
log2 ε

−1
⌉
tmix. (4.36)

Thus, although the choice of 1/4 is arbitrary in the definition (4.33) of tmix, a value
of ε less than 1/2 is needed to make the inequality d( ℓtmix(ε) ) ≤ (2ε)ℓ in (4.34)
non-trivial and to achieve an inequality of the form (4.36).

4.6. Mixing and Time Reversal

For a distribution µ on a group G, the inverse distribution µ̂ is defined by
µ̂(g) := µ(g−1) for all g ∈ G. Let P be the transition matrix of the random walk
with increment distribution µ. Then the random walk with increment distribution

µ̂ is exactly the time reversal P̂ (defined in (1.33)) of P .
In Proposition 2.14 we noted that when µ̂ = µ, the random walk on G with

increment distribution µ is reversible, so that P = P̂ . Even when µ is not a
symmetric distribution, however, the forward and reversed walks must be at the
same distance from stationarity, as we will find useful in analyzing card shuffling in
Chapters 6 and 8.

Lemma 4.13. Let P be the transition matrix of a random walk on a group G

with increment distribution µ and let P̂ be that of the walk on G with increment
distribution µ̂. Let π be the uniform distribution on G. Then for any t ≥ 0

∥∥P t(id, ·)− π
∥∥

TV
=
∥∥∥P̂ t(id, ·)− π

∥∥∥
TV

.

Proof. Let (Xt) = (id, X1, . . . ) be a Markov chain with transition matrix P
and initial state id. We can write Xk = g1g2 . . . gk, where the random elements
g1, g2, · · · ∈ G are independent choices from the distribution µ. Similarly, let (Yt)



56 4. INTRODUCTION TO MARKOV CHAIN MIXING

time t : 1 0 1 0 0 1 1 1 0 0 0 0
time t+ 1 : 1 0 1 0 0 1 1 1 0 0 0 0
time t+ 2 : 1 0 1 0 0 1 1 1 0 0 0 0

Figure 4.3. The winning streak for n = 5. Here Xt = 2, Xt+1 =
3, and Xt+2 = 0.

time t : 1 0 1 0 0 1 1 1 0 0 0 0
time t+ 1 : 1 0 1 0 0 1 1 1 0 0 0 0
time t+ 2 : 1 0 1 0 0 1 1 1 0 0 0 0

Figure 4.4. The time reversal of the winning streak for n = 5.

Here X̂t = 0, X̂t+1 = 3, and X̂t+2 = 2.

0 1 2 3 4 5 0 1 2 3 4 5

Figure 4.5. The underlying graphs of the transitions of (a) the
winning streak chain for n = 5 and (b) its time reversal.

be a chain with transition matrix P̂ , with increments h1, h2, · · · ∈ G chosen inde-
pendently from µ̂. For any fixed elements a1, . . . , at ∈ G,

P{g1 = a1, . . . , gt = at} = P{h1 = a−1
t , . . . , ht = a−1

1 },
by the definition of P̂ . Summing over all strings such that a1a2 . . . at = a yields

P t(id, a) = P̂ t(id, a−1).

Hence
∑

a∈G

∣∣P t(id, a)− |G|−1
∣∣ =

∑

a∈G

∣∣∣P̂ t(id, a−1)− |G|−1
∣∣∣ =

∑

a∈G

∣∣∣P̂ t(id, a)− |G|−1
∣∣∣

which together with Proposition 4.2 implies the desired result. �

Corollary 4.14. If tmix is the mixing time of a random walk on a group and
t̂mix is the mixing time of the inverse walk, then tmix = t̂mix.

Example 4.15. It is also possible for reversing a Markov chain to significantly
change the mixing time. The winning streak is an example. Here we bound the
mixing time of its time reversal. The mixing time of the winning streak itself is
discussed in Section 5.3.5.

Imagine a creature with bounded memory tossing a fair coin repeatedly and
trying to track the length of the last run of heads. If there have been more than n
heads in a row, the creature only remembers n of them. Hence the current state of
our chain is the minimum of n and the length of the last run of heads.
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Equivalently, consider a window of width n moving rightwards along an infinite
string of independent fair bits, and let Xt be the length of the block of 1’s starting
at the right endpoint of the window. Then (Xt) is a Markov chain with state space
{0, . . . , n} and non-zero transitions given by

P (i, 0) = 1/2 for 0 ≤ i ≤ n,
P (i, i+ 1) = 1/2 for 0 ≤ i < n,

P (n, n) = 1/2. (4.37)

See Figures 4.3 and 4.5. It is straightforward to check that

π(i) =

{
1/2i+1 if i = 0, 1, . . . , n− 1,

1/2n if i = n
(4.38)

is stationary for P . It is also straightforward to check that the time reversal of P
has non-zero entries

P̂ (0, i) = π(i) for 0 ≤ i ≤ n,
P̂ (i, i− 1) = 1 for 1 ≤ i < n,

P̂ (n, n) = P (n, n− 1) = 1/2. (4.39)

The coin-flip interpretation of the winning streak carries over to its time reversal.
Imagine a window of width nmoving leftwards along a string of independent random

bits. Then the sequence of lengths (X̂t) of the rightmost block of 1’s in the window
is a version of the reverse winning streak chain. See Figures 4.4 and 4.5.

The time reversal of the mixing streak has the following remarkable property:
after n steps, its distribution is exactly stationary, regardless of initial distribution.

Why? Note first that if X̂t = 0, then the distribution of X̂t′ is stationary for

all t′ > t, since P̂ (0, ·) = π. If X̂0 = k < n, then the determined transitions

force Xk = 0, so the chain is stationary for t > k. If X̂0 = n, then the location

of X̂n depends on the amount of time the chain spends at n before leaving. For
0 < k < n, the chain has probability 1/2k of holding k − 1 times, then moving on

the k-th turn. In this case X̂k = n − 1 and X̂n = k − 1. Also, P̂n(n, n) = 1/2n,

so P̂n(n, ·) = π. Finally, if the initial distribution is not concentrated at a single
state, the distribution at time n is a mixture of the distributions from each possible
starting state and is thus stationary.

For a lower bound, note that if the chain is started at n and leaves immedi-

ately, then at time n − 1 it must be at state 1. Hence P̂n−1(n, 1) = 1/2, and the
definition (4.1) of total variation distance implies that

d(n− 1) ≥ |P̂n−1(n, 1)− π(1)| = 1

4
.

We conclude that for the reverse winning streak chain, we have

tmix(ε) = n

for any positive ε ≤ 1/4.
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4.7. Ergodic Theorem*

The idea of the ergodic theorem for Markov chains is that “time averages equal
space averages”.

If f is a real-valued function defined on Ω and µ is any probability distribution
on Ω, then we define

Eµ(f) =
∑

x∈Ω

f(x)µ(x).

Theorem 4.16 (Ergodic Theorem). Let f be a real-valued function defined on
Ω. If (Xt) is an irreducible Markov chain, then for any starting distribution µ,

Pµ

{
lim
t→∞

1

t

t−1∑

s=0

f(Xs) = Eπ(f)

}
= 1. (4.40)

Proof. Suppose that the chain starts at x. Define τ+
x,0 := 0 and

τ+
x,k := min{t > τ+

x,(k−1) : Xt = x}.
Since the chain “starts afresh” every time it visits x, the blocks Xτ+

x,k
, Xτ+

x,k
+1, . . . ,

Xτ+
x,(k+1)

−1 are independent of one another. Thus if

Yk :=

τ+
x,k−1∑

s=τ+
x,(k−1)

f(Xs),

then the sequence (Yk) is i.i.d. If St =
∑t−1
s=0 f(Xs), then Sτ+

x,n
=
∑n
k=1 Yk, and by

the Strong Law of Large Numbers (Theorem A.8),

Px

{
lim
n→∞

Sτ+
x,n

n
= Ex(Y1)

}
= 1.

Again by the Strong Law of Large Numbers, since τ+
x,n =

∑n
k=1(τ

+
x,k − τ+

x,(k−1)),

writing simply τ+
x for τ+

x,1,

Px

{
lim
n→∞

τ+
x,n

n
= Ex(τ

+
x )

}
= 1.

Thus,

Px

{
lim
n→∞

Sτ+
x,n

τ+
x,n

=
Ex(Y1)

Ex(τ
+
x )

}
= 1. (4.41)

Note that

Ex(Y1) = Ex



τ+

x −1∑

s=0

f(Xs)




= Ex


∑

y∈Ω

f(y)

τ+
x −1∑

s=0

1{Xs=y}


 =

∑

y∈Ω

f(y)Ex



τ+

x −1∑

s=0

1{Xs=y}


 .

Using (1.25) shows that

Ex(Y1) = Eπ(f)Ex(τ
+
x ). (4.42)
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Putting together (4.41) and (4.42) shows that

Px

{
lim
n→∞

Sτ+
x,n

τ+
x,n

= Eπ(f)

}
= 1.

Exercise 4.2 shows that (4.40) holds when µ = δx, the probability distribution with
unit mass at x. Averaging over the starting state completes the proof. �

Taking f(y) = δx(y) = 1{y=x} in Theorem 4.16 shows that

Pµ

{
lim
t→∞

1

t

t−1∑

s=0

1{Xs=x} = π(x)

}
= 1,

so the asymptotic proportion of time the chain spends in state x equals π(x).

Exercises

Exercise 4.1. Prove that

d(t) = sup
µ

∥∥µP t − π
∥∥

TV
,

d̄(t) = sup
µ,ν

∥∥µP t − νP t
∥∥

TV
,

where µ and ν vary over probability distributions on a finite set Ω.

Exercise 4.2. Let (an) be a bounded sequence. If, for a sequence of integers
(nk) satisfying limk→∞ nk/nk+1 = 1, we have

lim
k→∞

a1 + · · ·+ ank

nk
= a,

then

lim
n→∞

a1 + · · ·+ an
n

= a.

Exercise 4.3. Let P be the transition matrix of a Markov chain with state
space Ω and let µ and ν be any two distributions on Ω. Prove that

‖µP − νP‖TV ≤ ‖µ− ν‖TV .
(This in particular shows that

∥∥µP t+1 − π
∥∥

TV
≤ ‖µP t − π‖TV , that is, advancing

the chain can only move it closer to stationarity.)

Exercise 4.4. Let P be the transition matrix of a Markov chain with stationary
distribution π. Prove that for any t ≥ 0,

d(t+ 1) ≤ d(t),
where d(t) is defined by (4.22).

Exercise 4.5. For i = 1, . . . , n, let µi and νi be measures on Ωi, and define
measures µ and ν on

∏n
i=1 Ωi by µ :=

∏n
i=1 µi and ν :=

∏n
i=1 νi. Show that

‖µ− ν‖TV ≤
n∑

i=1

‖µi − νi‖TV .
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Notes

Our exposition of the Convergence Theorem follows Aldous and Diaconis (1986).
Another approach is to study the eigenvalues of the transition matrix. See, for in-
stance, Seneta (2006). Eigenvalues and eigenfunctions are often useful for bounding
mixing times, particularly for reversible chains, and we will study them in Chap-
ters 12 and 13. For convergence theorems for chains on infinite state spaces, see
Chapter 21.

Aldous (1983b, Lemma 3.5) is a version of our Lemma 4.12 and Exercise 4.4.
He says all these results “can probably be traced back to Doeblin.”

The winning streak example is taken from Lovász and Winkler (1998).
We emphasize total variation distance, but mixing time can be defined using

other distances. In particular, for 1 ≤ p <∞, the ℓp(π) distance between µ and ν
is defined as

‖µ− ν‖p =

[∑

x∈Ω

∣∣∣∣
µ(x)

π(x)
− ν(x)

π(x)

∣∣∣∣
p

π(x)

]1/p

.

The ℓ∞(π) distance is

‖µ− ν‖∞ = max
x∈Ω

∣∣∣∣
µ(x)

π(x)
− ν(x)

π(x)

∣∣∣∣ .

The separation distance, defined in Chapter 6, is often used.
The Hellinger distance dH , defined as

dH(µ, ν) :=

√∑

x∈Ω

(√
µ(x) −

√
ν(x)

)2

, (4.43)

behaves well on products (cf. Exercise 20.5). This distance is used in Section 20.4
to obtain a good bound on the mixing time for continuous product chains.

Further reading. Lovász (1993) gives the combinatorial view of mixing. Saloff-
Coste (1997) and Montenegro and Tetali (2006) emphasize analytic tools. Aldous
and Fill (1999) is indispensable. Other references include Sinclair (1993), Häggström
(2002), Jerrum (2003), and, for an elementary account of the Convergence Theo-
rem, Grinstead and Snell (1997, Chapter 11).

Complements. The result of Lemma 4.13 generalizes to transitive Markov
chains, which we defined in Section 2.6.2.

Lemma 4.17. Let P be the transition matrix of a transitive Markov chain with

state space Ω, let P̂ be its time reversal, and let π be the uniform distribution on
Ω. Then ∥∥∥P̂ t(x, ·) − π

∥∥∥
TV

=
∥∥P t(x, ·)− π

∥∥
TV

. (4.44)

Proof. Since our chain is transitive, for every x, y ∈ Ω there exists a bijection
ϕ(x,y) : Ω→ Ω that carries x to y and preserves transition probabilities.

Now, for any x, y ∈ Ω and any t,
∑

z∈Ω

∣∣P t(x, z)− |Ω|−1
∣∣ =

∑

z∈Ω

∣∣P t(ϕ(x,y)(x), ϕ(x,y)(z))− |Ω|−1
∣∣ (4.45)

=
∑

z∈Ω

∣∣P t(y, z)− |Ω|−1
∣∣ . (4.46)
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Averaging both sides over y yields
∑

z∈Ω

∣∣P t(x, z)− |Ω|−1
∣∣ = 1

|Ω|
∑

y∈Ω

∑

z∈Ω

∣∣P t(y, z)− |Ω|−1
∣∣ . (4.47)

Because π is uniform, we have P (y, z) = P̂ (z, y), and thus P t(y, z) = P̂ t(z, y). It
follows that the right-hand side above is equal to

1

|Ω|
∑

y∈Ω

∑

z∈Ω

∣∣∣P̂ t(z, y)− |Ω|−1
∣∣∣ =

1

|Ω|
∑

z∈Ω

∑

y∈Ω

∣∣∣P̂ t(z, y)− |Ω|−1
∣∣∣ . (4.48)

By Exercise 2.8, P̂ is also transitive, so (4.47) holds with P̂ replacing P (and z and
y interchanging roles). We conclude that

∑

z∈Ω

∣∣P t(x, z)− |Ω|−1
∣∣ =

∑

y∈Ω

∣∣∣P̂ t(x, y)− |Ω|−1
∣∣∣ . (4.49)

Dividing by 2 and applying Proposition 4.2 completes the proof. �

Remark 4.18. The proof of Lemma 4.13 established an exact correspondence
between forward and reversed trajectories, while that of Lemma 4.17 relied on
averaging over the state space.





CHAPTER 5

Coupling

5.1. Definition

As we defined in Section 4.1, a coupling of two probability distributions µ and
ν is a pair of random variables (X,Y ), defined on the same probability space, such
that the marginal distribution of X is µ and the marginal distribution of Y is ν.

Couplings are useful because a comparison between distributions is reduced to
a comparison between random variables. Proposition 4.7 characterized ‖µ− ν‖TV
as the minimum, over all couplings (X,Y ) of µ and ν, of the probability that X
and Y are different. This provides an effective method of obtaining upper bounds
on the distance.

In this chapter, we will extract more information by coupling not only pairs of
distributions, but entire Markov chain trajectories. Here is a simple initial example.

Example 5.1. A simple random walk on the segment {0, 1, . . . , n} is a Markov
chain which moves either up or down at each move with equal probability. If the
walk attempts to move outside the interval when at a boundary point, it stays put.
It is intuitively clear that P t(x, n) ≤ P t(y, n) whenever x ≤ y, as this says that the
chance of being at the “top” value n after t steps does not decrease as you increase
the height of the starting position.

A simple proof uses a coupling of the distributions P t(x, ·) and P t(y, ·). Let
∆1,∆2, . . . be a sequence of i.i.d. (that is, independent and identically distributed)
{−1, 1}-valued random variables with zero mean, so each ∆i is equally likely to be
+1 as −1. We will define together two random walks on {0, 1, . . . , n}: the walk
(Xt) starts at x, while the walk (Yt) starts at y.

We use the same rule for moving in both chains (Xt) and (Yt): if ∆t = +1,
move the chain up if possible, and if ∆t = −1, move the chain down if possible.
Hence the chains move in step, although they are started at different heights. Once
the two chains meet (necessarily either at 0 or n), they stay together thereafter.

4

t

Yt

0

1

2

3

x

y

X

Figure 5.1. Coupled random walks on {0, 1, 2, 3, 4}. The walks
stay together after meeting.
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Clearly the distribution of Xt is P t(x, ·), and the distribution of Yt is P t(y, ·).
Importantly, Xt and Yt are defined on the same underlying probability space, as
both chains use the sequence (∆t) to determine their moves.

It is clear that if x ≤ y, then Xt ≤ Yt for all t. In particular, if Xt = n, the top
state, then it must be that Yt = n also. From this we can conclude that

P t(x, n) = P{Xt = n} ≤ P{Yt = n} = P t(y, n). (5.1)

This argument shows the power of coupling. We were able to couple together
the two chains in such a way that Xt ≤ Yt always, and from this fact about the
random variables we could easily read off information about the distributions.

In the rest of this chapter, we will see how building two simultaneous copies of
a Markov chain using a common source of randomness, as we did in the previous
example, can be useful for getting bounds on the distance to stationarity.

We define a coupling of Markov chains with transition matrix P to be a
process (Xt, Yt)

∞
t=0 with the property that both (Xt) and (Yt) are Markov chains

with transition matrix P , although the two chains may possibly have different
starting distributions.

Any coupling of Markov chains with transition matrix P can be modified so
that the two chains stay together at all times after their first simultaneous visit to
a single state—more precisely, so that

if Xs = Ys, then Xt = Yt for t ≥ s. (5.2)

To construct a coupling satisfying (5.2), simply run the chains according to the
original coupling until they meet; then run them together.

Notation. If (Xt) and (Yt) are coupled Markov chains with X0 = x and
Y0 = y, then we will often write Px,y for the probability on the space where (Xt)
and (Yt) are both defined.

5.2. Bounding Total Variation Distance

As usual, we will fix an irreducible transition matrix P on the state space Ω
and write π for its stationary distribution. The following is the key tool used in
this chapter.

Theorem 5.2. Let {(Xt, Yt)} be a coupling satisfying (5.2) for which X0 = x
and Y0 = y. Let τcouple be the first time the chains meet:

τcouple := min{t : Xt = Yt}. (5.3)

Then ∥∥P t(x, ·) − P t(y, ·)
∥∥

TV
≤ Px,y{τcouple > t}. (5.4)

Proof. Notice that P t(x, z) = Px,y{Xt = z} and P t(y, z) = Px,y{Yt = z}.
Consequently, (Xt, Yt) is a coupling of P t(x, ·) with P t(y, ·), whence Proposition
4.7 implies that ∥∥P t(x, ·)− P t(y, ·)

∥∥
TV
≤ Px,y{Xt 6= Yt}. (5.5)

By (5.2), Px,y{Xt 6= Yt} = Px,y{τcouple > t}, which with (5.5) establishes (5.4). �

Combining Theorem 5.2 with Lemma 4.11 proves the following:



5.3. EXAMPLES 65

Corollary 5.3. Suppose that for each pair of states x, y ∈ Ω there is a coupling
(Xt, Yt) with X0 = x and Y0 = y. For each such coupling, let τcouple be the first
time the chains meet, as defined in (5.3). Then

d(t) ≤ max
x,y∈Ω

Px,y{τcouple > t}.

Given a Markov chain on Ω with transition matrix P , a Markovian coupling

of P is a Markov chain with state space Ω× Ω whose transition matrix Q satisfies

(i) for all x, y, x′ we have
∑

y′ Q((x, y), (x′, y′)) = P (x, x′) and

(ii) for all x, y, y′ we have
∑

x′ Q((x, y), (x′, y′)) = P (y, y′).

Clearly any Markovian coupling is indeed a coupling of Markov chains, as we defined
in Section 5.1.

Remark 5.4. All couplings used in this book will be Markovian.

5.3. Examples

5.3.1. Random walk on the cycle. We defined random walk on the n-cycle
in Example 1.4. The underlying graph of this walk, Zn, has vertex set {1, 2, . . . , n}
and edges between j and k whenever j ≡ k ± 1 mod n. See Figure 1.3.

We consider the lazy walk, which remains in its current position with proba-
bility 1/2, moves clockwise with probability 1/4, and moves counterclockwise with
probability 1/4.

We construct a coupling (Xt, Yt) of two particles performing lazy walks on
Zn, one started from x and the other started from y. In this coupling, the two
particles will never move simultaneously, ensuring that they will not jump over one
another when they come to within unit distance. At each move, a fair coin is tossed,
independent of all previous tosses. If heads, the chain (Xt) moves one step, the
direction of which is determined by another fair coin toss, again independent of all
other previous tosses. If tails, the chain (Yt) moves one step, also determined by
an independent fair coin toss. Once the two particles collide, thereafter they make
identical moves. Let Dt be the clockwise distance between the two particles. Note
that Dt is a simple random walk on the interior vertices of {0, 1, 2, . . . , n} and gets
absorbed at either 0 or n. By Proposition 2.1, if τ = min{t ≥ 0 : Dt ∈ {0, n}},
then Ex,y(τ) = k(n− k), where k is the clockwise distance between x and y. Since
τ = τcouple, by Corollary 5.3,

d(t) ≤ max
x,y∈Zn

Px,y{τ > t} ≤ maxx,y Ex,y(τ)

t
≤ n2

4t
.

The right-hand side equals 1/4 for t = n2, whence tmix ≤ n2.
In Section 7.4.1, it is shown that tmix ≥ c1n2 for a constant c1.

5.3.2. Random walk on the torus. The d-dimensional torus is graph whose
vertex set is the Cartesian product

Z
d
n = Zn × · · · × Zn︸ ︷︷ ︸

d times

.

Vertices x = (x1, . . . , xd) and y = (y1, y2, . . . , yd) are neighbors in Zdn if for some
j ∈ {1, 2, . . . , n}, we have xi = yi for all i 6= j and xj ≡ yj ± 1 mod n. See
Figure 5.2 for an example.
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Figure 5.2. The 2-torus Z2
20.

When n is even, the graph Zdn is bipartite and the associated random walk is
periodic. To avoid this complication, we consider the lazy random walk on Zdn,
defined in Section 1.3. This walk remains at its current position with probability
1/2 at each move.

We now use coupling to bound the mixing time of the lazy random walk on Zdn.

Theorem 5.5. For the lazy random walk on the d-dimension torus Zdn,

tmix(ε) ≤ c(d)n2 log2(ε
−1), (5.6)

where c(d) is a constant depending on the dimension d.

Proof. In order to apply Corollary 5.3 to prove this theorem, we construct a
coupling for each pair (x,y) of starting states and bound the expected value of the
coupling time τcouple = τx,y.

To couple together a random walk (Xt) started at x with a random walk (Y t)
started at y, first pick one of the d coordinates at random. If the positions of the
two walks agree in the chosen coordinate, we move both of the walks by +1, −1,
or 0 in that coordinate, with probabilities 1/4, 1/4 and 1/2, respectively. If the
positions of the two walks differ in the chosen coordinate, we randomly choose one
of the chains to move, leaving the other fixed. We then move the selected walk by
+1 or −1 in the chosen coordinate, with the sign determined by a fair coin toss.

Let Xt = (X1
t , . . . , X

d
t ) and Y t = (Y 1

t , . . . , Y
d
t ), and let

τi := min{t ≥ 0 : X i
t = Y it }

be the time required for the chains to agree in coordinate i.
The clockwise difference between X i

t and Y it , viewed at the times when coor-
dinate i is selected, behaves just as the coupling of the lazy walk on the cycle Zn

discussed above. Thus, the expected number of moves in coordinate i needed to
make the two chains agree on that coordinate is not more than n2/4.

Since coordinate i is selected with probability 1/d at each move, there is a
geometric waiting time between moves with expectation d. Exercise 5.3 implies
that

Ex,y(τi) ≤
dn2

4
. (5.7)
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Copy 1: 0 0 1 1 0 1 0 0 1 1

Copy 2: 0 1 1 0 0 0 1 0 1 0

︸ ︷︷ ︸
Copy 1: 0 0 1 1 0 1 0 0 1 1

Copy 2: 0 1 1 0 0 1 1 0 1 0

Figure 5.3. One step in two coupled lazy walks on the hyper-
cube. First, choose a coordinate to update—here, the sixth. Then,
flip a 0/1 coin and use the result to update the chosen coordinate
to the same value in both walks.

The coupling time we are interested in is τcouple = max1≤i≤d τi, and we can
bound the maximum by a sum to get

Ex,y(τcouple) ≤
d2n2

4
. (5.8)

This bound is independent of the starting states, and we can use Markov’s inequality
to show that

Px,y{τcouple > t} ≤ Ex,y(τcouple)

t
≤ 1

t

d2n2

4
. (5.9)

Taking t0 = d2n2 shows that d(t0) ≤ 1/4, and so tmix ≤ d2n2. By (4.36),

tmix(ε) ≤ d2n2
⌈
log(ε−1)

⌉
,

and we have proved the theorem. �

Exercise 5.4 shows that the bound on c(d) can be improved.

5.3.3. Random walk on the hypercube. The simple random walk on the
hypercube {0, 1}n was defined in Section 2.3: this is the simple walker on the graph
having vertex set {0, 1}n, the binary words of length n, and with edges connecting
words differing in exactly one letter. (Note that this graph is also the torus Z

n
2 .)

To avoid periodicity, we study the lazy chain: at each time step, the walker
remains at her current position with probability 1/2 and with probability 1/2 moves
to a position chosen uniformly at random among all neighboring vertices.

As remarked in Section 2.3, a convenient way to generate the lazy walk is as
follows: pick one of the n coordinates uniformly at random, and refresh the bit at
this coordinate with a random fair bit (one which equals 0 or 1 each with probability
1/2).

This algorithm for running the walk leads to the following coupling of two
walks with possibly different starting positions: first, pick among the n coordinates
uniformly at random; suppose that coordinate i is selected. In both walks, replace
the bit at coordinate i with the same random fair bit. (See Figure 5.3.) From this
time onwards, both walks will agree in the i-th coordinate. A moment’s thought
reveals that individually each of the walks is indeed a lazy random walk on the
hypercube.

If τ is the first time when all of the coordinates have been selected at least
once, then the two walkers agree with each other from time τ onwards. (If the
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initial states agree in some coordinates, the first time the walkers agree could be
strictly before τ .) The distribution of τ is exactly the same as the coupon collector
random variable studied in Section 2.2. Using Corollary 5.3, together with the
bound on the tail of τ given in Proposition 2.4, shows that

d(n logn+ cn) ≤ P{τ > n logn+ cn} ≤ e−c.
It is immediate from the above that

tmix(ε) ≤ n logn+ log(1/ε)n. (5.10)

Simply, tmix = O(n log n). The bound in (5.10) is off by a factor of two and will be
sharpened in Section 18.2.2 via a more sophisticated coupling.

5.3.4. Random walk on a finite binary tree. Since trees will appear in
several examples in the sequel, we collect some definitions here. A tree is a con-
nected graph with no cycles. (See Exercise 1.3 and Exercise 1.4.) A rooted tree
has a distinguished vertex, called the root . The depth of a vertex v is its graph
distance to the root. A level of the tree consists of all vertices at the same depth.
The children of v are the neighbors of v with depth larger than v. A leaf is a
vertex with degree one.

A rooted finite b-ary tree of depth k, denoted by Tb,k, is a tree with a
distinguished vertex v0, the root, such that

• v0 has degree b,
• every vertex at distance j from the root, where 1 ≤ j ≤ k− 1, has degree
b+ 1,
• the vertices at distance k from v0 are leaves.

There are n = (bk+1 − 1)/(b− 1) vertices in Tb,k.
In this example, we consider the lazy random walk on the finite binary tree

T2,k; this walk remains at its current position with probability 1/2.

Figure 5.4. A binary tree of height 3.

Consider the following coupling (Xt, Yt) of two lazy random walks, started from
states x0 and y0 on the tree. Assume, without loss of generality, that x0 is at least
as close to the root as y0. At each move, toss a fair coin to decide which of the two
chains moves: if heads, Yt+1 = Yt, while Xt+1 is chosen from the neighbors of Xt

uniformly at random. If the coin toss is tails, then Xt+1 = Xt, and Yt+1 is chosen
from the neighbors of Yt uniformly at random. Run the two chains according to
this rule until the first time they are at the same level of the tree. Once the two
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chains are at the same level, change the coupling to the following updating rule:
let Xt evolve as a lazy random walk, and couple Yt to Xt so that Yt moves closer
to (further from) the root if and only if Xt moves closer to (further from) the root,
respectively. Let B be the set of leaves. Observe that if (Xt) has first visited B
and then visited the root, it must have coupled by this time. The expected value
of this time is less than the expected commute time τ from the root to B, the
time it takes starting from the root to first visit the set B and then return to the
root. It will be shown in Example 10.12 that E(τ) ≤ 4n. Thus, if τcouple is the
time when the two particles meet, we have Px,y{τcouple > t} ≤ 4n

t . We conclude
that tmix ≤ 16n.

5.3.5. The winning streak. Recall the winning streak chain, defined in Ex-
ample 4.15. For any initial values a, b ∈ {0, . . . , n}, let x and y be bitstrings of
length n whose ending block of 1’s have length exactly a and b, respectively. Then
we can couple copies of the winning streak chain started at a and at b by appending
the same uniform random bits to the ends of x and y, then counting the number of
terminal 1’s in the resulting window.

As soon as one of the added bits is 0, both chains fall into state 0, and they
remain coupled thereafter. Hence

P{τcouple > t} ≤ 2−t

and Corollary 5.3 gives

d(t) ≤ 2−t.

By the definition (4.32) of mixing time, we have

tmix(ε) ≤ ⌈log2

(
1

ε

)
⌉,

which depends only on ε, and not on n. In particular, tmix ≤ 2 for all n. (In
Example 4.15 we showed that the mixing time of the reversed winning streak was
of order O(n).)

5.3.6. Distance between P t(x, ·) and P t+1(x, ·).
Proposition 5.6. Let Q be an irreducible transition matrix and consider the

lazy chain with transition matrix P = (Q + I)/2. The distributions at time t and
t+ 1 satisfy

∥∥P t(x, ·) − P t+1(x, ·)
∥∥

TV
≤ 12√

t
. (5.11)

Proof. We construct two Markov chains, (Xt) and (Yt), both with transition
matrix P and both started at x, such that

P{Xt 6= Yt+1} ≤ 12/
√
t. (5.12)

Since the distribution of Xt is P t(x, ·) and the distribution of Yt+1 is P t+1(x, ·),
the inequality in (5.12) along with Proposition 4.7 implies (5.11).

Let (Zt)
∞
t=1 be a Markov chain with transition matrix Q started from x, and

let (Wt)
∞
t=1 be an i.i.d. sequence of unbiased {0, 1}-valued random variables, inde-

pendent of (Zt). Define Nt :=
∑t
s=1Wt and Yt := ZNt . For t ≥ 1, define

Xt :=

{
Zt−(Nt+1−W1) if Xt−1 6= Yt,

Yt+1 if Xt−1 = Yt.
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The reader should convince himself that both (Xt) and (Yt) are Markov chains with
transition matrix P .

Let τ = min{t ≥ 0 : Xt = Yt+1}. If W1 = 0, then Y1 = x = X0 and τ = 0. If
W1 = 1, then

τ ≤ min{t ≥ 0 : Nt+1 = t− (Nt+1 −W1)}.
Observe that on the event {W1 = 1}, the equality Nt+1 = t− (Nt+1 −W1) holds if
and only if 2(Nt+1 −W1) − t = −1. Therefore, τ is stochastically bounded by the

first time a simple random walk hits −1. By Theorem 2.17, P{τ > t} ≤ 12/
√
t.

This establishes the inequality in (5.12), finishing the proof. �

5.4. Grand Couplings

It can be useful to construct simultaneously, using a common source of random-
ness, Markov chains started from each state in Ω. That is, we want to construct
a collection of random variables {Xx

t : x ∈ Ω, t = 0, 1, 2, . . .} such that for each
x ∈ Ω, the sequence (Xx

t )∞t=0 is a Markov chain with transition matrix P started
from x. We call such a collection a grand coupling .

The random mapping representation of a chain, discussed in Section 1.2, can
be used to construct a grand coupling. Let f : Ω × Λ → R be a function and Z
a Λ-valued random variable such that P (x, y) = P{f(x, Z) = y}. Proposition 1.5
guarantees that such an (f, Z) pair exists. Let Z1, Z2, . . . be an i.i.d. sequence, each
with the same distribution as Z, and define

Xx
0 = x, Xx

t = f(Xx
t−1, Zt) for t ≥ 1. (5.13)

Since each of (Xx
t )∞t=0 is a Markov chain started from x with transition matrix P ,

this yields a grand coupling. We emphasize that the chains (Xx
t )∞t=0 all live on the

same probability space, each being determined by the same sequence of random
variables (Zt)

∞
t=0.

5.4.1. Random colorings. Random proper colorings of a graph were intro-
duced in Section 3.3.1. For a graph G with vertex set V , let Ω be the set of proper
colorings of G, and let π be the uniform distribution on Ω. In Example 3.5, the
Metropolis chain for π was introduced. A transition for this chain is made by first
selecting a vertex v uniformly from V and then selecting a color k uniformly from
{1, 2, . . . , q}. If placing color k at vertex v is permissible (that is, if no neighbor of
v has color k), then vertex v is assigned color k. Otherwise, no transition is made.

Note that in fact this transition rule can be defined on the space Ω̃ of all (not
necessarily proper) colorings, and the grand coupling can be defined simultaneously

for all colorings in Ω̃.
Using grand couplings, we can prove the following theorem:

Theorem 5.7. Let G be a graph with n vertices and maximal degree ∆. For the
Metropolis chain on proper colorings of G, if q > 3∆ and cmet(∆, q) := 1− (3∆/q),
then

tmix(ε) ≤ cmet(∆, q)
−1
n [logn+ log(1/ε)] . (5.14)

In Chapter 14 we show that for Glauber dynamics on proper colorings (see
Section 3.3 for the definition of this chain), if q > 2∆, then the mixing time is of
order n logn.
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Proof. Just as for a single Metropolis chain on colorings, the grand coupling
at each move generates a single vertex and color pair (v, k), uniformly at random

from V ×{1, . . . , q} and independent of the past. For each x ∈ Ω̃, the coloringXx
t is

updated by attempting to re-color vertex v with color k, accepting the update if and
only if the proposed new color is different from the colors at vertices neighboring
v. (If a re-coloring is not accepted, the chain Xx

t remains in its current state.) The
essential point is that the same vertex and color pair is used for all the chains (Xx

t ).

For two colorings x, y ∈ Ω̃, define

ρ(x, y) :=
∑

v∈V
1{x(v) 6=y(v)}

to be the number of vertices where x and y disagree, and note that ρ is a metric
on Ω̃.

Suppose ρ(x, y) = 1, so that x and y agree everywhere except at vertex v0.
Write N for the set of colors appearing among the neighbors of v0 in x, which is
the same as the set of colors appearing among the neighbors of v0 in y. Recall that
v represents a random sample from V , and k a random sample from {1, 2, . . . , q},
independent of v. We consider the distance after updating x and y in one step of
the grand coupling, that is, ρ(Xx

1 , X
y
1 ).

This distance goes to zero if and only if the vertex v0 is selected for updating
and the color proposed is not in N . This occurs with probability

P{ρ(Xx
1 , X

y
1 ) = 0} =

(
1

n

)(
q − |N |

q

)
≥ q −∆

nq
, (5.15)

where ∆ denotes the maximum vertex degree in the graph.
For a vertex w which is a neighbor of v0, note that the set of colors among the

neighbors of w different from v0 are the same in the colorings x and y. Suppose
that neither x(v0) nor y(v0) belong to this set of colors. In this case, if w is the
vertex selected for updating and the color x(v0) is proposed, then configuration y
will be updated at w (to the color x(v0)), while configuration x will not be updated.
See Figure 5.5. This will cause the number of disagreements between x and y to
increase to two. Similarly, the disagreements will increase if w is selected and the
color y(v0) is proposed. These are the only scenarios leading to ρ(Xx

1 , X
y
1 ) = 2,

and we conclude that

P{ρ(Xx
1 , X

y
1 ) = 2} ≤

(
∆

n

)(
2

q

)
. (5.16)

Using the bounds (5.15) and (5.16),

E (ρ(Xx
1 , X

y
1 )− 1) ≤ 2∆

nq
− (q −∆)

nq
=

3∆− q
nq

,

and so

E (ρ(Xx
1 , X

y
1 )) ≤ 1− q − 3∆

nq
.

If q > 3∆, then cmet(∆, q) = 1− (3∆/q) > 0 and

E (ρ(Xx
1 , X

y
1 )) ≤ 1− cmet(∆, q)

n
< 1. (5.17)

Now, suppose that x and y are colorings with ρ(x, y) = r. There are colorings
x0 = x, x1, . . . , xr = y such that ρ(xk, xk−1) = 1. Since ρ is a metric and the
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6

0
w v

1

4

0
w v

1

4

2 533

5 permitted 5 not permitted

6

Figure 5.5. Two colorings which disagree only at v0. The one on
the left can be updated with the color 5 at a neighbor of w of v0,
while the one on the right cannot be updated with a 5 at w. If
vertex w is selected for updating and color 5 is proposed, the two
configurations will disagree at both v0 and w.

inequality (5.17) can be applied to each of E
(
ρ(Xxk

1 , X
xk−1

1 )
)
,

E (ρ(Xx
1 , X

y
1 )) ≤

r∑

k=1

E
(
ρ(Xxk

1 , X
xk−1

1 )
)

≤ r
(

1− cmet(∆, q)

n

)
= ρ(x, y)

(
1− cmet(∆, q)

n

)
.

Conditional on the event that Xx
t−1 = xt−1 and Xy

t−1 = yt−1, the random vector

(Xx
t , X

y
t ) has the same distribution as (X

xt−1

1 , X
yt−1

1 ). Hence,

E
(
ρ(Xx

t , X
y
t ) | Xx

t−1 = xt−1, X
y
t−1 = yt−1

)
= E

(
ρ(X

xt−1

1 , X
yt−1

1 )
)

≤ ρ(xt−1, yt−1)

(
1− cmet(∆, q)

n

)
.

Taking an expectation over (Xx
t−1, X

y
t−1) shows that

E (ρ(Xx
t , X

y
t )) ≤ E

(
ρ(Xx

t−1, X
y
t−1)

)(
1− cmet(∆, q)

n

)
.

Iterating the above inequality shows that

E (ρ(Xx
t , X

y
t )) ≤ ρ(x, y)

(
1− cmet(∆, q)

n

)t
.

Moreover, by Markov’s inequality, since ρ(x, y) ≥ 1 when x 6= y,

P{Xx
t 6= Xy

t } = P{ρ(Xx
t , X

y
t ) ≥ 1}

≤ ρ(x, y)
(

1− cmet(∆, q)

n

)t
≤ ne−t(cmet(∆,q)/n).
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Since the above holds for all colorings x, y ∈ Ω̃, in particular it holds for all
proper colorings x, y ∈ Ω. By Corollary 5.3 and the above inequality, d(t) ≤
ne−t(cmet(∆,q)/n), whence if

t > cmet(∆, q)
−1
n [logn+ log(1/ε)] ,

then d(t) ≤ ε. This establishes (5.14). �

5.4.2. Hardcore model. The hardcore model with fugacity λ was introduced
in Section 3.3.4. We use a grand coupling to show that if λ is small enough, the
Glauber dynamics has a mixing time of the order n logn.

Theorem 5.8. Let cH(λ) := [1 +λ(1−∆)]/(1 +λ). For the Glauber dynamics
for the hardcore model on a graph with maximum degree ∆ and n vertices, if λ <
(∆− 1)−1, then

tmix(ε) ≤
n

cH(λ)
[logn+ log(1/ε)].

Proof. We again use the grand coupling which is run as follows: a vertex v
is selected uniformly at random, and a coin with probability λ/(1 + λ) of heads is
tossed, independently of the choice of v. Each hardcore configuration x is updated
using v and the result of the coin toss. If the coin is tails, any particle present at
v in x is removed. If the coin is heads and all neighbors of v are unoccupied in the
configuration x, then a particle is placed at v.

We let ρ(x, y) =
∑

v∈V 1{x(v) 6=y(v)} be the number of sites where x and y
disagree. Suppose that x and y satisfy ρ(x, y) = 1, so that the two configurations
differ only at v0. Without loss of generality, assume that x(v0) = 1 and y(v0) = 0.

If vertex v0 is selected, then ρ(Xx
1 , X

y
1 ) = 0, since the neighbors of v0 agree in

both x and y so the same action will be taken for the two configurations.
Let w be a neighbor of v0. If none of the neighbors of w different from v0 are

occupied (these sites have the same status in x and y) and the coin toss is heads,
then x and y will be updated differently. Indeed, it will be possible to place a
particle at w in y, but not in x. This is the only case in which a new disagreement
between x and y can be introduced.

Therefore,

E (ρ(Xx
1 , X

y
1 )) ≤ 1− 1

n
+

∆

n

λ

1 + λ
= 1− 1

n

[
1− λ(∆− 1)

1 + λ

]
.

If λ < (∆− 1)−1, then cH(λ) > 0 and

E (ρ(Xx
1 , X

y
1 )) ≤ 1− cH(λ)

n
≤ e−cH(λ)/n.

The remainder of the theorem follows exactly the same argument as is used at the
end of Theorem 5.7.

�

Exercises

Exercise 5.1. A mild generalization of Theorem 5.2 can be used to give an
alternative proof of the Convergence Theorem.

(a) Show that when (Xt, Yt) is a coupling satisfying (5.2) for which X0 ∼ µ and
Y0 ∼ ν, then ∥∥µP t − νP t

∥∥
TV
≤ P{τcouple > t}. (5.18)
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(b) If in (a) we take ν = π, where π is the stationary distribution, then (by defini-
tion) πP t = π, and (5.18) bounds the difference between µP t and π. The only
thing left to check is that there exists a coupling guaranteed to coalesce, that
is, for which P{τcouple < ∞} = 1. Show that if the chains (Xt) and (Yt) are
taken to be independent of one another, then they are assured to eventually
meet.

Exercise 5.2. Let (Xt, Yt) be a Markovian coupling such that for some 0 <
α < 1 and some t0 > 0, the coupling time τcouple = min{t ≥ 0 : Xt = Yt} satisfies
P{τcouple ≤ t0} ≥ α for all pairs of initial states (x, y). Prove that

E(τcouple) ≤
t0
α
.

Exercise 5.3. Show that if X1, X2, . . . are independent and each have mean
µ and if τ is a Z+-valued random variable independent of all the Xi’s, then

E

(
τ∑

i=1

Xi

)
= µE(τ).

Exercise 5.4. We can get a better bound on the mixing time for the lazy
walker on the d-dimensional torus by sharpening the analysis of the “coordinate-
by-coordinate” coupling given in the proof of Theorem 5.5.

Let t ≥ kdn2.

(a) Show that the probability that the first coordinates of the two walks have not
yet coupled by time t is less than (1/4)k.

(b) By making an appropriate choice of k and considering all the coordinates,
obtain an O((d log d)n2) bound on tmix.

Notes

The use of coupling in probability is usually traced back to Doeblin (1938).
Couplings of Markov chains were first studied in Pitman (1974) and Griffeath
(1974/75). See also Pitman (1976). See Luby, Randall, and Sinclair (1995) and
Luby, Randall, and Sinclair (2001) for interesting examples of couplings.

For Glauber dynamics on colorings, it is shown in Chapter 14 that if the number
of colors q satisfies q > 2∆, then the mixing time is of order n logn.

Luby and Vigoda (1999) show that for a different Markov chain with the hard-
core model as its stationary distribution, for λ small enough, the mixing time is of
order n logn. See also Luby and Vigoda (1995) and Vigoda (2001).

Further reading. For more on coupling and its applications in probability,
see Lindvall (2002) and Thorisson (2000).



CHAPTER 6

Strong Stationary Times

6.1. Top-to-Random Shuffle

We begin this chapter with an example. Consider the following (slow) method
of shuffling a deck of n cards: take the top card and insert it uniformly at random in
the deck. This process will eventually mix up the deck—the successive arrangements
of the deck are a random walk on the group Sn of n! possible permutations of the
cards, which by Proposition 2.12 has uniform stationary distribution.
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Next card to be placed in one of the slots

Original bottom card

under the original bottom card

Figure 6.1. The top-to-random shuffle.

How long must we shuffle using this method until the arrangement of the deck
is close to random?

Let τtop be the time one move after the first occasion when the original bottom
card has moved to the top of the deck. We show now that the arrangement of cards
at time τtop is distributed uniformly on the set Sn of all permutations of {1, . . . , n}
and moreover this random element of Sn is independent of the time τtop.

More generally, we prove the following:

Proposition 6.1. Let (Xt) be the random walk on Sn corresponding to the
top-to-random shuffle on n cards. Given at time t that there are k cards under
the original bottom card, each of the k! possible orderings of these cards are equally
likely. Therefore, if τtop is one shuffle after the first time that the original bottom

75
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card moves to the top of the deck, then the distribution of Xτtop is uniform over Sn,
and the time τtop is independent of Xτtop .

Proof. When t = 0, there are no cards under the original bottom card, and
the claim is trivially valid. Now suppose that the claim holds at time t. There are
two possibilities at time t + 1: either a card is placed under the original bottom
card, or not. In the second case, the cards under the original bottom card remain
in random order. In the first case, given that the card is placed under the original
bottom card, each of the k + 1 possible locations for the card is equally likely, and
so each of the (k + 1)! orderings are equiprobable. �

If we stop shuffling precisely one shuffle after the original bottom card rises
to the top of the deck for the first time, then the order of the cards at this time
is exactly uniform over all possible arrangements. That is, Xτtop has exactly the
stationary distribution of the chain. In this chapter, we show how we can use
the distribution of the random time τtop to bound tmix, the fixed number of steps
needed for the distribution of the chain to be approximately stationary.

6.2. Definitions

6.2.1. Stopping times. Suppose you give instructions to your stock broker
to sell a particular security when its value next drops below 32 dollars per share.
This directive can be implemented by a computer program: at each unit of time,
the value of the security is checked; if the value at that time is at least 32, no action
is taken, while if the value is less than 32, the asset is sold and the program quits.

You would like to tell your broker to sell a stock at the first time its value equals
its maximum value over its lifetime. However, this is not a reasonable instruction,
because to determine on Wednesday whether or not to sell, the broker needs to
know that on Thursday the value will not rise and in fact for the entire infinite
future that the value will never exceed its present value. To determine the correct
decision on Wednesday, the broker must be able to see into the future!

The first instruction is an example of a stopping time, which we will now define,
while the second rule is not.

Given a sequence (Xt)
∞
t=0 of Ω-valued random variables, a {0, 1, 2, . . . ,∞}-

valued random variable τ is a stopping time for (Xt) if, for each t ∈ {0, 1, . . .},
there is a set Bt ⊂ Ωt+1 such that

{τ = t} = {(X0, X1, . . . , Xt) ∈ Bt}.
In other words, a random time τ is a stopping time if and only if the indicator
function 1{τ=t} is a function of the vector (X0, X1, . . . , Xt).

Example 6.2 (Hitting times). Fix A ⊆ Ω. The vector (X0, X1, . . . , Xt) deter-
mines whether a site in A is visited for the first time at time t. That is, if

τA = min{t ≥ 0 : Xt ∈ A}
is the first time that the sequence (Xt) is in A, then

{τA = t} = {X0 /∈ A,X1 /∈ A, . . . ,Xt−1 /∈ A,Xt ∈ A}.
Therefore, τA is a stopping time. (We saw the special case where A = {x} consists
of a single state in Section 1.5.2.)
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Consider the top-to-random shuffle, defined in Section 6.1. Let A be the set
of arrangements having the original bottom card on top. Then τtop = τA + 1. By
Exercise 6.1, τtop is a stopping time.

6.2.2. Randomized stopping times. The following example is instructive.

Example 6.3 (Random walk on the hypercube). The lazy random walk (Xt)
on the hypercube {0, 1}n was introduced in Section 2.3, and we used coupling to
bound the mixing time in Section 5.3.3. Recall that a move of this walk can be
constructed using the following random mapping representation: an element (j, B)
from {1, 2, . . . , n}× {0, 1} is selected uniformly at random, and coordinate j of the
current state is updated with the bit B.

In this construction, the chain is determined by the i.i.d. sequence (Zt), where
Zt = (jt, Bt) is the coordinate and bit pair used to update at step t.

Define

τrefresh := min {t ≥ 0 : {j1, . . . , jt} = {1, 2, . . . , n}} ,
the first time when all the coordinates have been selected at least once for updating.

Because at time τrefresh all of the coordinates have been replaced with indepen-
dent fair bits, the distribution of the chain at this time is uniform on {0, 1}n. That
is, Xτrefresh is an exact sample from the stationary distribution π.

Note that τrefresh is not a function of (Xt), but it is a function of (Zt). In
particular, while τrefresh is not a stopping time for (Xt), it is a stopping time for
(Zt).

Recall that we showed in Section 1.2 that every transition matrix P has a
random mapping representation: we can find an i.i.d. sequence (Zt)

∞
t=1 and a map

f such that the sequence (Xt)
∞
t=0 defined inductively by

X0 = x, Xt = f(Xt−1, Zt)

is a Markov chain with transition matrix P started from x. A random time τ is
called a randomized stopping time for the Markov chain (Xt) if it is a stopping
time for the sequence (Zt).

Example 6.4. We return to Example 6.3, the lazy random walk on the hyper-
cube. As remarked there, the time τrefresh is a stopping time for the sequence (Zt),
where Zt is the coordinate and bit used to update at time t. Therefore, τrefresh is a
randomized stopping time.

6.3. Achieving Equilibrium

For the top-to-random shuffle, one shuffle after the original bottom card rises
to the top, the deck is in completely random order. Likewise, for the lazy random
walker on the hypercube, at the first time when all of the coordinates have been
updated, the state of the chain is a random sample from {0, 1}n. These random
times are examples of stationary times, which we now define.

Let (Xt) be an irreducible Markov chain with stationary distribution π. A
stationary time τ for (Xt) is a randomized stopping time, possibly depending on
the starting position x, such that the distribution of Xτ is π:

Px{Xτ = y} = π(y). (6.1)
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Example 6.5. Let (Xt) be an irreducible Markov chain with state space Ω and
stationary distribution π. Let ξ be a Ω-valued random variable with distribution
π, and define

τ = min{t ≥ 0 : Xt = ξ}.
The time τ is a randomized stopping time, and because Xτ = ξ, it follows that τ
is a stationary time.

Suppose the chain starts at x0. If τ = 0, then Xτ = x0; therefore, τ and Xτ

are not independent.

Example 6.6. Let (Xt) be the random walk on the n-cycle. Define τ by tossing
a coin with probability of heads 1/n. If “heads”, let τ = 0; if “tails”, let τ be the
first time every state has been visited at least once. Given “tails”, the distribution
of Xτ is uniform over all n−1 states different from the starting state. (See Exercise
6.9.) This shows that Xτ has the uniform distribution, whence τ is a stationary
time.

However, τ = 0 implies that Xτ is the starting state. Therefore, as in Exam-
ple 6.5, τ and Xτ are not independent.

As mentioned at the end of Section 6.1, we want to use the time τtop to bound
tmix. To carry out this program, we need a property of τtop stronger than (6.1). We
will need that τtop is independent of Xτtop , a property not enjoyed by the stationary
times in Example 6.5 and Example 6.6.

6.4. Strong Stationary Times and Bounding Distance

A strong stationary time for a Markov chain (Xt) with stationary distribu-
tion π is a randomized stopping time τ , possibly depending on the starting position
x, such that

Px{τ = t, Xτ = y} = Px{τ = t}π(y). (6.2)

In words, Xτ has distribution π and is independent of τ .

Example 6.7. For the top-to-random shuffle, the first time τtop when the
original bottom card gets placed into the deck by a shuffle is a strong stationary
time. This is the content of Proposition 6.1.

Example 6.8. We return to Example 6.3, the lazy random walk on the hyper-
cube. The time τrefresh, the first time each of the coordinates have been refreshed
with an independent fair bit, is a strong stationary time.

We now return to the program suggested at the end of Section 6.1 and use
strong stationary times to bound tmix.

We first need the following technical lemma.

Lemma 6.9. Let (Xt) be an irreducible Markov chain with stationary distribu-
tion π. If τ is a strong stationary time for (Xt), then for all t ≥ 0,

Px{τ ≤ t, Xt = y} = P{τ ≤ t}π(y). (6.3)

Proof. Let Z1, Z2, . . . be the i.i.d. sequence used in the random mapping rep-
resentation of (Xt). For any s ≤ t,

Px{τ = s, Xt = y} =
∑

z∈Ω

Px{Xt = y | τ = s, Xs = z}Px{τ = s, Xs = z}. (6.4)
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Since τ is a stopping time for (Zt), the event {τ = s} equals {(Z1, . . . , Zs) ∈ B} for

some set B ⊂ Ωs. Also, for integers r, s ≥ 0, there exists a function f̃r : Ωr+1 → Ω
such that

Xs+r = f̃r(Xs, Zs+1, . . . , Zs+r).

Since the random vectors (Z1, . . . , Zs) and (Zs+1, . . . , Zt) are independent,

Px{Xt = y | τ = s, Xs = z}
= Px{f̃t−s(z, Zs+1, . . . , Zt) = y | (X1, . . . , Xs) ∈ B, Xs = z} = P t−s(z, y).

Therefore, using the definition (6.2) along with the above equality, (6.4) can be
rewritten as

Px{τ = s,Xt = y} =
∑

z∈Ω

P t−s(z, y)π(z)Px{τ = s}. (6.5)

Since π satisfies π = πP t−s, the right-hand side of (6.5) equals π(y)Px{τ = s}.
Summing over s ≤ t establishes (6.3). �

The route from strong stationary times to bounding convergence time is the
following proposition:

Proposition 6.10. If τ is a strong stationary time, then

d(t) = max
x∈Ω
‖P t(x, ·)− π‖TV ≤ max

x∈Ω
Px{τ > t}. (6.6)

We break the proof into two lemmas. It will be convenient to introduce a
parameter sx(t), called separation distance and defined by

sx(t) := max
y∈Ω

[
1− P t(x, y)

π(y)

]
. (6.7)

We also define
s(t) := max

x∈Ω
sx(t). (6.8)

The relationship between sx(t) and strong stationary times is

Lemma 6.11. If τ is a strong stationary time, then

sx(t) ≤ Px{τ > t}. (6.9)

Proof. Fix x ∈ Ω. Observe that for any y ∈ Ω,

1− P t(x, y)

π(y)
= 1− Px{Xt = y}

π(y)
≤ 1− Px{Xt = y, τ ≤ t}

π(y)
. (6.10)

By Lemma 6.9, the right-hand side equals

1− π(y)Px{τ ≤ t}
π(y)

= Px{τ > t}. (6.11)

�

Remark 6.12. Given starting state x, a state y is a halting state for a stop-
ping time τ if Xt = y implies τ ≤ t. For example, when starting the lazy random
walk on the hypercube at (0, . . . , 0), the state (1, . . . , 1) is a halting state for the
stopping time τrefresh defined in Example 6.3. Because the inequality in (6.10) is
an equality if and only if y is a halting state for the starting state x, it follows that
the inequality in (6.9) is an equality if and only if there exists a halting state for
the starting state x.
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Figure 6.2. Two complete graphs (on 4 vertices), “glued” at a
single vertex. Loops have been added so that every vertex has the
same degree (count each loop as one edge).

The next lemma along with Lemma 6.11 proves Proposition 6.10.

Lemma 6.13. The separation distance sx(t) satisfies
∥∥P t(x, ·)− π

∥∥
TV
≤ sx(t), (6.12)

and therefore d(t) ≤ s(t).
Proof. We have

‖P t(x, ·)− π‖TV =
∑

y∈Ω
P t(x,y)<π(y)

[
π(y)− P t(x, y)

]
=

∑

y∈Ω
P t(x,y)<π(y)

π(y)

[
1− P t(x, y)

π(y)

]

≤ max
y

[
1− P t(x, y)

π(y)

]
= sx(t).

�

6.5. Examples

6.5.1. Two glued complete graphs. Consider the graph G obtained by
taking two complete graphs on n vertices and “gluing” them together at a single
vertex. We analyze here simple random walk on a slightly modified graph, G′.

Let v⋆ be the vertex where the two complete graphs meet. After gluing, v⋆

has degree 2n− 2, while every other vertex has degree n − 1. To make the graph
regular and to ensure non-zero holding probability at each vertex, in G′ we add one
loop at v⋆ and n loops at all other vertices. (See Figure 6.2 for an illustration when
n = 4.) The uniform distribution is stationary for simple random walk on G′, since
it is regular of degree 2n− 1.

It is clear that when at v⋆, the next state is equally likely to be any of the
2n− 1 vertices. For this reason, if τ is the time one step after v⋆ has been visited
for the first time, then τ is a strong stationary time.

When the walk is not at v⋆, the probability of moving (in one step) to v⋆ is
1/(2n− 1). This remains true at any subsequent move. That is, the first time τv⋆
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that the walk visits v⋆ is geometric with E (τv⋆) = 2n− 1. Therefore, E (τ) = 2n,
and using Markov’s inequality shows that

Px{τ ≥ t} ≤
2n

t
. (6.13)

Taking t = 8n in (6.13) and applying Proposition 6.10 shows that

tmix ≤ 8n.

A lower bound on tmix of order n is obtained in Exercise 6.7.

6.5.2. Random walk on the hypercube. We return to Example 6.3, the
lazy random walker on {0, 1}n. As noted in Example 6.8, the random variable
τrefresh, the time when each coordinate has been selected at least once for the first
time, is a strong stationary time. The time τrefresh and the coupling time τcouple

for the coordinate-by-coordinate coupling used in Section 5.3.3 are closely related:
the coupon collector’s time of Section 2.2 stochastically dominates τcouple and has
the same distribution as τrefresh. It is therefore not surprising that we obtain here
exactly the same upper bound for tmix as was found using the coupling method. In
particular, combining Proposition 2.4 and Lemma 6.11 shows that the separation
distance satisfies, for each x,

sx(n logn+ cn) ≤ e−c. (6.14)

By Lemma 6.13,

tmix(ε) ≤ n logn+ log(ε−1)n. (6.15)

Remark 6.14. The reason we explicitly give a bound on the separation distance
here and appeal to Lemma 6.13, instead of applying directly Proposition 6.10, is
that there is a matching lower bound on s(t), which we give in Section 18.4. This
contrasts with the lower bound on d(t) we will find in Section 7.3.1, which implies
tmix(1 − ε) ≥ (1/2)n logn − c(ε)n. In fact, the estimate on tmix(ε) given in (6.15)
is off by a factor of two, as we will see in Section 18.2.2.

6.5.3. Top-to-random shuffle. We revisit the top-to-random shuffle intro-
duced in Section 6.1. As noted in Example 6.7, the time τtop is a strong stationary
time.

Consider the motion of the original bottom card. When there are k cards be-
neath it, the chance that it rises one card remains k/n until a shuffle puts the top
card underneath it. Thus, the distribution of τtop is the same as the coupon col-
lector’s time. As above for the lazy hypercube walker, combining Proposition 6.10
and Proposition 2.4 yields

d(n logn+ αn) ≤ e−α for all n. (6.16)

Consequently,

tmix(ε) ≤ n logn+ log(ε−1)n. (6.17)

6.5.4. The move-to-front chain. A certain professor owns many books, ar-
ranged on his shelves. When he finishes with a book drawn from his collection, he
does not waste time re-shelving it in its proper location. Instead, he puts it at the
very beginning of his collection, in front of all the shelved books.

If his choice of book is random, this is an example of the move-to-front chain.
It is a very natural chain which arises in many applied contexts. Any setting where
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Drawing by Yelena Shvets

Figure 6.3. The move-to-front rule in action.

items are stored in a stack, removed at random locations, and placed on the top of
the stack can be modeled by the move-to-front chain.

Let P be the transition matrix (on permutations of {1, 2, . . . , n}) corresponding
to this method of rearranging elements.

The time reversal P̂ of the move-to-front chain is the top-to-random shuffle,
as intuition would expect. It is clear from the definition that for any permissible
transition σ1 → σ2 for move-to-front, the transition σ2 → σ1 is permissible for
top-to-random, and both have probability n−1.

By Lemma 4.13, the mixing time for move-to-front will be identical to that of
the top-to-random shuffle. Consequently, the mixing time for move-to-front is not
more than n logn− log(ε)n.

6.5.5. Lazy random walk on cycle. Here is a recursive description of a
strong stationary time τk for lazy random walk (Xt) on a cycle Zn with n = 2k

points.
For k = 1, waiting one step will do: τ1 = 1 with mean m1 = 1. Suppose

we have constructed τk already and are now given a cycle with 2k+1 points. Set
T0 = 0 and define T1 = t1 as the time it takes the lazy walk to make two ±1 steps.
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Then T1 is a sum of two geometric(1/2) random variables and thus has mean 4.
Given T1, . . . , Tj, define tj+1 as the time it takes the lazy random walk to make
two steps of ±1 after time Tj and let Tj+1 = Tj + tj+1. Observe that the process
(XTj ) for j ≥ 0 is lazy random walk on the even points of the cycle. Therefore at

time Tτk
the location of XTτk

is uniform among the even points on the 2k+1-cycle,
even if we condition on the value of Tτk

. It follows that τk+1 = Tτk
+ 1 is a strong

stationary time for the lazy random walk on the 2k+1-cycle. Exercise 6.8 completes
the discussion by showing that mk = (4k − 1)/3, where mk = Eτk.

6.6. Stationary Times and Cesaro Mixing Time*

We have seen that strong stationary times fit naturally with separation distance
and can be used to bound the mixing time. We now see that stationary times fit
naturally with an alternative definition of mixing time.

Consider a finite chain (Xt) with transition matrix P and stationary distri-
bution π on Ω. Given t ≥ 1, suppose that we choose uniformly a time σ ∈
{0, 1, . . . , t − 1}, and run the Markov chain for σ steps. Then the state Xσ has
distribution

νtx :=
1

t

t−1∑

s=0

P s(x, ·). (6.18)

The Cesaro mixing time t⋆mix(ε) is defined as the first t such that for all x ∈ Ω,

‖νtx − π‖TV ≤ ε .
See Exercises 10.12 through 10.14 for some properties of the Cesaro mixing time.

The following general result due to Lovász and Winkler (1998) shows that the
expectation of any stationary time yields an upper bound for t⋆mix(1/4). Remark-
ably, this does not need reversibility or laziness. Lovász and Winkler also prove a
converse of this result.

Theorem 6.15. Consider a finite chain with transition matrix P and stationary
distribution π on Ω. If τ is a stationary time for the chain, then t⋆mix(1/4) ≤
4 maxx∈Ω Ex(τ) + 1.

Proof. Denote by νtx the Cesaro average (6.18). Since τ is a stationary time,
so is τ + s for every s ≥ 1. Therefore, for every y ∈ Ω,

tπ(y) =

t−1∑

s=0

Px {Xτ+s = y} =

∞∑

ℓ=0

Px {Xℓ = y, τ ≤ ℓ < τ + t} .

Consequently,

tνtx(y)− tπ(y) ≤
t−1∑

ℓ=0

Px {Xℓ = y, τ > ℓ} .

Summing the last inequality over all y ∈ Ω such that the right-hand side is positive,

t‖νtx − π‖TV ≤
t−1∑

ℓ=0

Px {τ > ℓ} ≤ Ex (τ) .

Thus for t ≥ 4Ex(τ) we have ‖νtx − π‖TV ≤ 1/4. �
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Exercises

Exercise 6.1. Show that if τ and τ ′ are stopping times for the sequence (Xt),
then τ + τ ′ is a stopping time for (Xt). In particular, if r is a non-random and
non-negative integer and τ is a stopping time, then τ + r is a stopping time.

Exercise 6.2. Consider the top-to-random shuffle. Show that the time until
the card initially one card from the bottom rises to the top, plus one more move,
is a strong stationary time, and find its expectation.

Exercise 6.3. Show that for the Markov chain on two complete graphs in
Section 6.5.1, the stationary distribution is uniform on all 2n− 1 vertices.

Exercise 6.4. Let s(t) be defined as in (6.8).

(a) Show that there is a stochastic matrix Q so that P t(x, ·) = [1− s(t)]π +
s(t)Qt(x, ·) and π = πQ.

(b) Using the representation in (a), show that

P t+u(x, y) = [1− s(t)s(u)]π(y) + s(t)s(u)
∑

z∈Ω

Qt(x, z)Qu(z, y). (6.19)

(c) Using (6.19), establish that s is submultiplicative: s(t+ u) ≤ s(t)s(u).
Exercise 6.5. Show that if maxx∈Ω Px{τ > t0} ≤ ε, then d(t) ≤ εt/t0 .
Exercise 6.6 (Wald’s Identity). Let (Yt) be a sequence of independent and

identically distributed random variables such that E(|Yt|) <∞.

(a) Show that if τ is a random time so that the event {τ ≥ t} is independent of Yt
and E(τ) <∞, then

E

(
τ∑

t=1

Yt

)
= E(τ)E(Y1). (6.20)

Hint : Write
∑τ

t=1 Yt =
∑∞

t=1 Yt1{τ≥t}. First consider the case where Yt ≥ 0.
(b) Let τ be a stopping time for the sequence (Yt). Show that {τ ≥ t} is indepen-

dent of Yt, so (6.20) holds provided that E(τ) <∞.

Exercise 6.7. Consider the Markov chain of Section 6.5.1 defined on two glued
complete graphs. By considering the set A ⊂ Ω of all vertices in one of the two
complete graphs, show that tmix ≥ (n/2) [1 + o(1)].

Exercise 6.8. Let τk be the stopping time constructed in Section 6.5.5, and

let mk = E(τk). Show that mk+1 = 4mk + 1, so that mk =
∑k−1

i=0 4i = (4k − 1)/3.

Exercise 6.9. For a graph G, let W be the (random) vertex occupied at the
first time the random walk has visited every vertex. That is, W is the last new
vertex to be visited by the random walk. Prove the following remarkable fact: for
random walk on an n-cycle, W is uniformly distributed over all vertices different
from the starting vertex.

Remark 6.16. LetW be the random vertex defined in Exercise 6.9. Lovász and
Winkler (1993) demonstrate that cycles and complete graphs are the only graphs
for which W is this close to uniformly distributed. More precisely, these families
are the only ones for which W is equally likely to be any vertex other than the
starting state.
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Notes

Strong stationary times were introduced in Aldous and Diaconis (1987); see
also Aldous and Diaconis (1986). An important class of strong stationary times
was constructed by Diaconis and Fill (1990). The thesis of Pak (1997) has many
examples of strong stationary times.

Aldous and Diaconis (1987) showed that for reversible chains, the distances s
and d̄ are also related by

s(2t) ≤ 1− (1− d̄(t))2. (6.21)

(See Aldous and Fill (1999, Chapter 4, Lemma 7).) We prove this as Lemma 19.3.
Lovász and Winkler (1995b, Theorem 5.1) showed that a stationary time has

minimal expectation among all stationary times if and only if it has a halting state.
(See also Lovász and Winkler (1998).)

For the lazy random walk on the hypercube, the strong stationary time τrefresh
achieved the bound (6.9). Aldous and Diaconis (1987) prove that, for any irre-
ducible finite Markov chain, given a state x, there always exists a strong stationary
time τ such that s(t) = Px{τ > t} for all t.

The strong stationary time we give for the cycle in Section 6.5.5 is due to
Diaconis and Fill (1990), although the exposition is different. The idea goes back
to Dubins’s construction of the Skorokhod embedding (Dubins, 1968).





CHAPTER 7

Lower Bounds on Mixing Times

To this point, we have directed our attention to finding upper bounds on tmix.
Rigorous upper bounds lend confidence that simulation studies or randomized al-
gorithms perform as advertised. It is natural to ask if a given upper bound is the
best possible, and so in this chapter we turn to methods of obtaining lower bounds
on tmix.

7.1. Counting and Diameter Bounds

7.1.1. Counting bound. If the possible locations of a chain after t steps do
not form a significant fraction of the state space, then the distribution of the chain
at time t cannot be close to uniform. This idea can be used to obtain lower bounds
on the mixing time.

Let (Xt) be a Markov chain with irreducible and aperiodic transition matrix
P on the state space Ω, and suppose that the stationary distribution π is uniform
over Ω. Define dout(x) := |{y : P (x, y) > 0}| to be the number of states accessible
in one step from x, and let

∆ := max
x∈Ω

dout(x). (7.1)

Denote by Ωxt the set of states accessible from x in t steps, and observe that |Ωxt | ≤
∆t. If ∆t < (1− ε)|Ω|, then from the definition of total variation distance we have
that

∥∥P t(x, ·)− π
∥∥

TV
≥ Pt(x,Ωxt )− π(Ωxt ) ≥ 1− ∆t

|Ω| > ε.

This implies that

tmix(ε) ≥
log(|Ω|(1− ε))

log ∆
. (7.2)

Example 7.1 (Random walk on a d-regular graph). For random walk on a
d-regular graph, the stationary distribution is uniform, so the inequality (7.2) can
be applied. In this case, it yields the lower bound tmix(ε) ≥ log(|Ω|(1 − ε))/ log d.

We use the bound (7.2) to bound below the mixing time for the riffle shuffle in
Proposition 8.14.

7.1.2. Diameter bound. Given a transition matrix P on Ω, construct a
graph with vertex set Ω and which includes the edge {x, y} for all x and y with
P (x, y) + P (y, x) > 0. Define the diameter of a Markov chain to be the diameter
of this graph, that is, the maximal graph distance between distinct vertices.

Let P be an irreducible and aperiodic transition matrix on Ω with diameter
L, and suppose that x0 and y0 are states at maximal graph distance L. Then

87
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P ⌊(L−1)/2⌋(x0, ·) and P ⌊(L−1)/2⌋(y0, ·) are positive on disjoint vertex sets. Conse-
quently, d̄(⌊(L − 1)/2⌋) = 1 and for any ε < 1/2,

tmix(ε) ≥
L

2
. (7.3)

7.2. Bottleneck Ratio

Bottlenecks in the state space Ω of a Markov chain are geometric features
that control mixing time. A bottleneck makes portions of Ω difficult to reach from
some starting locations, limiting the speed of convergence. Figure 7.1 is a sketch of
a graph with an obvious bottleneck.
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Figure 7.1. A graph with a bottleneck.

As usual, P is the irreducible and aperiodic transition matrix for a Markov
chain on Ω with stationary distribution π.

The edge measure Q is defined by

Q(x, y) := π(x)P (x, y), Q(A,B) =
∑

x∈A,y∈B
Q(x, y). (7.4)

Here Q(A,B) is the probability of moving from A to B in one step when starting
from the stationary distribution.

The bottleneck ratio of the set S is defined to be

Φ(S) :=
Q(S, Sc)

π(S)
, (7.5)

while the bottleneck ratio of the whole chain is

Φ⋆ := min
S :π(S)≤ 1

2

Φ(S). (7.6)

For simple random walk on a graph with vertices Ω and edge set E,

Q(x, y) =

{
deg(x)
2|E|

1
deg(x) = 1

2|E| if {x, y} is an edge,

0 otherwise.

In this case, 2|E|Q(S, Sc) is the size of the boundary ∂S of S, the collection of
edges having one vertex in S and one vertex in Sc. The bottleneck ratio, in this
case, becomes

Φ(S) =
|∂S|∑

x∈S deg(x)
. (7.7)

Remark 7.2. If the walk is lazy, then Q(x, y) = (4|E|)−11{{x,y}∈E}, and the
bottleneck ratio equals Φ(S) = 2|∂S|/(∑x∈S deg(x)).
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If the graph is regular with degree d, then Φ(S) = d−1|∂S|/|S|, which is pro-
portional to the ratio of the size of the boundary of S to the volume of S.

The relationship of Φ⋆ to tmix is the following theorem:

Theorem 7.3. If Φ⋆ is the bottleneck ratio defined in (7.6), then

tmix = tmix (1/4) ≥ 1

4Φ⋆
. (7.8)

Proof. Denote by πS the restriction of π to S, so that πS(A) = π(A∩S), and
define µS to be π conditioned on S:

µS(A) =
πS(A)

π(S)
.

From Remark 4.3,

π(S) ‖µSP − µS‖TV = π(S)
∑

y∈Ω,
µSP (y)≥µS(y)

[µSP (y)− µS(y)] . (7.9)

Because πSP (y) = π(S)µSP (y) and πS(y) = π(S)µS(y), the inequality µSP (y) ≥
µS(y) holds if and only if πSP (y) ≥ πS(y). Thus

π(S) ‖µSP − µS‖TV =
∑

y∈Ω,
πSP (y)≥πS(y)

[πSP (y)− πS(y)] . (7.10)

Because πS(x) > 0 only for x ∈ S and πS(x) = π(x) for x ∈ S,

πSP (y) =
∑

x∈Ω

πS(x)P (x, y) =
∑

x∈S
π(x)P (x, y) ≤

∑

x∈Ω

π(x)P (x, y) = π(y). (7.11)

Again using that π(y) = πS(y) for y ∈ S, from (7.11) follows the inequality

πSP (y) ≤ πS(y) for y ∈ S. (7.12)

On the other hand, because πS vanishes on Sc,

πSP (y) ≥ 0 = πS(y) for y ∈ Sc. (7.13)

Combining (7.12) and (7.13) shows that the sum on the right in (7.10) can be taken
over Sc:

π(S) ‖µSP − µS‖TV =
∑

y∈Sc

[πSP (y)− πS(y)] . (7.14)

Again because πS(y) = 0 for y ∈ Sc,

π(S) ‖µSP − µS‖TV =
∑

y∈Sc

∑

x∈S
π(x)P (x, y) = Q(S, Sc).

Dividing by π(S),

‖µSP − µS‖TV = Φ(S).

By Exercise 4.3, for any u ≥ 0,
∥∥µSPu+1 − µSPu

∥∥
TV
≤ ‖µSP − µS‖TV = Φ(S).

Using the triangle inequality on µSP
t − µS =

∑t−1
u=0(µSP

u+1 − µSPu) shows that
∥∥µSP t − µS

∥∥
TV
≤ tΦ(S). (7.15)
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Figure 7.2. Two “glued” two-dimensional tori.

Assume that π(S) ≤ 1
2 . In this case, because µS(Sc) = 0,

‖µS − π‖TV ≥ π(Sc)− µS(Sc) = 1− π(S) ≥ 1

2
.

Using the triangle inequality again shows that

1

2
≤ ‖µS − π‖TV ≤

∥∥µS − µSP t
∥∥

TV
+
∥∥µsP t − π

∥∥
TV

. (7.16)

Taking t = tmix = tmix(1/4) in (7.16), by the definition of tmix and the inequality
in (7.15),

1

2
≤ tmixΦ(S) +

1

4
.

Rearranging and minimizing over S establishes (7.8). �

Example 7.4 (Two glued tori). Consider the graph consisting of two d-dimen-
sional tori “glued” together at a single vertex v⋆; see Figure 7.2 for an example of
dimension two. Denote by V1 and V2 the sets of vertices in the right and left tori,
respectively. Note that V1 ∩ V2 = v⋆.

The set ∂V1 consists of all edges {v⋆, v}, where v ∈ V2. The size of ∂V1 is
2d. Also,

∑
x∈V1

deg(x) = 2dn2 + 2d. Consequently, the lazy random walk on this
graph has

Φ⋆ ≤ Φ(V1) =
2(2d)

2d(n2 + 1)
≤ 2n−2.

(See Remark 7.2.) Theorem 7.3 implies that tmix ≥ n2/8. We return to this example
in Section 10.6, where it is proved that tmix is of order n2 logn. Thus the lower
bound here does not give the correct order.

Example 7.5 (Coloring the star). Let Ω be the set of all proper q-colorings of a
graph G, and let π be the uniform distribution on Ω. Recall from Example 3.5 that
Glauber dynamics for π is the Markov chain which makes transitions as follows: at
each unit of time, a vertex is chosen from V uniformly at random, and the color at
this vertex is chosen uniformly at random from all feasible colors. The feasible
colors at vertex v are all colors not present among the neighbors of v.

We will prove (Theorem 14.8) that if q > 2∆, where ∆ is the maximum degree
of the graph, then the Glauber dynamics has mixing time of the order |V | log |V |.

We show, by example, that quite different behavior may occur if the maximal
degree is not bounded.
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Figure 7.3. The star graph with 11 vertices.

The graph we study here is the star with n vertices, shown in Figure 7.3. This
graph is a tree of depth 1 with n− 1 leaves.

Let v⋆ denote the root vertex and let S ⊆ Ω be the set of proper colorings such
that v⋆ has color 1:

S := {x ∈ Ω : x(v⋆) = 1}.
For (x, y) ∈ S × Sc, the edge measure Q(x, y) is non-zero if and only if

• x(v⋆) = 1 and y(v⋆) 6= 1,
• x(v) = y(v) for all leaves v, and
• x(v) 6∈ {1, y(v⋆)} for all leaves v.

The number of such (x, y) pairs is therefore equal to (q−1)(q−2)n−1, since there are
(q−1) possibilities for the color y(v⋆) and (q−2) possibilities for the color (identical
in both x and y) of each of the n−1 leaves. Also, for such pairs, Q(x, y) ≤ (|Ω|n)−1.
It follows that ∑

x∈S,y∈Sc

Q(x, y) ≤ 1

|Ω|n (q − 1)(q − 2)n−1. (7.17)

Since x ∈ S if and only if x(v⋆) = 1 and x(v) 6= 1 for all v 6= v⋆, we have that
|S| = (q − 1)n−1. Together with (7.17), this implies

Q(S, Sc)

π(S)
=

(q − 1)(q − 2)n−1

n(q − 1)n−1
=

(q − 1)2

n(q − 2)

(
1− 1

q − 1

)n
≤ (q − 1)2

n(q − 2)
e−n/(q−1).

Consequently, the mixing time is at least of exponential order:

tmix ≥
n(q − 2)

4(q − 1)2
en/(q−1).

Remark 7.6. In fact, this argument shows that if n/(q log q) → ∞, then tmix

is super-polynomial in n.

Example 7.7 (Binary tree). Consider the lazy random walk on the rooted
binary tree of depth k. (See Section 5.3.4 for the definition.) Let n be the number
of vertices, so n = 2k+1 − 1. The number of edges is n − 1. In Section 5.3.4 we
showed that tmix ≤ 4n. We now show that tmix ≥ (n− 2)/4.

Let v0 denote the root. Label the vertices adjacent to v0 as vr and vℓ. Call w a
descendant of v if the shortest path from w to v0 passes through v. Let S consist
of the right-hand side of the tree, that is, vr and all of its descendants.
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We write |v| for the length of the shortest path from v to v0. By Example 1.12,
the stationary distribution is

π(v) =





2
2n−2 for v = v0,

3
2n−2 for 0 < |v| < k,

1
2n−2 for |v| = k.

Summing π(v) over v ∈ S shows that π(S) = (n− 2)/(2n− 2). Since there is only
one edge from S to Sc,

Q(S, Sc) = π(vr)P (vr , v0) =

(
3

2n− 2

)
1

3
=

1

2n− 2
,

and so Φ(S) = 1/(n− 2) . Applying Theorem 7.3 establishes the lower bound

tmix ≥
n− 2

4
=

2k+1 − 3

4
,

which is exponentially large as a function of the depth k.

7.3. Distinguishing Statistics

One way to produce a lower bound on the mixing time tmix is to find a statistic
f (a real-valued function) on Ω such that the distance between the distribution of
f(Xt) and the distribution of f under the stationary distribution π can be bounded
from below.

Let µ and ν be two probability distributions on Ω, and let f be a real-valued
function defined on Ω. We write Eµ to indicate expectations of random variables
(on sample space Ω) with respect to the probability distribution µ:

Eµ(f) :=
∑

x∈Ω

f(x)µ(x).

(Note the distinction between Eµ with Eµ, the expectation operator corresponding
to the Markov chain (Xt) started with initial distribution µ.) Likewise Varµ(f)
indicates variance computed with respect to the probability distribution µ.

Proposition 7.8. Let µ and ν be two probability distributions on Ω, and let f
be a real-valued function on Ω. If

|Eµ(f)− Eν(f)| ≥ rσ, (7.18)

where σ2 = [Varµ(f) + Varν(f)]/2, then

‖µ− ν‖TV ≥ 1− 4

4 + r2
. (7.19)

Before proving this, we provide a useful lemma. When µ is a probability dis-
tribution on Ω and f : Ω → Λ, write µf−1 for the probability distribution defined
by

(µf−1)(A) := µ(f−1(A))

for A ⊆ Λ. When X is an Ω-valued random variable with distribution µ, then f(X)
has distribution µf−1 on Λ.

Lemma 7.9. Let µ and ν be probability distributions on Ω, and let f : Ω → Λ
be a function on Ω, where Λ is a finite set. Then

‖µ− ν‖TV ≥
∥∥µf−1 − νf−1

∥∥
TV

.
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Proof. Since

|µf−1(B)− νf−1(B)| = |µ(f−1(B)) − ν(f−1(B))|,
it follows that

max
B⊂Λ
|µf−1(B)− νf−1(B)| ≤ max

A⊂Ω
|µ(A)− ν(A)|.

�

Remark 7.10. Lemma 7.9 can be used to lower bound the distance of some
chain from stationarity in terms of the corresponding distance for a projection (in
the sense of Section 2.3.1) of that chain. To do so, take Λ to be the relevant partition
of Ω.

If α is a probability distribution on a finite subset Λ of R, the translation of
α by c is the probability distribution αc on Λ + c defined by αc(x) = α(x − c).
Total variation distance is translation invariant : if α and β are two probability
distributions on a finite subset Λ of R, then ‖αc − βc‖TV = ‖α− β‖TV .

Proof of Proposition 7.8. Suppose that α and β are probability distribu-
tions on a finite subset Λ of R. Let

mα :=
∑

x∈Λ

xα(x), mβ :=
∑

x∈Λ

xβ(x)

be the mean of α and β, respectively, and assume that mα > mβ . Let M =
(mα −mβ)/2. By translating, we can assume that mα = M and mβ = −M . Let
η = (α+ β)/2, and define

r(x) :=
α(x)

η(x)
, s(x) :=

β(x)

η(x)
.

By Cauchy-Schwarz,

4M2 =

[∑

x∈Λ

x[r(x) − s(x)]η(x)
]2

≤
∑

x∈Λ

x2η(x)
∑

x∈Λ

[r(x) − s(x)]2η(x). (7.20)

If α = µf−1, β = νf−1, and Λ = f(Ω), then mµf−1 = Eµ(f), and (7.18) implies
that 4M2 ≥ r2σ2. Note that

∑

x∈Λ

x2η(x) =
m2
α + Var(α) +m2

β + Var(β)

2
= M2 + σ2. (7.21)

Since

|r(x) − s(x)| = 2
|α(x)− β(x)|
α(x) + β(x)

≤ 2,

we have∑

x∈Λ

[r(x) − s(x)]2η(x) ≤ 2
∑

x∈Λ

|r(x) − s(x)|η(x) = 2
∑

x∈Λ

|α(x) − β(x)|. (7.22)

Putting together (7.20), (7.21), and (7.22) shows that

M2 ≤ (M2 + σ2) ‖α− β‖TV ,
and rearranging shows that

‖α− β‖TV ≥ 1− σ2

σ2 +M2
.
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If 4M2 ≥ r2σ2, then

‖α− β‖TV ≥ 1− 4

4 + r2
. (7.23)

Using (7.23) now shows that

∥∥µf−1 − νf−1
∥∥

TV
≥ 1− 4

4 + r2
.

This together with Lemma 7.9 establishes (7.19). �

Remark 7.11. Applying Chebyshev’s inequality yields a similar lower bound.
Suppose Eµ(f) ≤ Eν(f), let σ2

⋆ := max{Varµ(f),Varν(f)}, and suppose that

Eν(f)− Eµ(f) ≥ rσ⋆.
If A = (Eµ(f) + rσ⋆/2, ∞), then Chebyshev’s inequality yields that

µf−1(A) ≤ 4

r2
and νf−1(A) ≥ 1− 4

r2
,

whence ∥∥µf−1 − νf−1
∥∥

TV
≥ 1− 8

r2
.

Thus, in the case of equal variances, the bound (7.19) is better than the one obtained
via Chebyshev.

7.3.1. Random walk on hypercube. We use Proposition 7.8 to bound be-
low the mixing time for the random walk on the hypercube, studied in Section 6.5.2.

First we record a simple lemma concerning the coupon collector problem intro-
duced in Section 2.2.

Lemma 7.12. Consider the coupon collecting problem with n distinct coupon
types, and let Ij(t) be the indicator of the event that the j-th coupon has not been
collected by time t. Let Rt =

∑n
j=1 Ij(t) be the number of coupon types not collected

by time t. The random variables Ij(t) are negatively correlated, and letting p =(
1− 1

n

)t
, we have for t ≥ 0

E(Rt) = np, (7.24)

Var(Rt) ≤ np(1− p) ≤
n

4
. (7.25)

Proof. Since Ij(t) = 1 if and only if the first t coupons are not of type j, it
follows that

E (Ij(t)) =

(
1− 1

n

)t
= p and Var(Ij(t)) = p(1− p).

Similarly, for j 6= k,

E (Ij(t)Ik(t)) =

(
1− 2

n

)t
,

whence

Cov(Ij(t), Ik(t)) =

(
1− 2

n

)t
−
(

1− 1

n

)2t

≤ 0.

From this (7.24) and (7.25) follow. �
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Proposition 7.13. For the lazy random walk on the n-dimensional hypercube,

d

(
1

2
n logn− αn

)
≥ 1− 8e−2α+1. (7.26)

Proof. Let 1 denote the vector of ones (1, 1, . . . , 1), and let W (x) =
∑n

i=1 x
i

be the Hamming weight of x = (x1, . . . , xn) ∈ {0, 1}n. We will apply Proposi-
tion 7.8 with f = W . The position of the walker at time t, started at 1, is denoted
by Xt = (X1

t , . . . , X
n
t ).

As π is uniform on {0, 1}n, the distribution of the random variable W under π
is binomial with parameters n and p = 1/2. In particular,

Eπ(W ) =
n

2
, Varπ(W ) =

n

4
.

Let Rt be the number of coordinates not updated at least once by time t. When
starting from 1, the conditional distribution of W (Xt) given Rt = r is the same as
that of r + B, where B is a binomial random variable with parameters n − r and
1/2. Consequently,

E1(W (Xt) | Rt) = Rt +
(n−Rt)

2
=

1

2
(Rt + n).

By (7.24),

E1(W (Xt)) =
n

2

[
1 +

(
1− 1

n

)t]
.

Using the identity Var(W (Xt)) = Var(E(W (Xt) | Rt)) + E(Var(W (Xt) | Rt)),

Var1(W (Xt)) =
1

4
Var(Rt) +

1

4
[n−E1(Rt)].

By Lemma 7.12, Rt is the sum of negatively correlated indicators and consequently
Var(Rt) ≤ E(Rt). We conclude that

Var1(W (Xt)) ≤
n

4
.

Setting

σ =
√

max{Varπ(W ),Var1(W (Xt))} =

√
n

2
,

we have

|Eπ(W )−E1(W (Xt))| =
n

2

(
1− 1

n

)t

= σ
√
n

(
1− 1

n

)t

= σ exp

{
−t[− log(1− n−1)] +

logn

2

}

≥ σ exp

{
− t
n

(
1 +

1

n

)
+

logn

2

}
.

The inequality follows since log(1 − x) ≥ −x − x2 for 0 ≤ x ≤ 1/2. By Proposi-
tion 7.8,

∥∥P t(1, ·)− π
∥∥

TV
≥ 1− 8 exp

{
2t

n

(
1 +

1

n

)
− logn

}
. (7.27)
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The inequality (7.26) follows because

1

2
n logn− αn ≤ tn =

[
1

2
n logn−

(
α− 1

2

)
n

] [
1− 1

n+ 1

]
,

and the right-hand side of (7.27) evaluated at t = tn is equal to 1− 8e−2α+1. �

7.4. Examples

7.4.1. Random walk on the cycle. We return to the lazy random walk on
the cycle (see Example 1.8 and Example 2.10). The upper bound tmix ≤ n2 was
found in Section 5.3.2.

We complement this by giving a lower bound of the same order. We can couple
(Xt) to (St), a lazy simple random walk on all of Z, so that Xt = St until τ , the
first time that |Xt| hits n/2. Then

P

{
sup
t≤αn2

|Xt| > n/4

}
= P

{
sup
t≤αn2

|St| > n/4

}
≤ P {|Sαn2 | > n/4} ≤ c1α,

by Chebyshev’s inequality. For α < α0, where α0 is small enough, the right-hand
side is less than 1/8. If An = {k ∈ Zn : |k| ≥ n/4}, then π(An) ≥ 1/2, and

d(α0n
2) ≥ 1/2− 1/8 > 1/4,

so tmix ≥ α0n
2.

7.4.2. Top-to-random shuffle. The top-to-random shuffle was introduced
in Section 6.1 and upper bounds on d(t) and tmix were obtained in Section 6.5.3.
Here we obtain matching lower bounds.

The bound below, from Aldous and Diaconis (1986), uses only the definition of
total variation distance.

Proposition 7.14. Let (Xt) be the top-to-random chain on n cards. For any
ε > 0, there exists a constant α0 such that α > α0 implies that for all sufficiently
large n,

dn(n logn− αn) ≥ 1− ε. (7.28)

In particular, there is a constant α1 such that for all sufficiently large n,

tmix ≥ n logn− α1n. (7.29)

Proof. The bound is based on the events

Aj = {the original bottom j cards are in their original relative order}. (7.30)

Let id be the identity permutation; we will bound ‖P t(id, ·)− π‖TV from below.
Let τj be the time required for the card initially j-th from the bottom to reach

the top. Then

τj =

n−1∑

i=j

τj,i,

where τj,i is the time it takes the card initially j-th from the bottom to ascend

from position i (from the bottom) to position i + 1. The variables {τj,i}n−1
i=j are
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independent and τj,i has a geometric distribution with parameter p = i/n, whence
E(τj,i) = n/i and Var(τj,i) < n2/i2. We obtain the bounds

E(τj) =

n−1∑

i=j

n

i
≥ n(logn− log j − 1) (7.31)

and

Var(τj) ≤ n2
∞∑

i=j

1

i(i− 1)
≤ n2

j − 1
. (7.32)

Using the bounds (7.31) and (7.32), together with Chebyshev’s inequality, yields

P{τj < n logn− αn} ≤ P{τj −E(τj) < −n(α− log j − 1)}

≤ 1

(j − 1)
,

provided that α ≥ log j + 2. Define tn(α) = n logn − αn. If τj ≥ tn(α), then the
original j bottom cards remain in their original relative order at time tn(α), so

P tn(α)(id, Aj) ≥ P{τj ≥ tn(α)} ≥ 1− 1

(j − 1)
,

for α ≥ log j + 2. On the other hand, for the uniform stationary distribution

π(Aj) = 1/(j!) ≤ (j − 1)−1,

whence, for α ≥ log j + 2,

dn( tn(α) ) ≥
∥∥∥P tn(α)(id, ·)− π

∥∥∥
TV
≥ P tn(α)(id, Aj)− π(Aj) > 1− 2

j − 1
. (7.33)

Taking j = eα−2, provided n ≥ eα−2, we have

dn( tn(α) ) > g(α) := 1− 2

eα−2 − 1
.

Therefore,

lim inf
n→∞

dn( tn(α) ) ≥ g(α),

where g(α)→ 1 as α→∞. �

7.4.3. East model. Let

Ω := {x ∈ {0, 1}n+1 : x(n+ 1) = 1}.
The East model is the Markov chain on Ω which moves from x by selecting a
coordinate k from {1, 2, . . . , n} at random and flipping the value x(k) at k if and
only if x(k + 1) = 1. The reader should check that the uniform measure on Ω is
stationary for these dynamics.

Theorem 7.15. For the East model, tmix ≥ n2 − 2n3/2.

Proof. If A = {x : x(1) = 1}, then π(A) = 1/2.
On the other hand, we now show that it takes order n2 steps until Xt(1) =

1 with probability near 1/2 when starting from x0 = (0, 0, . . . , 0, 1). Consider
the motion of the left-most 1: it moves to the left by one if and only if the site
immediately to its left is chosen. Thus, the waiting time for the left-most 1 to move
from k to k − 1 is bounded below by a geometric random variable Gk with mean
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n. The sum G =
∑n

k=1Gk has mean n2 and variance (1 − n−1)n3. Therefore, if

t(n, α) = n2 − αn3/2, then

P{Xt(n,α)(1) = 1} ≤ P{G− n2 ≤ −αn3/2} ≤ 1

α2
,

and so

|P t(n,α)(x0, A)− π| ≥ 1

2
− 1

α2
.

Thus, if t ≤ n2 − 2n3/2, then d(t) ≥ 1/4. In other words, tmix ≥ n2 − 2n3/2. �

Exercises

Exercise 7.1. Let Xt = (X1
t , . . . , X

n
t ) be the position of the lazy random

walker on the hypercube {0, 1}n, started at X0 = 1 = (1, . . . , 1). Show that the

covariance between X i
t and Xj

t is negative. Conclude that if W (Xt) =
∑n

i=1X
i
t ,

then Var(W (Xt)) ≤ n/4.
Hint : It may be easier to consider the variables Y it = 2X i

t − 1.

Exercise 7.2. Show that Q(S, Sc) = Q(Sc, S) for any S ⊂ Ω. (This is easy in
the reversible case, but holds generally.)

Exercise 7.3. An empty graph has no edges. Show that there is a constant
c(q) so that Glauber dynamics on the set of proper colorings of the empty graph
satisfies

tmix ≥
1

2
n logn− c(q)n.

Hint : Copy the idea of the proof of Proposition 7.13.

Notes

The bottleneck ratio Φ⋆ has many names in the literature, including conduc-
tance, Cheeger constant , and isoperimetric constant . It is more common to relate
Φ⋆ to the spectral gap of a Markov chain. This connection is discussed in Chap-
ter 12. The approach to the lower bound for tmix presented here is more direct and
avoids reversibility. Results related to Theorem 7.3 can be found in Mihail (1989),
Fill (1991), and Chen, Lovász, and Pak (1999).

Hayes and Sinclair (2007) have recently shown that the Glauber dynamics for
many stationary distributions, on graphs of bounded degree, have mixing time order
n logn.

Upper bounds on the relaxation time (see Section 12.2) for the East model are
obtained in Aldous and Diaconis (2002), which imply that tmix = O(n2). See also
Cancrini, Martinelli, Roberto, and Toninelli (2008) for results concerning a class of
models including the East model. For combinatorics related to the East model, see
Chung, Diaconis, and Graham (2001).



CHAPTER 8

The Symmetric Group and Shuffling Cards

...to destroy all organization far more shuffling is necessary than
one would naturally suppose; I learned this from experience during
a period of addiction, and have since compared notes with others.

—Littlewood (1948).

We introduced the top-to-random shuffle in Section 6.1 and gave upper and
lower bounds on its mixing time in Sections 6.5.3 and Section 7.4.2, respectively.
Here we describe a general mathematical model for shuffling mechanisms and study
two natural methods of shuffling cards.

We will return in Chapter 16 to the subject of shuffling, armed with tech-
niques developed in intervening chapters. While games of chance have motivated
probabilists from the founding of the field, there are several other motivations for
studying card shuffling: these Markov chains are of intrinsic mathematical interest,
they model important physical processes in which the positions of particles are inter-
changed, and they can also serve as simplified models for large-scale mutations—see
Section 16.2.

8.1. The Symmetric Group

A stack of n cards can be viewed as an element of the symmetric group Sn
consisting of all permutations of the standard n-element set {1, 2, . . . , n}. This set
forms a group under the operation of functional composition. The identity element
of Sn is the identity function id(k) = k. Every σ ∈ Sn has a well-defined inverse
function, which is its inverse in the group.

A probability distribution µ on the symmetric group describes a mechanism for
shuffling cards: apply permutation σ to the deck with probability µ(σ). Repeatedly
shuffling the deck using this mechanism is equivalent to running the random walk
on the group with increment distribution µ. As discussed in Section 2.6, as long as
the support of µ generates all of Sn, the resulting chain is irreducible. If µ(id) > 0,
then it is aperiodic. Every shuffle chain has uniform stationary distribution.

It is most natural to interpret permutations as acting on the locations of cards,
rather than their values, and we will do so throughout this chapter. For example,
the permutation σ ∈ S4 for which we have

i 1 2 3 4
σ(i) 3 1 2 4

corresponds to inserting the top card (card 1) into position 3, which pushes card 2
into position 1 and card 3 into position 2 while leaving card 4 fixed.

99
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8.1.1. Cycle notation. We will often find it convenient to use cycle nota-

tion for permutations. In this notation, (abc) refers to the permutation σ for which
b = σ(a), c = σ(b), and a = σ(c). When several cycles are written consecutively,
they are performed one at a time, from right to left (as is consistent with ordinary
function composition). For example,

(13)(12) = (123) (8.1)

and

(12)(23)(34)(23)(12) = (14).

A cycle of length n is called an n-cycle. A transposition is a 2-cycle.
In card language, (8.1) corresponds to first exchanging the top and second cards

and then interchanging the top and third cards. The result is to send the top card
to the second position, the second card to the third position, and the third card to
the top of the deck.

Every permutation can be written as a product of disjoint cycles. Fixed points
correspond to 1-cycles, which are generally omitted from the notation.

8.1.2. Generating random permutations. We describe a simple algorithm
for generating an exactly uniform random permutation. Let σ0 be the identity
permutation. For k = 1, 2, . . . , n− 1 inductively construct σk from σk−1 by swap-
ping the cards at locations k and Jk, where Jk is an integer picked uniformly in
{k, . . . , n}, independently of {J1, . . . , Jk−1}. More precisely,

σk(i) =





σk−1(i) if i 6= Jk, i 6= k,

σk−1(Jk) if i = k,

σk−1(k) if i = Jk.

(8.2)

Exercise 8.1 asks you to prove that this generates a uniformly chosen element of Sn.
This method requires n steps, which is quite efficient. However, this is not how

any human being shuffles cards! In Section 8.3 we will examine a model which
comes closer to modeling actual human shuffles.

8.1.3. Parity of permutations. Given a permutation σ ∈ Sn, consider the
sign of the product

M(σ) =
∏

1≤i<j≤n
(σ(j)− σ(i)) .

Clearly M(id) > 0, since every term is positive. For every σ ∈ Sn and every
transposition (ab), we have

M((ab)σ) = −M(σ).

Why? We may assume that a < b. Then for every c such that a < c < b, two
factors change sign (the one that pairs c with a and also the one that pairs c with
b), while the single factor containing both a and b also changes sign.

Call a permutation σ even if M(σ) > 0, and otherwise call σ odd . Note that
a permutation is even (odd) if and only if every way of writing it as a product
of transpositions contains an even (odd) number of factors. Furthermore, under
composition of permutations, evenness and oddness follow the same rules as they
do for integer addition. Hence the set of all even permutations in Sn forms a
subgroup, known as the alternating group An.
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Note that an m-cycle can be written as a product of m− 1 transpositions:

(a1a2 . . . an) = (a1a2)(a2a3) . . . (an−1an).

Hence an m-cycle is odd (even) when m is even (odd), and the sign of any permu-
tation is determined by its disjoint cycle decomposition.

Example 8.1 (Random 3-cycles). Let T be the set of all three-cycles in Sn,
and let µ be uniform on T . The set T does not generate all of Sn, since every per-
mutation in T is even. Hence the random walk with increments µ is not irreducible.
(See Exercise 8.2.)

Example 8.2 (Random transpositions, first version). Let T ⊆ Sn be the set
of all transpositions and let µ be the uniform probability distribution on T . In
Section 8.1.2, we gave a method for generating a uniform random permutation
that started with the identity permutation and used only transpositions. Hence
〈T 〉 = Sn, and our random walk is irreducible.

Every element of the support of µ is odd. Hence, if this walk is started at the
identity, after an even number of steps, its position must be an even permutation.
After an odd number of steps, its position must be odd. Hence the walk is periodic.

Remark 8.3. Periodicity occurs in random walks on groups when the entire
support of the increment distribution falls into a single coset of some subgroup.
Fortunately, there is a simple way to assure aperiodicity. When the probability dis-
tribution µ on a group G satisfies µ(id) > 0, then the random walk with increment
distribution µ is aperiodic.

Why? Let g ∈ G. Since µ(id) = P (g, id · g) = P (g, g) > 0, we have 1 ∈ {t :
P t(g, g) > 0} and thus gcd{t : P t(g, g) > 0} = 1.

Example 8.4 (Lazy random transpositions). There is a natural way to modify
the random transpositions walk that uses the trick of Remark 8.3 to achieve ape-
riodicity. At time t, the shuffler chooses two cards, Lt and Rt, independently and
uniformly at random. If Lt and Rt are different, transpose them. Otherwise, do
nothing. The resulting distribution µ satisfies

µ(σ) =





1/n if ρ = id,

2/n2 if ρ = (ij),

0 otherwise.

(8.3)

8.2. Random Transpositions

It is difficult to imagine a simpler shuffle than the version of random transposi-
tions given in Example 8.4. How many random transpositions are necessary before
the deck has been well-randomized?

In Section 8.1.2, we gave a method for generating a uniform random permu-
tation that started with the set [n] sorted and used only transpositions. Thus the
set of transpositions generates Sn and by Proposition 2.13 the underlying Markov
chain is therefore irreducible.

In each round of random transposition shuffling, (almost) two cards are selected,
and each is moved to an almost uniformly random location. In other examples,
such as the hypercube, we have been able to bound convergence by tracking how
many features have been randomized. If a similar analysis applies to the random
transposition shuffle, we might hope that, since each step moves (almost) two cards,
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Aligning one card:

2 4 1 3
3 1 4 2

=⇒ 1 4 2 3
1 3 4 2

Aligning two cards:

2 3 1 4
3 1 4 2

=⇒ 1 3 2 4
1 3 4 2

Aligning three cards:

2 3 1
3 1 2

=⇒ 1 3 2
1 3 2

Figure 8.1. Aligning cards using coupled random transpositions.
In each example, Xt = 1 and Yt = 1, so card 1 is transposed with
the card in position 1 in both decks.

half the coupon collector time of approximately n logn steps will suffice to bring
the distribution close to uniform.

In fact, as Diaconis and Shahshahani (1981) proved, the random transpositions
walk has a sharp cutoff (see Chapter 18) of width O(n) at (1/2)n logn. They use
Fourier analysis on the symmetric group to achieve these extremely precise results.
Here, we present two upper bounds on the mixing time: a simple coupling that
gives an upper bound of order n2 for the mixing time and a strong stationary time
argument due to Broder (see Diaconis (1988)) that gives an upper bound within a
constant factor of the asymptotically sharp answer. While the lower bound we give
does not quite reach the cutoff, it does have the correct lead term constant.

8.2.1. Upper bound via coupling. For the coupling, we take a slightly
different view of generating the transpositions. At each time t, the shuffler chooses
a card Xt ∈ [n] and, independently, a position Yt ∈ [n]; she then transposes the
card Xt with the card in position Yt. Of course, if Xt already occupies Yt, the
deck is left unchanged. Hence this mechanism generates the distribution described
in (8.3).

To couple two decks, use the same choices (Xt) and (Yt) to shuffle both. Let
(σt) and (σ′

t) be the two trajectories. What can happen in one step? Let at be the
number of cards that occupy the same position in both σt and σ′

t.

• If Xt is in the same position in both decks and the same card occupies
position Yt in both decks, then at+1 = at.
• If Xt is in different positions in the two decks but position Yt is occupied

by the same card, then performing the specified transposition breaks one
alignment but also forms a new one. We have at+1 = at.
• If Xt is in different positions in the two decks and if the cards at position
Yt in the two decks do not match, then at least one new alignment is
made—and possibly as many as three. See Figure 8.1.

Proposition 8.5. Let τ be the time required for the two decks to couple. Then,

no matter the initial configurations of the two decks, E(τ) < π2

6 n
2.

Proof. Decompose
τ = τ1 + · · ·+ τn,
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where τi is the number of transpositions between the first time that at is greater
than or equal to i − 1 and the first time that at is greater than or equal to i.
(Since a0 can be greater than 0 and since at can increase by more than 1 in a single
transposition, it is possible that many of the τi’s are equal to 0.)

When t satisfies at = i, there are n− i unaligned cards and the probability of
increasing the number of alignments is (n − i)2/n2, since the shuffler must choose
a non-aligned card and a non-aligned position. In this situation τi+1 is a geometric
random variable with success probability (n− i)2/n2. We may conclude that under
these circumstances

E(τi+1|at = i) = n2/(n− i)2.
When no value of t satisfies at = i, then τi+1 = 0. Hence

E(τ) < n2
n−1∑

i=0

1

(n− i)2 < n2
∞∑

l=1

1

l2
.

�

Markov’s inequality and Corollary 5.3 now give an O(n2) bound on tmix. However,
the strong stationary time we are about to discuss does much better.

8.2.2. Upper bound via strong stationary time.

Proposition 8.6. In the random transposition shuffle, let Rt and Lt be the
cards chosen by the right and left hands, respectively, at time t. Assume that when
t = 0, no cards have been marked. At time t, mark card Rt if both of the following
are true:

• Rt is unmarked.
• Either Lt is a marked card or Lt = Rt.

Let τ be the time when every card has been marked. Then τ is a strong stationary
time for this chain.

Here is a heuristic explanation for why the scheme described above should give
a strong stationary time. One way to generate a uniform random permutation is to
build a stack of cards, one at a time, inserting each card into a uniformly random
position relative to the cards already in the stack. For the stopping time described
above, the marked cards are carrying out such a process.

Proof. It is clear that τ is a stopping time. To show that it is a strong
stationary time, we prove the following subclaim by induction on t. Let Vt ⊆ [n] be
the set of cards marked at or before time t, and let Ut ⊆ [n] be the set of positions
occupied by Vt after the t-th transposition. We claim that given t, Vt, and Ut, all
possible permutations of the cards in Vt on the positions Ut are equally likely.

This is clearly true when t = 1 (and continues to clearly be true as long as at
most one card has been marked).

Now, assume that the subclaim is true for t. The shuffler chooses cards Lt+1

and Rt+1.

• If no new card is marked, then Vt+1 = Vt. This can happen in three ways:
– The cards Lt+1 and Rt+1 are different and both are unmarked. Then
Vt+1 and Ut+1 are identical to Vt and Ut, respectively.
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– If Lt+1 and Rt+1 were both marked at an earlier round, then Ut+1 =
Ut and the shuffler applies a uniform random transposition to the
cards in Vt. All permutations of Vt remain equiprobable.

– Otherwise, Lt+1 is unmarked and Rt+1 was marked at an earlier
round. To obtain the position set Ut+1, we delete the position (at
time t) of Rt+1 and add the position (at time t) of Lt+1. For a fixed
set Ut, all choices of Rt+1 ∈ Ut are equally likely, as are all permu-
tations of Vt on Ut. Hence, once the positions added and deleted are
specified, all permutations of Vt on Ut+1 are equally likely.

• If the card Rt+1 gets marked, then Lt+1 is equally likely to be any element
of Vt+1 = Vt ∪ {Rt+1}, while Ut+1 consists of Ut along with the position
of Rt+1 (at time t). Specifying the permutation of Vt on Ut and the card
Lt+1 uniquely determines the permutation of Vt+1 on Ut+1. Hence all
such permutations are equally likely.

In every case, the collection of all permutations of the cards Vt on a specified set
Ut together make equal contributions to all possible permutations of Vt+1 on Ut+1.
Hence, to conclude that all possible permutations of a fixed Vt+1 on a fixed Ut+1

are equally likely, we simply sum over all possible preceding configurations. �

Remark 8.7. In the preceding proof, the two subcases of the inductive step for
which no new card is marked are essentially the same as checking that the uniform
distribution is stationary for the random transposition shuffle and the random-to-
top shuffle, respectively.

Remark 8.8. As Diaconis (1988) points out, for random transpositions some
simple card-marking rules fail to give strong stationary times. See Exercise 8.8.

Lemma 8.9. The stopping time τ defined in Proposition 8.6 satisfies

E(τ) = 2n(logn+O(1))

and

Var(τ) = O(n2).

Proof. As for the coupon collector time, we can decompose

τ = τ0 + · · ·+ τn−1,

where τk is the number of transpositions after the k-th card is marked, up to and
including when the (k+1)-st card is marked. The rules specified in Proposition 8.6

imply that τk is a geometric random variable with success probability (k+1)(n−k)
n2

and that the τi’s are independent of each other. Hence

E(τ) =
n−1∑

k=0

n2

(k + 1)(n− k) .

Substituting the partial fraction decomposition

1

(k + 1)(n− k) =
1

n+ 1

(
1

k + 1
+

1

n− k

)

and recalling that
n∑

j=1

1

j
= logn+O(1)
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(see Exercise 2.4) completes the estimate.
Now, for the variance. We can immediately write

Var(τ) =

n−1∑

k=0

1− (k+1)(n−k)
n2(

(k+1)(n−k)
n2

)2 <

n−1∑

k=0

n4

(k + 1)2(n− k)2 .

Split the sum into two pieces:

Var(τ) <
∑

0≤k<n/2

n4

(k + 1)2(n− k)2 +
∑

n/2≤k<n

n4

(k + 1)2(n− k)2

<
2n4

(n/2)2

∑

0≤k≤n/2

1

(k + 1)2
= O(n2).

�

Corollary 8.10. For the random transposition chain on an n-card deck,

tmix ≤ (2 + o(1))n logn.

Proof. Let τ be the Broder stopping time defined in Proposition 8.6, and let
t0 = E(τ) + 2

√
Var(τ). By Chebyshev’s inequality,

P{τ > t0} ≤
1

4
.

Lemma 8.9 and Proposition 6.10 now imply the desired inequality. �

8.2.3. Lower bound.

Proposition 8.11. Let 0 < ε < 1. For the random transposition chain on an
n-card deck,

tmix(ε) ≥
n− 1

2
log

(
1− ε

6
n

)
.

Proof. It is well known (and easily proved using indicators) that the expected
number of fixed points in a uniform random permutation in Sn is 1, regardless of
the value of n.

Let F (σ) denote the number of fixed points of the permutation σ. If σ is ob-
tained from the identity by applying t random transpositions, then F (σ) is at least
as large as the number of cards that were touched by none of the transpositions—no
such card has moved, and some moved cards may have returned to their original
positions.

Our shuffle chain determines transpositions by choosing pairs of cards indepen-
dently and uniformly at random. Hence, after t shuffles, the number of untouched
cards has the same distribution as the number R2t of uncollected coupon types
after 2t steps of the coupon collector chain.

Let A = {σ : F (σ) ≥ µ/2}. We will compare the probabilities of A under the
uniform distribution π and P t(id, ·). First,

π(A) ≤ 2

µ
,

by Markov’s inequality. On the other hand, by Lemma 7.12, R2t has expectation

µ = n

(
1− 1

n

)2t
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and variance bounded by µ. By Chebyshev,

P t(id, Ac) ≤ P {R2t ≤ µ/2} ≤
µ

(µ/2)2
=

4

µ
.

By the definition (4.1) of total variation distance, we have

∥∥P tn(id, ·)− π
∥∥

TV
≥ 1− 6

µ
.

We want to find how small t must be so that 1− 6/µ ≥ ε, or equivalently,

n

(
1− 1

n

)2t

= µ ≥ 6

1− ε .

The above holds if and only if

log

(
n(1− ε)

6

)
≥ 2t log

(
n

n− 1

)
. (8.4)

Using the inequality log(1 + x) ≤ x, we have log
(

n
n−1

)
≤ 1

n−1 , so the inequality

(8.4) holds provided that

log

(
n(1− ε)

6

)
≥ 2t

n− 1
.

That is, if t ≤ n−1
2 log

(
n(1−ε)

6

)
, then d(t) ≥ 1− 6/µ ≥ ε. �

8.3. Riffle Shuffles

The method most often used to shuffle real decks of 52 cards is the following:
first, the shuffler cuts the decks into two piles. Then, the piles are “riffled” together:
she successively drops cards from the bottom of each pile to form a new pile. There
are two undetermined aspects of this procedure. First, the numbers of cards in
each pile after the initial cut can vary. Second, real shufflers drop varying numbers
of cards from each stack as the deck is reassembled.

Fortunately for mathematicians, there is a tractable mathematical model for
riffle shuffling. Here are three ways to shuffle a deck of n cards:

(1) Let M be a binomial(n, 1/2) random variable, and split the deck into its
top M cards and its bottom n −M cards. There are

(
n
M

)
ways to riffle

these two piles together, preserving the relative order within each pile
(first select the positions for the top M cards; then fill in both piles).
Choose one of these arrangements uniformly at random.

(2) Let M be a binomial(n, 1/2) random variable, and split the deck into its
top M cards and its bottom n −M cards. The two piles are then held
over the table and cards are dropped one by one, forming a single pile
once more, according to the following recipe: if at a particular moment,
the left pile contains a cards and the right pile contains b cards, then drop
the card on the bottom of the left pile with probability a/(a+ b) and the
card on the bottom of the right pile with probability b/(a + b). Repeat
this procedure until all cards have been dropped.

(3) Label the n cards with n independent fairly chosen bits. Pull all the cards
labeled 0 to the top of the deck, preserving their relative order.
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First, cut the deck:

1 2 3 4 5 6 7 8 9 10 11 12 13

Then riffle together.

7 1 8 2 3 9 4 10 5 11 12 6 13

Now, cut again:

7 1 8 2 3 9 4 10 5 11 12 6 13

Riffle again.

5 7 1 8 11 12 2 6 3 13 9 4 10

Figure 8.2. Riffle shuffling a 13-card deck, twice.

A rising sequence of a permutation σ is a maximal set of consecutive values that
occur in the correct relative order in σ. (For example, the final permutation in
Figure 8.2 has 4 rising sequences: (1, 2, 3, 4), (5, 6), (7, 8, 9, 10), and (11, 12, 13).

We claim that methods (1) and (2) generate the same distribution Q on per-
mutations, where

Q(σ) =





(n+ 1)/2n if σ = id,

1/2n if σ has exactly two rising sequences,

0 otherwise.

(8.5)

It should be clear that method (1) generates Q; the only tricky detail is that the
identity permutation is always an option, no matter the value of M . Given M ,

method (2) assigns probability M !(n−M)!/n! =
(
n
M

)−1
to each possible interleav-

ing, since each step drops a single card and every card must be dropped.
Recall from Section 4.6 that for a distribution R on Sn, the inverse distri-

bution R̂ satisfies R̂(ρ) = R(ρ−1). We claim that method (3) generates Q̂. Why?
The cards labeled 0 form one increasing sequence in ρ−1, and the cards labeled
1 form the other. (Again, there are n + 1 ways to get the identity permutation,
namely, all strings of the form 00 . . .011 . . .1.)

Thanks to Lemma 4.13 (which says that a random walk on a group and its
inverse, both started from the identity, have the same distance from uniformity
after the same number of steps), it will suffice to analyze method (3).

Now, consider repeatedly inverse riffle shuffling a deck, using method (3). For
the first shuffle, each card is assigned a random bit, and all the 0’s are pulled ahead
of all the 1’s. For the second shuffle, each card is again assigned a random bit,
and all the 0’s are pulled ahead of all the 1’s. Considering both bits (and writing
the second bit on the left), we see that cards labeled 00 precede those labeled 01,
which precede those labeled 10, which precede those labeled 11 (see Figure 8.3).
After k shuffles, each card will be labeled with a string of k bits, and cards with
different labels will be in lexicographic order (cards with the same label will be in
their original relative order).

Proposition 8.12. Let τ be the number of inverse riffle shuffles required for
all cards to have different bitstring labels. Then τ is a strong stationary time.

Proof. Assume τ = t. Since the bitstrings are generated by independent fair
coin flips, every assignment of strings of length t to cards is equally likely. Since the
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Initial order:

card 1 2 3 4 5 6 7 8 9 10 11 12 13

round 1 1 0 0 1 1 1 0 1 0 1 1 0 0
round 2 0 1 0 1 0 1 1 1 0 0 1 0 1

After one inverse riffle shuffle:

card 2 3 7 9 12 13 1 4 5 6 8 10 11

round 1 0 0 0 0 0 0 1 1 1 1 1 1 1
round 2 1 0 1 0 0 1 0 1 0 1 1 0 1

After two inverse riffle shuffles:

card 3 9 12 1 5 10 2 7 13 4 6 8 11

round 1 0 0 0 1 1 1 0 0 0 1 1 1 1
round 2 0 0 0 0 0 0 1 1 1 1 1 1 1

Figure 8.3. When inverse riffle shuffling, we first assign bits for
each round, then sort bit by bit.

labeling bitstrings are distinct, the permutation is fully determined by the labels.
Hence the permutation of the cards at time τ is uniform, no matter the value
of τ . �

Now we need only estimate the tail probabilities for the strong stationary time.
However, our stopping time τ is an example of the birthday problem, with the slight
twist that the number of “people” is fixed, and we wish to choose an appropriate
power-of-two “year length” so that all the people will, with high probability, have
different birthdays.

Proposition 8.13. For the riffle shuffle on an n-card deck, tmix ≤ 2 log2(4n/3)
for sufficiently large n.

Proof. Consider inverse riffle shuffling an n-card deck and let τ be the stop-
ping time defined in Proposition 8.12. If τ ≤ t, then different labels have been
assigned to all n cards after t inverse riffle shuffles. Hence

P(τ ≤ t) =

n−1∏

k=0

(
1− k

2t

)
,

since there are 2t possible labels. Let t = 2 log2(n/c). Then 2t = n2/c2 and we
have

log

n−1∏

k=0

(
1− k

2t

)
= −

n−1∑

k=0

(
c2k

n2
+O

(
k

n2

)2
)

= −c
2n(n− 1)

2n2
+O

(
n3

n4

)
= −c

2

2
+O

(
1

n

)
.

Hence

lim
n→∞

P(τ ≤ t)
e−c2/2

= 1.
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1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Figure 8.4. The “fifteen puzzle”.

Taking any value of c such that c <
√

2 log(4/3) ≈ 0.7585 will give a bound
on tmix = tmix(1/4). A convenient value to use is 3/4, which, combined with
Proposition 6.10, gives the bound stated in the proposition. �

Applying the counting bound in Section 7.1.1 gives a lower bound of logarithmic
order on the mixing time for the riffle shuffle.

Proposition 8.14. Fix 0 < ε, δ < 1. Consider riffle shuffling an n-card deck.
For sufficiently large n,

tmix(ε) ≥ (1− δ) log2 n. (8.6)

Proof. There are at most 2n possible states accessible in one step of the chain,
since we can generate a move using n independent unbiased bits. Thus log2 ∆ ≤ n,
where ∆ is the maximum out-degree defined in (7.1). The state space has size n!,
and Stirling’s formula shows that log2 n! = [1+o(1)]n log2 n. Using these estimates
in (7.2) shows that for all δ > 0, if n is sufficiently large then (8.6) holds. �

Exercises

Exercise 8.1. Let J1, . . . , Jn−1 be independent integers, where Jk is uniform
on {k, k+1, . . . , n}, and let σn−1 be the random permutation obtained by recursively
applying (8.2). Show that σn−1 is uniformly distributed on Sn.

Exercise 8.2.

(a) Show that the alternating group An ⊆ Sn of even permutations has order n!/2.
(b) Consider the distribution µ, uniform on the set of 3-cycles in Sn, introduced in

Example 8.1. Show that the random walk with increments µ is an irreducible
and aperiodic chain when considered as a walk on An.

Exercise 8.3. The long-notorious Sam Loyd “fifteen puzzle” is shown in Fig-
ure 8.4. It consists of 15 tiles, numbered with the values 1 through 15, sitting in a
4 by 4 grid; one space is left empty. The tiles are in order, except that tiles 14 and
15 have been switched. The only allowed moves are to slide a tile adjacent to the
empty space into the empty space.

Is it possible, using only legal moves, to switch the positions of tiles 14 and 15,
while leaving the rest of the tiles fixed?

(a) Show that the answer is “no.”
(b) Describe the set of all configurations of tiles that can be reached using only

legal moves.
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Exercise 8.4. Suppose that a random function σ : [n] → [n] is created by
letting σ(i) be a random element of [n], independently for each i = 1, . . . , n. If the
resulting function σ is a permutation, stop, and otherwise begin anew by generating
a fresh random function. Use Stirling’s formula to estimate the expected number
of random functions generated up to and including the first permutation.

Exercise 8.5. Consider the following variation of our method for generating
random permutations: let σ0 be the identity permutation. For k = 1, 2, . . . , n
inductively construct σk from σk−1 by swapping the cards at locations k and Jk,
where Jk is an integer picked uniformly in [1, n], independently of previous picks.

For which values of n does this variant procedure yield a uniform random
permutation?

Exercise 8.6. True or false: let Q be a distribution on Sn such that when
σ ∈ Sn is chosen according to Q, we have

P(σ(i) > σ(j)) = 1/2

for every i, j ∈ [n]. Then Q is uniform on Sn.

Exercise 8.7. Kolata (January 9, 1990) writes: “By saying that the deck is
completely mixed after seven shuffles, Dr. Diaconis and Dr. Bayer mean that every
arrangement of the 52 cards is equally likely or that any card is as likely to be in
one place as in another.”

True or false: let Q be a distribution on Sn such that when σ ∈ Sn is chosen
according to Q, we have

P(σ(i) = j) = 1/n

for every i, j ∈ [n]. Then Q is uniform on Sn.

Exercise 8.8. Consider the random transposition shuffle.

(a) Show that marking both cards of every transposition and proceeding until every
card is marked does not yield a strong stationary time.

(b) Show that marking the right-hand card of every transposition and proceeding
until every card is marked does not yield a strong stationary time.

Exercise 8.9. Let ϕ : [n] → R be any function. Let σ ∈ Sn. Show that the
value of

ϕσ =
∑

k∈[n]

ϕ(k)ϕ(σ(k))

is maximized when σ = id.

Exercise 8.10. Show that for any positive integer n,
∑

k∈[n]

cos2
(

(2k − 1)π

2n

)
=
n

2
.

Exercise 8.11. Here is a way to generalize the inverse riffle shuffle. Let a be
a positive integer. To perform an inverse a-shuffle, assign independent uniform
random digits chosen from {0, 1, . . . , a − 1} to each card. Then sort according to
digit, preserving relative order for cards with the same digit. For example, if a = 3
and the digits assigned to cards are

1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 1 2 0 1 0 1 0 0 0

,
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1 2 3 4 5 6 7 8 9 10 11 12

0.25

0.5

0.75

1

1 2 3 4 5 6
1.0000 1.0000 1.0000 1.0000 0.9237 0.6135

7 8 9 10 11 12
0.3341 0.1672 0.0854 0.0429 0.0215 0.0108

Figure 8.5. The total variation distance from stationarity (with
4 digits of precision) after t riffle shuffles of a 52-card deck, for
t = 1, . . . , 12.

then the shuffle will give

2 6 8 10 11 12 4 7 9 1 3 5 .

(a) Let a and b be positive integers. Show that an inverse a-shuffle followed by an
inverse b-shuffle is the same as an inverse ab-shuffle.

(b) Describe (mathematically) how to perform a forwards a-shuffle, and show that
its increment distribution gives weight

(
a+n−r
n

)
/an to every σ ∈ Sn with exactly

r rising sequences. (This is a generalization of (8.5).)

Remark 8.15. Exercise 8.11(b), due to Bayer and Diaconis (1992), is the key
to numerically computing the total variation distance from stationarity. A permu-
tation has r rising sequences if and only if its inverse has r−1 descents. The number
of permutations in Sn with r − 1 descents is the Eulerian number 〈 n

r−1 〉. The
Eulerian numbers satisfy a simple recursion (and are built into modern symbolic
computation software); see p. 267 of Graham, Knuth, and Patashnik (1994) for de-
tails. It follows from Exercise 8.11 that the total variation distance from uniformity
after t Gilbert-Shannon-Reeds shuffles of an n-card deck is

n∑

r=1

〈 n
r−1 〉

∣∣∣∣∣

(
2t+n−r

n

)

2nt
− 1

n!

∣∣∣∣∣ .

See Figure 8.5 for the values when n = 52 and t ≤ 12.

Notes

See any undergraduate abstract algebra book, e.g. Herstein (1975) or Artin
(1991), for more on the basic structure of the symmetric group Sn.

Thorp (1965) proposed Exercise 8.5 as an “Elementary Problem” in the Amer-
ican Mathematical Monthly.
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Random transpositions. Our upper bound on the mixing time for random
transpositions is off by a factor of 4. Matthews (1988b) gives an improved strong
stationary time whose upper bound matches the lower bound. Here is how it works:
again, let Rt and Lt be the cards chosen by the right and left hands, respectively,
at time t. Assume that when t = 0, no cards have been marked. As long as at
most ⌈n/3⌉ cards have been marked, use this rule: at time t, mark card Rt if both
Rt and Lt are unmarked. When k > ⌈n/3⌉ cards have been marked, the rule is
more complicated. Let l1 < l2 < · · · < lk be the marked cards, and enumerate the
ordered pairs of marked cards in lexicographic order:

(l1, l1), (l1, l2), . . . , (l1, lk), (l2, l1), . . . , (lk, lk). (8.7)

Also list the unmarked cards in order: u1 < un < · · · < un−k. At time t, if there
exists an i such that 1 ≤ i ≤ n−k and one of the three conditions below is satisfied,
then mark card i.

(i) Lt = Rt = ui.
(ii) Either Lt = ui and Rt is marked or Rt = ui and Lt is marked.
(iii) The pair (Lt, Rt) is identical to the i-th pair in the list (8.7) of pairs of marked

cards.

(Note that at most one card can be marked per transposition; if case (iii) is invoked,
the card marked may not be either of the selected cards.) Compared to the Broder
time discussed earlier, this procedure marks cards much faster at the beginning and
essentially twice as fast at the end. The analysis is similar in spirit to, but more
complex than, that presented in Section 8.2.2.

Semi-random transpositions. Consider shuffling by transposing cards. How-
ever, we allow only one hand (the right) to choose a uniform random card. The
left hand picks a card according to some other rule—perhaps deterministic, per-
haps randomized—and the two cards are switched. Since only one of the two cards
switched is fully random, it is reasonable to call examples of this type shuffles by
semi-random transpositions. (Note that for this type of shuffle, the distribution
of allowed moves can depend on time.)

One particularly interesting variation first proposed by Thorp (1965) and men-
tioned as an open problem in Aldous and Diaconis (1986) is the cyclic-to-random

shuffle: at step t, the left hand chooses card t (mod n), the right hand chooses a
uniform random card, and the two chosen cards are transposed. This chain has
the property that every position is given a chance to be randomized once every n
steps. Might that speed randomization? Or does the reduced randomness slow it
down? (Note: Exercise 8.5 is about the state of an n-card deck after n rounds of
cyclic-to-random transpositions.)

Mironov (2002) (who was interested in how many steps are needed to do a
good job of initializing a standard cryptographic protocol) gives an O(n log n) up-
per bound, using a variation of Broder’s stopping time for random transpositions.
Mossel, Peres, and Sinclair (2004) prove a matching (to within a constant) lower
bound. Furthermore, the same authors extend the stopping time argument to give
an O(n logn) upper bound for any shuffle by semi-random transpositions. See also
Ganapathy (2007).

Riffle shuffles. The most famous theorem in non-asymptotic Markov chain
convergence is what is often, and perhaps unfortunately, called the “seven shuffles
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suffice” (for mixing a standard 52-card deck) result of Bayer and Diaconis (1992),
which was featured in the New York Times (Kolata, January 9, 1990). Many ele-
mentary expositions of the riffle shuffle have been written. Our account is in debt
to Aldous and Diaconis (1986), Diaconis (1988), and Mann (1994).

The model for riffle shuffling that we have discussed was developed by Gilbert
and Shannon at Bell Labs in the 1950’s and later independently by Reeds. It is nat-
ural to ask whether the Gilbert-Shannon-Reeds (GSR) shuffle is a reasonable model
for the way humans riffle cards together. Diaconis (1988) reports that when he and
Reeds both shuffled repeatedly, Reeds’s shuffles had packet sizes that matched the
GSR model well, while Diaconis’s shuffles had more small packets. The difference is
not surprising, since Diaconis is an expert card magician who can perform perfect
shuffles—i.e., ones in which a single card is dropped at a time.

Far more is known about the GSR shuffle than we have discussed. Bayer
and Diaconis (1992) derived the exact expression for the probability of any par-
ticular permutation after t riffle shuffles discussed in Exercise 8.11 and showed
that the riffle shuffle has a cutoff (in the sense we discuss in Chapter 18) when
t = 3

2 n logn. Diaconis, McGrath, and Pitman (1995) compute exact probabilities
of various properties of the resulting permutations and draw beautiful connections
with combinatorics and algebra. See Diaconis (2003) for a survey of mathematics
that has grown out of the analysis of the riffle shuffle.

Is it in fact true that seven shuffles suffice to adequately randomize a 52-card
deck? Bayer and Diaconis (1992) were the first to give explicit values for the total
variation distance from stationarity after various numbers of shuffles; see Figure 8.5.
After seven shuffles, the total variation distance from stationarity is approximately
0.3341. That is, after 7 riffle shuffles the probability of a given event can differ
by as much as 0.3341 from its value under the uniform distribution. Indeed, Peter
Doyle has described a simple solitaire game for which the probability of winning
when playing with a uniform random deck is exactly 1/2, but whose probability of
winning with a deck that has been GSR shuffled 7 times from its standard order is
0.801 (as computed in van Zuylen and Schalekamp (2004)).

Ultimately the question of how many shuffles suffice for a 52-card deck is one
of opinion, not mathematical fact. However, there exists at least one game playable
by human beings for which 7 shuffles clearly do not suffice. A more reasonable
level of total variation distance might be around 1 percent, comparable to the
house advantage in casino games. This threshold would suggest 11 or 12 as an
appropriate number of shuffles.





CHAPTER 9

Random Walks on Networks

9.1. Networks and Reversible Markov Chains

Electrical networks provide a different language for reversible Markov chains.
This point of view is useful because of the insight gained from the familiar physical
laws of electrical networks.

A network is a finite undirected connected graph G with vertex set V and edge
set E, endowed additionally with non-negative numbers {c(e)}, called conduc-

tances, that are associated to the edges of G. We often write c(x, y) for c({x, y});
clearly c(x, y) = c(y, x). The reciprocal r(e) = 1/c(e) is called the resistance of
the edge e.

A network will be denoted by the pair (G, {c(e)}). Vertices of G are often called
nodes. For x, y ∈ V , we will write x ∼ y to indicate that {x, y} belongs to E.

Consider the Markov chain on the nodes of G with transition matrix

P (x, y) =
c(x, y)

c(x)
, (9.1)

where c(x) =
∑

y : y∼x c(x, y). This process is called the weighted random walk

on G with edge weights {c(e)}, or the Markov chain associated to the network
(G, {c(e)}). This Markov chain is reversible with respect to the probability π defined
by π(x) := c(x)/cG, where cG =

∑
x∈V c(x):

π(x)P (x, y) =
c(x)

cG

c(x, y)

c(x)
=
c(x, y)

cG
=
c(y, x)

cG
=
c(y)

cG

c(y, x)

c(y)
= π(y)P (y, x).

By Proposition 1.19, π is stationary for P . Note that

cG =
∑

x∈V

∑

y∈V
y∼x

c(x, y).

In the case that the graph has no loops, we have

cG = 2
∑

e∈E
c(e).

Simple random walk onG, defined in Section 1.4 as the Markov chain with transition
probabilities

P (x, y) =

{
1

deg(x) if y ∼ x,
0 otherwise,

(9.2)

is a special case of a weighted random walk: set the weights of all edges in G equal
to 1.

We now show that, in fact, every reversible Markov chain is a weighted random
walk on a network. Suppose P is a transition matrix on a finite set Ω which is
reversible with respect to the probability π (that is, (1.30) holds). Define a graph

115
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with vertex set Ω by declaring {x, y} an edge if P (x, y) > 0. This is a proper
definition, since reversibility implies that P (x, y) > 0 exactly when P (y, x) > 0.
Next, define conductances on edges by c(x, y) = π(x)P (x, y). This is symmetric
by reversibility. With this choice of weights, we have c(x) = π(x), and thus the
transition matrix associated with this network is just P . The study of reversible
Markov chains is thus equivalent to the study of random walks on networks.

9.2. Harmonic Functions

We assume throughout this section that P is the transition matrix of an irre-
ducible Markov chain with state space Ω. We do not assume in this section that P
is reversible; indeed, Proposition 9.1 is true for all irreducible chains.

Recall from Section 1.5.4 that we call a function h : Ω → R harmonic for P
at a vertex x if

h(x) =
∑

y∈Ω

P (x, y)h(y). (9.3)

When P is the transition matrix for a random walk on a graph, (9.3) means that
h(x) is the average of the values at h at neighboring vertices.

Recall that when B is a set of states, we define the hitting time τB by τB =
min{t ≥ 0 : Xt ∈ B}.

Proposition 9.1. Let (Xt) be a Markov chain with irreducible transition ma-
trix P , let B ⊂ Ω, and let hB : B → R be a function defined on B. The function
h : Ω→ R defined by h(x) := ExhB(XτB ) is the unique extension h : Ω→ R of hB
such that h(x) = hB(x) for all x ∈ B and h is harmonic for P at all x ∈ Ω \B.

Remark 9.2. The proof of uniqueness below, derived from the maximum prin-
ciple, should remind you of that of Lemma 1.16.

Proof. We first show that h(x) = Exh(XτB ) is a harmonic extension of hB.
Clearly h(x) = hB(x) for all x ∈ B. Suppose that x ∈ Ω \B. Then

h(x) = Exh(XτB ) =
∑

y∈Ω

P (x, y)Ex[h(XτB ) | X1 = y]. (9.4)

Observe that x ∈ Ω \ B implies that τB ≥ 1. By the Markov property, it follows
that

Ex[h(XτB ) | X1 = y] = Eyh(XτB ) = h(y). (9.5)

Substituting (9.5) in (9.4) shows that h is harmonic at x.
We now show uniqueness. Suppose g : Ω→ R is a function which is harmonic

on Ω \ B and satisfies g(x) = 0 for all x ∈ B. We first show that g ≤ 0. Suppose
this is not the case. Let x /∈ B belong to the set

A :=

{
x : g(x) = max

Ω\B
g

}

and suppose that P (x, y) > 0. If g(y) < g(x), then harmonicity of g on Ω \ B
implies

g(x) =
∑

z∈Ω

g(z)P (x, z) = g(y)P (x, y) +
∑

z∈Ω
z 6=y

g(z)P (x, z) < max
Ω\B

g,

a contradiction. It follows that g(y) = maxΩ\B g, that is, y ∈ A.



9.3. VOLTAGES AND CURRENT FLOWS 117

By irreducibility, for any y ∈ B, there exists a sequence of states y0, y1, . . . , yr
such that y0 = x and yr = y and such that P (yi−1, yi) > 0 for i = 1, 2, . . . , r.
Therefore, each yi ∈ A. In particular, y ∈ A. Since g(y) = 0, it follows that
maxΩ\B g ≤ 0. Since g(x) = 0 for x ∈ B, it follows that maxΩ g ≤ 0. Applying this
argument to −h shows that minΩ g ≥ 0, whence g(x) = 0 for all x ∈ Ω.

Now, if h and h̃ are both harmonic on Ω\B and agree on B, then the difference

h− h̃ is harmonic on Ω \ B and vanishes on B. Therefore, h(x) − h̃(x) = 0 for all
x ∈ Ω. �

Remark 9.3. Note that requiring h to be harmonic on X \B yields a system
of |Ω| − |B| linear equations in the |Ω| − |B| unknowns {h(x)}x∈Ω\B. For such a
system of equations, existence of a solution implies uniqueness.

9.3. Voltages and Current Flows

Consider a network (G, {c(e)}). We distinguish two nodes, a and z, which are
called the source and the sink of the network. A function W which is harmonic
on V \ {a, z} will be called a voltage. Proposition 9.1 implies that a voltage is
completely determined by its boundary values W (a) and W (z).

An oriented edge −→e = −→xy is an ordered pair of nodes (x, y). A flow θ is a
function on oriented edges which is antisymmetric, meaning that θ(−→xy) = −θ(−→yx).
For a flow θ, define the divergence of θ at x by

div θ(x) :=
∑

y : y∼x
θ(−→xy).

We note that for any flow θ we have
∑

x∈V
div θ(x) =

∑

x∈V

∑

y : y∼x
θ(−→xy) =

∑

{x,y}∈E
[θ(−→xy) + θ(−→yx)] = 0. (9.6)

A flow from a to z is a flow θ satisfying

(i) Kirchhoff’s node law :

div θ(x) = 0 at all x 6∈ {a, z}, (9.7)

and
(ii) div θ(a) ≥ 0.

Note that (9.7) is the requirement that “flow in equals flow out” for any node not
a or z.

We define the strength of a flow θ from a to z to be ‖θ‖ := div θ(a). A unit

flow from a to z is a flow from a to z with strength 1. Observe that (9.6) implies
that div θ(a) = − div θ(z).

Observe that it is only flows that are defined on oriented edges. Conductance
and resistance are defined for unoriented edges. We may of course define them (for
future notational convenience) on oriented edges by c(−→xy) = c(−→yx) = c(x, y) and
r(−→xy) = r(−→yx) = r(x, y).

Given a voltage W on the network, the current flow I associated with W is
defined on oriented edges by

I(−→xy) =
W (x)−W (y)

r(−→xy) = c(x, y) [W (x)−W (y)] . (9.8)
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Because any voltage is an affine transformation of the unique voltage W0 satisfying
W0(a) = 1 and W0(z) = 0, the unit current flow is unique.

This definition immediately implies that the current flow satisfies Ohm’s law :

r(−→xy)I(−→xy) = W (x) −W (y). (9.9)

Also notice that I is antisymmetric and satisfies the node law (9.7) at every
x /∈ {a, z}:

∑

y : y∼x
I(−→xy) =

∑

y : y∼x
c(x, y)[W (x) −W (y)]

= c(x)W (x) − c(x)
∑

y : y∼x
W (y)P (x, y) = 0.

Finally, the current flow also satisfies the cycle law . If the oriented edges−→e1 , . . . ,−→em form an oriented cycle (i.e., for some x0, . . . , xn−1 ∈ V we have −→ei =
(xi−1, xi), where xn = x0), then

m∑

i=1

r(−→ei )I(−→ei ) = 0 . (9.10)

Notice that adding a constant to all values of a voltage affects neither its har-
monicity nor the current flow it determines. Hence we may, without loss of gener-
ality, assume our voltage function W satisfies W (z) = 0. Such a voltage function
is uniquely determined by W (a).

Proposition 9.4 (Node law/cycle law/strength). If θ is a flow from a to z
satisfying the cycle law

m∑

i=1

r(−→ei )θ(−→ei ) = 0 (9.11)

for any cycle −→e1 , . . . ,−→em and if ‖θ‖ = ‖I‖, then θ = I.

Proof. The function f = θ−I satisfies the node law at all nodes and the cycle
law. Suppose f(−→e1) > 0 for some oriented edge −→e1 . By the node law, e1 must lead
to some oriented edge −→e2 with f(−→e2) > 0. Iterate this process to obtain a sequence
of oriented edges on which f is strictly positive. Since the underlying network is
finite, this sequence must eventually revisit a node. The resulting cycle violates the
cycle law. �

9.4. Effective Resistance

Given a network, the ratio [W (a) − W (z)]/‖I‖, where I is the current flow
corresponding to the voltage W , is independent of the voltage W applied to the
network. Define the effective resistance between vertices a and z by

R(a↔ z) :=
W (a)−W (z)

‖I‖ . (9.12)

In parallel with our earlier definitions, we also define the effective conductance

C(a ↔ z) = 1/R(a ↔ z). Why is R(a ↔ z) called the “effective resistance” of
the network? Imagine replacing our entire network by a single edge joining a to z
with resistance R(a ↔ z). If we now apply the same voltage to a and z in both
networks, then the amount of current flowing from a to z in the single-edge network
is the same as in the original.
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Next, we discuss the connection between effective resistance and the escape

probability Pa{τz < τ+
a } that a walker started at a hits z before returning to a.

Proposition 9.5. For any x, a, z ∈ Ω,

Pa{τz < τ+
a } =

1

c(a)R(a↔ z)
=
C(a↔ z)

c(a)
. (9.13)

Proof. By Proposition 9.1, the function

x 7→ Ex1{Xτ{a,z}
=z} = Px{τz < τa}

is the unique harmonic function on Ω \ {a, z} with value 0 at a and value 1 at z.
Since the function

x 7→ W (a)−W (x)

W (a)−W (z)

is also harmonic on Ω \ {a, z} with the same boundary values, we must by Propo-
sition 9.1 have

Px{τz < τa} =
W (a)−W (x)

W (a)−W (z)
. (9.14)

Therefore,

Pa{τz < τ+
a } =

∑

x∈V
P (a, x)Px{τz < τa} =

∑

x : x∼a

c(a, x)

c(a)

W (a)−W (x)

W (a)−W (z)
. (9.15)

By the definition (9.8) of current flow, the above is equal to
∑

x :x∼a I(
−→ax)

c(a) [W (a)−W (z)]
=

‖I‖
c(a) [W (a)−W (z)]

=
1

c(a)R(a↔ z)
, (9.16)

showing (9.13). �

The Green’s function for a random walk stopped at a stopping time τ is
defined by

Gτ (a, x) := Ea (number of visits to x before τ ) = Ea

( ∞∑

t=0

1{Xt=x,τ>t}

)
. (9.17)

Lemma 9.6. If Gτz(a, a) is the Green’s function defined in (9.17), then

Gτz(a, a) = c(a)R(a↔ z). (9.18)

Proof. The number of visits to a before visiting z has a geometric distribution
with parameter Pa{τz < τ+

a }. The lemma then follows from (9.13). �

It is often possible to replace a network by a simplified one without changing
quantities of interest, for example the effective resistance between a pair of nodes.
The following laws are very useful.

Parallel Law. Conductances in parallel add : suppose edges e1 and e2, with
conductances c1 and c2, respectively, share vertices v1 and v2 as endpoints. Then
both edges can be replaced with a single edge of conductance c1 + c2 without
affecting the rest of the network. All voltages and currents in G \ {e1, e2} are
unchanged and the current I(−→e ) equals I(−→e1) + I(−→e2). For a proof, check Ohm’s
and Kirchhoff’s laws with I(−→e ) := I(−→e1) + I(−→e2).

Series Law. Resistances in series add : if v ∈ V \ {a, z} is a node of degree 2
with neighbors v1 and v2, the edges (v1, v) and (v, v2) can be replaced by a single
edge (v1, v2) of resistance rv1v + rvv2 . All potentials and currents in G \ {v} remain
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the same and the current that flows from v1 to v2 equals I(−→v1v) = I(−→vv2). For a
proof, check again Ohm’s and Kirchhoff’s laws, with I(−−→v1v2) := I(−→v1v) = I(−→vv2).

Gluing. Another convenient operation is to identify vertices having the same
voltage, while keeping all existing edges. Because current never flows between
vertices with the same voltage, potentials and currents are unchanged.

Example 9.7. When a and z are two vertices in a tree Γ with unit resistance
on each edge, then R(a ↔ z) is equal to the length of the unique path joining a
and z. (For any vertex x not along the path joining a and z, there is a unique path
from x to a. Let x0 be the vertex at which the x–a path first hits the a–z path.
Then W (x) = W (x0).)

Example 9.8. For a tree Γ with root ρ, let Γn be the set of vertices at distance
n from ρ. Consider the case of a spherically symmetric tree, in which all vertices of
Γn have the same degree for all n ≥ 0. Suppose that all edges at the same distance
from the root have the same resistance, that is, r(e) = ri if |e| = i, i ≥ 1. Glue all
the vertices in each level; this will not affect effective resistances, so we infer that

R(ρ↔ ΓM ) =

M∑

i=1

ri
|Γi|

(9.19)

and

Pρ{τΓM < τ+
ρ } =

r1/|Γ1|∑M
i=1 ri/|Γi|

. (9.20)

Therefore, limM→∞ Pρ{τΓM < τ+
ρ } > 0 if and only if

∑∞
i=1 ri/|Γi| <∞.

Example 9.9 (Biased nearest-neighbor random walk). Fix α > 0 with α 6= 1
and consider the path with vertices {0, 1, . . . , n} and weights c(k − 1, k) = αk for
k = 1, . . . , n. Then for all interior vertices 0 < k < n we have

P (k, k + 1) =
α

1 + α
,

P (k, k − 1) =
1

1 + α
.

If p = α/(1 + α), then this is the walk that, when at an interior vertex, moves up
with probability p and down with probability 1− p. (Note: this is also an example
of a birth-and-death chain, as defined in Section 2.5.)

Using the Series Law, we can replace the k edges to the left of vertex k by a
single edge of resistance

r1 :=
k∑

j=1

α−j =
1− α−k

α− 1
.

Likewise, we can replace the (n − k) edges to the right of k by a single edge of
resistance

r2 :=

n∑

j=k+1

α−j =
α−k − α−n

α− 1

The probability Pk{τn < τ0} is not changed by this modification, so we can calcu-
late simply that

Pk{τn < τ0} =
r−1
2

r−1
1 + r−1

2

=
α−k − 1

α−n − 1
.
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In particular, for the biased random walk which moves up with probability p,

Pk{τn < τ0} =
[(1− p)/p]k − 1

[(1− p)/p]n − 1
. (9.21)

Define the energy of a flow θ by

E(θ) :=
∑

e

[θ(e)]2r(e).

Theorem 9.10 (Thomson’s Principle). For any finite connected graph,

R(a↔ z) = inf
{
E(θ) : θ a unit flow from a to z

}
. (9.22)

The unique minimizer in the inf above is the unit current flow.

Remark 9.11. The sum in E(θ) is over unoriented edges, so each edge {x, y} is
only considered once in the definition of energy. Although θ is defined on oriented
edges, it is antisymmetric and hence θ(e)2 is unambiguous.

Proof. Since the set of unit-strength flows can be viewed as a closed and
bounded subset of R|E|, by compactness there exists a flow θ minimizing E(θ)
subject to ‖θ‖ = 1. By Proposition 9.4, to prove that the unit current flow is the
unique minimizer, it is enough to verify that any unit flow θ of minimal energy
satisfies the cycle law.

Let the edges −→e1 , . . . ,−→en form a cycle. Set γ(−→ei ) = 1 for all 1 ≤ i ≤ n and set γ
equal to zero on all other edges. Note that γ satisfies the node law, so it is a flow,
but

∑
γ(−→ei ) = n 6= 0. For any ε ∈ R, we have by energy minimality that

0 ≤ E(θ + εγ)− E(θ) =
n∑

i=1

[
(θ(−→ei ) + ε)

2 − θ(−→ei )2
]
r(−→ei )

= 2ε

n∑

i=1

r(−→ei )θ(−→ei ) +O(ε2).

Dividing both sides by ε > 0 shows that

0 ≤ 2

n∑

i=1

r(−→ei )θ(−→ei ) + O(ε),

and letting ε ↓ 0 shows that 0 ≤∑n
i=1 r(ei)θ(

−→ei ). Similarly, dividing by ε < 0 and
then letting ε ↑ 0 shows that 0 ≥∑n

i=1 r(ei)θ(
−→ei ). Therefore,

∑n
i=1 r(ei)θ(

−→ei ) = 0,
verifying that θ satisfies the cycle law.

We complete the proof by showing that the unit current flow I has E(I) =
R(a↔ z):

∑

e

r(e)I(e)2 =
1

2

∑

x

∑

y

r(x, y)

[
W (x)−W (y)

r(x, y)

]2

=
1

2

∑

x

∑

y

c(x, y)[W (x) −W (y)]2

=
1

2

∑

x

∑

y

[W (x)−W (y)]I(−→xy).
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Since I is antisymmetric,

1

2

∑

x

∑

y

[W (x) −W (y)]I(−→xy) =
∑

x

W (x)
∑

y

I(−→xy). (9.23)

By the node law,
∑
y I(
−→xy) = 0 for any x 6∈ {a, z}, while

∑
y I(
−→ay) = ‖I‖ =

−∑y I(
−→zy), so the right-hand side of (9.23) equals

‖I‖ (W (a)−W (z)) .

Since ‖I‖ = 1, we conclude that the right-hand side of (9.23) is equal to (W (a) −
W (z))/‖I‖ = R(a↔ z). �

Let a, z be vertices in a network and suppose that we add to the network an
edge which is not incident to a. How does this affect the escape probability from
a to z? From the point of view of probability, the answer is not obvious. In the
language of electrical networks, this question is answered by Rayleigh’s Law.

If r = {r(e)} is a set of resistances on the edges of a graph G, write R(a↔ z; r)
to denote the effective resistance computed with these resistances.

Theorem 9.12 (Rayleigh’s Monotonicity Law). If {r(e)} and {r′(e)} are sets
of resistances on the edges of the same graph G and if r(e) ≤ r′(e) for all e, then

R(a↔ z; r) ≤ R(a↔ z; r′). (9.24)

Proof. Note that inf
θ

∑
e r(e)θ(e)

2 ≤ inf
θ

∑
e r

′(e)θ(e)2 and apply Thomson’s

Principle (Theorem 9.10). �

Corollary 9.13. Adding an edge does not increase the effective resistance
R(a↔ z). If the added edge is not incident to a, the addition does not decrease the
escape probability Pa{τz < τ+

a } = [c(a)R(a↔ z)]−1.

Proof. Before we add an edge to a network, we can think of it as existing
already with c = 0 or r = ∞. By adding the edge, we reduce its resistance to a
finite number.

Combining this with the relationship (9.13) shows that the addition of an edge
not incident to a (which we regard as changing a conductance from 0 to a non-zero
value) cannot decrease the escape probability Pa{τz < τ+

a }. �

Corollary 9.14. The operation of gluing vertices cannot increase effective
resistance.

Proof. When we glue vertices together, we take an infimum in Thomson’s
Principle (Theorem 9.10) over a larger class of flows. �

A technique due to Nash-Williams often gives simple but useful lower bounds
on effective resistance. We call Π ⊆ V an edge-cutset separating a from z if
every path from a to z includes some edge in Π.

Proposition 9.15. If {Πk} are disjoint edge-cutsets which separate nodes a
and z, then

R(a↔ z) ≥
∑

k

(∑

e∈Πk

c(e)

)−1

. (9.25)

The inequality (9.25) is called the Nash-Williams inequality.
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Proof. Let θ be a unit flow from a to z. For any k, by the Cauchy-Schwarz
inequality

∑

e∈Πk

c(e) ·
∑

e∈Πk

r(e)θ(e)2 ≥
(∑

e∈Πk

√
c(e)

√
r(e)|θ(e)|

)2

=

(∑

e∈Πk

|θ(e)|
)2

.

The right-hand side is bounded below by ‖θ‖2 = 1, because Πk is a cutset and
‖θ‖ = 1. Therefore

∑

e

r(e)θ(e)2 ≥
∑

k

∑

e∈Πk

r(e)θ(e)2 ≥
∑

k

(∑

e∈Πk

c(e)

)−1

.

By Thompson’s Principle (Theorem 9.10), we are done. �

9.5. Escape Probabilities on a Square

We now use the inequalities we have developed to bound effective resistance
in a non-trivial example. Let Bn be the n × n two-dimensional grid graph: the
vertices are pairs of integers (z, w) such that 1 ≤ z, w ≤ n, while the edges are pairs
of points at unit (Euclidean) distance.

Proposition 9.16. Let a = (1, 1) be the lower left-hand corner of Bn, and let
z = (n, n) be the upper right-hand corner of Bn. Suppose each edge of Bn has unit
conductance. The effective resistance R(a↔ z) satisfies

log(n− 1)

2
≤ R(a↔ z) ≤ 2 logn. (9.26)

We separate the proof into the lower and upper bounds.

z

a

Figure 9.1. The graph B5. The cutset Π3 contains the edges
drawn with dashed lines.

Proof of lower bound in (9.26). Let Πk be the edge set

Πk = {(v, w) ∈ Bn : ‖v‖∞ = k − 1, ‖w‖∞ = k},
where ‖(v1, v2)‖∞ = max{v1, v2}. (See Figure 9.1.) Since every path from a to z
must use an edge in Πk, the set Πk is a cutset. Since each edge has unit conductance,
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∑
e∈Πk

c(e) equals the number of edges in Πk, namely 2k. By Proposition 9.15 and
Exercise 2.4,

R(a↔ z) ≥
n−1∑

k=1

1

2k
≥ log(n− 1)

2
. (9.27)

�

Proof of upper bound in (9.26). Thomson’s Principle (Theorem 9.10) says
that the effective resistance is the minimal possible energy of a unit flow from a to
z. So to get an upper bound on resistance, we build a unit flow on the square.

Consider Pólya’s urn process, described in Section 2.4. The sequence of ordered
pairs listing the numbers of black and white balls is a Markov chain with state space
{1, 2, . . .}2.

Run this process on the square—note that it necessarily starts at vertex a =
(1, 1)—and stop when you reach the main diagonal x+ y = n+ 1. Direct all edges
of the square from bottom left to top right and give each edge e on the bottom left
half of the square the flow

f(e) = P{the process went through e}.
To finish the construction, give the upper right half of the square the symmetrical
flow values.

From Lemma 2.6, it follows that for any k ≥ 0, the Pólya’s urn process is
equally likely to pass through each of the k + 1 pairs (i, j) for which i+ j = k + 2.
Consequently, when (i, j) is a vertex in the square for which i+ j = k+ 2, the sum
of the flows on its incoming edges is 1

k+1 . Thus the energy of the flow f can be
bounded by

E(f) ≤
n−1∑

k=1

2

(
1

k + 1

)2

(k + 1) ≤ 2 logn.

�

Exercises

Exercise 9.1. Generalize the flow in the upper bound of (9.26) to higher
dimensions, using an urn with balls of d colors. Use this to show that the resistance
between opposite corners of the d-dimensional box of side length n is bounded
independent of n, when d ≥ 3.

Exercise 9.2. An Oregon professor has n umbrellas, of which initially k ∈
(0, n) are at his office and n− k are at his home. Every day, the professor walks to
the office in the morning and returns home in the evening. In each trip, he takes
an umbrella with him only if it is raining. Assume that in every trip between home
and office or back, the chance of rain is p ∈ (0, 1), independently of other trips.
(a) Asymptotically, in what fraction of his trips does the professor get wet?
(b) Determine the expected number of trips until all n umbrellas are at the same

location.
(c) Determine the expected number of trips until the professor gets wet.

Exercise 9.3 (Gambler’s ruin). In Section 2.1, we defined simple random walk
on {0, 1, 2, . . . , n}. Use the network reduction laws to show that Px{τn < τ0} =
x/n.
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Exercise 9.4. Let θ be a flow from a to z which satisfies both the cycle law
and ‖θ‖ = ‖I‖. Define a function h on nodes by

h(x) =

m∑

i=1

[θ(~ei)− I(~ei)] r(~ei), (9.28)

where ~ei, . . . , ~em is an arbitrary path from a to x.

(a) Show that h is well-defined and harmonic at all nodes.
(b) Use part (a) to give an alternate proof of Proposition 9.4.

Exercise 9.5. Show that if, in a network with source a and sink z, vertices
with different voltages are glued together, then the effective resistance from a to z
will strictly decrease.

Exercise 9.6. Show that R(a↔ z) is a concave function of {r(e)}.
Exercise 9.7. Let Bn be the subset of Z2 contained in the box of side length

2n centered at 0. Let ∂Bn be the set of vertices along the perimeter of the box.
Show that

lim
n→∞

P0{τ∂Bn < τ+
a } = 0.

Exercise 9.8. Show that effective resistances form a metric on any network
with conductances {c(e)}.

Hint: The only non-obvious statement is the triangle inequality

R(x↔ z) ≤ R(x↔ y) +R(y ↔ z).

Adding the unit current flow from x to y to the unit current flow from y to z gives the
unit current flow from x to z (check Kirchoff’s laws!). Now use the corresponding
voltage functions.

Notes

Proposition 9.15 appeared in Nash-Williams (1959).

Further reading. The basic reference for the connection between electrical
networks and random walks on graphs is Doyle and Snell (1984), and we borrow
here from Peres (1999). For much more, see Lyons and Peres (2008).

For an introduction to (continuous) harmonic functions, see Ahlfors (1978,
Chapter 6).





CHAPTER 10

Hitting Times

10.1. Definition

Global maps are often unavailable for real networks that have grown without
central organization, such as the Internet. However, sometimes the structure can
be queried locally, meaning that given a specific node v, for some cost all nodes
connected by a single link to v can be determined. How can such local queries be
used to determine whether two nodes v and w can be connected by a path in the
network?

Suppose you have limited storage, but you are not concerned about time. In
this case, one approach is to start a random walk at v, allow the walk to explore
the graph for some time, and observe whether the node w is ever encountered. If
the walk visits node w, then clearly v and w must belong to the same connected
component of the network. On the other hand, if node w has not been visited by
the walk by time t, it is possible that w is not accessible from v—but perhaps the
walker was simply unlucky. It is of course important to distinguish between these
two possibilities! In particular, when w is connected to v, we desire an estimate of
the expected time until the walk visits w starting at v.

Given a Markov chain with state space Ω, it is natural to define the hitting

time τA of a subset A ⊆ Ω to be the first time one of the nodes in A is visited by
the chain. In symbols, if (Xt) is the random walk, we set

τA := min{t ≥ 0 : Xt ∈ A}.
We will simply write τw for τ{w}, consistent with our notation in Section 1.5.2.

We have already seen the usefulness of hitting times. In Section 1.5.3 we used
a variant

τ+
x = min{t ≥ 1 : Xt = x}

(called the first return time when X0 = x) to build a stationary distribution.
In Section 5.3.2, we used the expected absorption time for the random walk on a
line segment (computed in Section 2.1) to bound the expected coupling time for
the torus. In Section 9.2, we used hitting times to construct harmonic functions
satisfying specified boundary conditions.

To connect our discussion of hitting times for random walks on networks to our
leitmotif of mixing times, we mention now the problem of estimating the mixing
time for two “glued” tori, the graph considered in Example 7.4.

Let V1 be the collection of nodes in the right-hand torus, and let v⋆ be the node
connecting the two tori.

When the walk is started at a node x in the left-hand torus, we have

‖P t(x, ·)−π‖TV ≥ π(V1)−P t(x, V1) ≥
1

2
−Px{Xt ∈ V1} ≥

1

2
−Px{τv⋆ ≤ t}. (10.1)

127
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If the walk is unlikely to have exited the left-hand torus by time t, then (10.1)
shows that d(t) is not much smaller than 1/2. In view of this, it is not surprising
that estimates for Ex(τv⋆) are useful for bounding tmix for this chain. These ideas
are developed in Section 10.6.

10.2. Random Target Times

Lemma 10.1 (Random Target Lemma). For an irreducible Markov chain with
state space Ω, transition matrix P , and stationary distribution π, the quantity

∑

x∈Ω

Ea(τx)π(x)

does not depend on a ∈ Ω.

Proof. For notational convenience, let hx(a) = Ea(τx). Observe that if x 6= a,

hx(a) =
∑

y∈Ω

Ea(τx | X1 = y)P (a, y) =
∑

y∈Ω

(1 + hx(y))P (a, y) = (Phx)(a) + 1,

so that
(Phx)(a) = hx(a)− 1. (10.2)

If x = a, then

Ea(τ
+
a ) =

∑

y∈Ω

Ea(τ
+
a | X1 = y)P (a, y) =

∑

y∈Ω

(1 + ha(y))P (a, y) = 1 + (Pha)(a).

Since Ea(τ
+
a ) = π(a)−1,

(Pha)(a) =
1

π(a)
− 1. (10.3)

Thus, letting h(a) :=
∑

x∈Ω hx(a)π(x), (10.2) and (10.3) show that

(Ph)(a) =
∑

x∈Ω

(Phx)(a)π(x) =
∑

x 6=a
(hx(a)− 1)π(x) + π(a)

(
1

π(a)
− 1

)
.

Simplifying the right-hand side and using that ha(a) = 0 yields

(Ph)(a) = h(a).

That is, h is harmonic. Applying Lemma 1.16 shows that h is a constant function.
�

Consider choosing a state y ∈ Ω according to π. Lemma 10.1 says that the
expected time to hit the “random target” state y from a specified starting state a
does not depend on a. Hence we can define the target time of an irreducible chain
by

t⊙ :=
∑

x∈Ω

Ea(τx)π(x) = Eπ(τπ)

(the last version is a slight abuse of our notation for hitting times). Since t⊙ does
not depend on the state a, it is true that

t⊙ =
∑

x,y∈Ω

π(x)π(y)Ex(τy) = Eπ(τπ). (10.4)

We will often find it useful to estimate the worst-case hitting times between
states in a chain. Define

thit := max
x,y∈Ω

Ex(τy). (10.5)
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v
w

x

u

Figure 10.1. For random walk on this family of graphs, thit ≫ t⊙.

Lemma 10.2. For an irreducible Markov chain with state space Ω and stationary
distribution π,

thit ≤ 2 max
w

Eπ(τw).

Proof. For any a, y ∈ Ω, we have

Ea(τy) ≤ Ea(τπ) + Eπ(τy), (10.6)

since we can insist that the chain go from a to y via a random state x chosen
according to π. By Lemma 10.1,

Ea(τπ) = Eπ(τπ) ≤ max
w

Eπ(τw).

It is now clear that (10.6) implies the desired inequality. �

Note that for a transitive chain, for any b,

t⊙ = Eπ(τπ) =
∑

x∈Ω

Ea(τx)π(x) =
∑

x,y∈Ω

π(y)Ey(τx)π(x) = Eπ(τb).

Hence we have

Corollary 10.3. For an irreducible transitive Markov chain,

thit ≤ 2t⊙.

Example 10.4. When the underlying chain is not transitive, it is possible for
thit to be much larger than t⊙. Consider the example of simple random walk on a
complete graph on n vertices with a leaf attached to one vertex (see Figure 10.1).
Let v be the leaf and let w be the neighbor of the leaf; call the other vertices
ordinary . Let the initial state of the walk be v. The first return time to v satisfies
both

Evτ
+
v = Evτw + Ewτv = 1 + Ewτv

(since the walk must take its first step to w) and

Evτ
+
v =

1

π(v)
=

2
(
n
2

)
+ 1

1
= n2 − n+ 2,

by Proposition 1.14(ii) and Example 1.12. Hence Ewτv = n2 − n+ 1 ≤ thit.
By the Random Target Lemma, we can use any starting state to estimate t⊙.

Let’s start at v. Clearly Evτv = 0, while Evτw = 1 and Evτu = 1 + Ewτu, where u
is any ordinary vertex. How long does it take to get from w to u, on average? Let
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x be any other ordinary vertex. By conditioning on the first step of the walk and
exploiting symmetry, we have

Ewτu = 1 +
1

n
(Evτu + (n− 2)Exτu)

= 1 +
1

n
(1 + Ewτu + (n− 2)Exτu)

and

Exτu = 1 +
1

n− 1
(Ewτu + (n− 3)Exτu) .

We have two equations in the two “variables” Ewτu and Exτu. Solving yields

Ewτu =
n2 − n+ 4

n
= O(n) and Exτu =

n2 − n+ 2

n
= O(n)

(we only care about the first equation right now). Combining these results with
Example 1.12 yields

t⊙ = Evτπ = π(v)(0) + π(w)(1) + (n− 1)π(u)O(n)

=
1(0) + n(1) + (n− 1)2O(n)

2
((
n
2

)
+ 1
) = O(n)≪ thit.

10.3. Commute Time

The commute time between nodes a and b in a network is the time to move
from a to b and then back to a:

τa,b = min{t ≥ τb : Xt = a}, (10.7)

where we assume that X0 = a. The commute time is of intrinsic interest and can be
computed or estimated using resistance (the commute time identity , Proposition
10.6). In graphs for which Ea(τb) = Eb(τa), the expected hitting time is half the
commute time, so estimates for the commute time yield estimates for hitting times.
Transitive networks (defined below) enjoy this property (Proposition 10.9).

The following lemma will be used in the proof of the commute time identity:

Lemma 10.5 (Aldous, Fill). If τ is a stopping time for a finite and irreducible
Markov chain satisfying Pa{Xτ = a} = 1 and Gτ (a, x) is the Green’s function (as
defined in (9.17)), then

Gτ (a, x)

Ea(τ)
= π(x) for all x.

Exercise 10.1 asks for a proof of Lemma 10.5.

Recall that R(a↔ b) is the effective resistance between the vertices a and b in
a network. (Cf. Section 9.4.)

Proposition 10.6 (Commute Time Identity). Let (G, {c(e)}) be a network,
and let (Xt) be the random walk on this network. For any nodes a and b in V , let
τa,b be the commute time defined in (10.7) between a and b. Then

Ea(τa,b) = Ea(τb) + Eb(τa) = cGR(a↔ b). (10.8)

(Recall that c(x) =
∑

y : y∼x c(x, y) and that cG =
∑
x∈V c(x) = 2

∑
e∈E c(e).)
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Proof. By Lemma 10.5,

Gτa,b
(a, a)

Ea(τa,b)
= π(a) =

c(a)

cG
.

By definition, after visiting b, the chain does not visit a until time τa,b, so Gτa,b
(a, a)

= Gτb
(a, a). The conclusion follows from Lemma 9.6. �

Note that Ea(τb) and Eb(τa) can be very different for general Markov chains
and even for reversible chains (see Exercise 10.3). However, for certain types of
random walks on networks they are equal. A network 〈G, {c(e)}〉 is transitive if
for any pair of vertices x, y ∈ V there exists a permutation ψx,y : V → V with

ψx,y(x) = y and c(ψx,y(u), ψx,y(v)) = c(u, v) for all u, v ∈ V. (10.9)

Remark 10.7. In Section 2.6.2 we defined transitive Markov chains. The reader
should check that a random walk on a transitive network is a transitive Markov
chain.

Exercise 9.8 shows that the resistances obey a triangle inequality. We can use
Proposition 10.6 to provide another proof.

Corollary 10.8. The resistance R satisfies a triangle inequality: If a, b, c are
vertices, then

R(a↔ c) ≤ R(a↔ b) +R(b↔ c). (10.10)

Proposition 10.9. For a random walk on a transitive connected graph G, for
any vertices a, b ∈ V ,

Ea(τb) = Eb(τa). (10.11)

Before proving this, it is helpful to establish the following identity:

Lemma 10.10. For any three states a, b, c of a reversible Markov chain,

Ea(τb) + Eb(τc) + Ec(τa) = Ea(τc) + Ec(τb) + Eb(τa).

Remark 10.11. We can reword this lemma as

Ea(τbca) = Ea(τcba), (10.12)

where τbca is the time to visit b, then visit c, and then hit a.
A natural approach to proving this is to assume that reversing a sequence

started from a and having τbca = n yields a sequence started from a having τcba = n.
However, this is not true. For example, the sequence acabca has τbca = 5, yet the
reversed sequence acbaca has τcba = 3.

Proof. It turns out that it is much easier to start at stationarity, since it allows
us to use reversibility easily. Recall that we use Eπ(·) to denote the expectation
operator for the chain started with initial distribution π.

Adding Eπ(τa) to both sides of (10.12), we find it is enough to show that

Eπ(τabca) = Eπ(τacba).

In fact, we will show equality in distribution, not just expectation. Suppose ξ and
ξ⋆ are finite strings with letters in V , meaning ξ ∈ V m and ξ⋆ ∈ V n with m ≤ n.
We say that ξ � ξ⋆ if and only if ξ is a subsequence of ξ⋆, that is, there exist indices
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Figure 10.2. A binary tree after identifying all vertices at the
same distance from the root

1 ≤ i1 < · · · < im ≤ n with ξ(k) = ξ⋆(ik) for all 1 ≤ k ≤ m. Using the identity
(1.32) for reversed chains,

Pπ{τabca > k} = Pπ{abca 6� X0 . . . Xk} = Pπ{abca 6� Xk . . . X0}. (10.13)

Clearly, abca � Xk . . . X0 is equivalent to acba � X0 . . . Xk (just read from right to
left!), so the right-hand side of (10.13) equals

Pπ{acba 6� X0 . . . Xk} = Pπ{τacba > k}.
�

Proof of Proposition 10.9. Let ψ be a map satisfying the conditions (10.9)
with u = a and v = b. Let a0 = a and aj = ψ(j)(a0) for j ≥ 1, where ψ(j) denotes
the j-th iterate of ψ. The sequence a0, a1, . . . will return to a0 eventually; say
am = a0, where m > 0. The function ψ(j) takes a, b to aj , aj+1, so for any j,

Eaj (τaj+1 ) = Ea(τb). (10.14)

Summing over j from 0 to m− 1, we obtain

Ea0(τa1a2...am−1a0) = mEa(τb). (10.15)

For the same reason,

Ea0(τam−1am−2...a1a0) = mEb(τa). (10.16)

By the same argument as we used for (10.12), we see that the left-hand sides of
(10.15) and (10.16) are the same. This proves (10.11). �

Example 10.12 (Random walk on rooted finite binary trees). The rooted and
finite binary tree of depth k was defined in Section 5.3.4. We let n denote the
number of vertices and note that the number of edges equals n− 1.

We compute the expected commute time between the root and the set of leaves
B. Identify all vertices at level j for j = 1 to k to obtain the graph shown in Figure
10.2.

Using the network reduction rules, this is equivalent to a segment of length k,
with conductance between j− 1 and j equal to 2j for 1 ≤ j ≤ k. Thus the effective
resistance from the root to the set of leaves B equals

R(a↔ B) =

k∑

j=1

2−j = 1− 2−k ≤ 1.
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Using the Commute Time Identity (Proposition 10.6), since cG = 2(n − 1), the
expected commute time is bounded by 2n. For the lazy random walk, the expected
commute time is bounded by 4n.

This completes the proof in Section 5.3.4 that tmix ≤ 16n.

10.4. Hitting Times for the Torus

Since the torus is transitive, Proposition 10.9 and the Commute Time Identity
(Proposition 10.6) imply that for random walk on the d-dimensional torus,

Ea(τb) = 2ndR(a↔ b). (10.17)

(For an unweighted graph, c = 2 × |edges|.) Thus, to get estimates on the hitting
time Ea(τb), it is enough to get estimates on the effective resistance.

Proposition 10.13. Let x and y be two points at distance k ≥ 1 in the torus
Zdn, and let τy be the time of the first visit to y. There exist constants 0 < cd ≤
Cd <∞ such that

cdn
d ≤ Ex(τy) ≤ Cdnd uniformly in k if d ≥ 3, (10.18)

c2n
2 log(k) ≤ Ex(τy) ≤ C2n

2 log(k + 1) if d = 2. (10.19)

Proof. First, the lower bounds. Choose Πj to be the boundary of the box
centered around x of side-length 2j. There is a constant c̃1 so that for j ≤ c̃1k, the
box Πj is a cutset separating x from y. Note that Πj has order jd−1 edges. By
Proposition 9.15,

R(a↔ z) ≥
c̃1k∑

j=1

c̃2j
1−d ≥

{
c̃3 log(k) if d = 2,

c̃3 if d ≥ 3.

The lower bounds in (10.18) and (10.19) are then immediate from (10.17).
If the points x and y are the diagonally opposite corners of a square, the

upper bound in (10.19) follows using the flow constructed from Pólya’s urn process,
described in Section 2.4. in Proposition 9.16.

Now consider the case where x and y are in the corners of a non-square rectan-
gle, as in Figure 10.3. Suppose that x = (a, b) and y = (c, d), and assume without
loss of generality that a ≤ c, b ≤ d, (c− a) ≤ (d− b). Assume also that c− a and
d − b have the same parity. The line with slope −1 through x and the line with
slope 1 through y meet at the point

z =

(
(a+ c) + (b− d)

2
,
(a− c) + (b+ d)

2

)
.

By Proposition 9.16,

R(y ↔ z) ≤ 2 log

(
(c− a) + (d− b)

2

)
≤ 2 log(k + 1),

R(z ↔ x) ≤ 2 log

(
(a− c) + (d− b)

2

)
≤ 2 log(k + 1).

By the triangle inequality for resistances (Corollary 10.8),

R(x↔ y) ≤ 4 log(k + 1). (10.20)
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z

y

x

Figure 10.3. Constructing a flow from x to y.

When (c − a) and (d − b) have opposite parities, let x′ be a lattice point at unit
distance from x and closer to y. Applying the triangle inequality again shows that

R(x↔ y) ≤ R(x↔ x′) +R(x′ ↔ y) ≤ 1 + 4 log(k + 1) ≤ 6 log(k + 1). (10.21)

Thus (10.20) and (10.21), together with (10.17), establish the upper bound in
(10.19). �

10.5. Bounding Mixing Times via Hitting Times

The goal of this section is to prove the following:

Theorem 10.14. Consider a finite reversible chain with transition matrix P
and stationary distribution π on Ω.

(i) For all m ≥ 0 and x ∈ Ω, we have

‖Pm(x, ·)− π‖2TV ≤
1

4

[
P 2m(x, x)

π(x)
− 1

]
. (10.22)

(ii) If the chain satisfies P (x, x) ≥ 1/2 for all x, then

tmix(1/4) ≤ 2 max
x∈Ω

Eπ(τx) + 1. (10.23)

Remark 10.15. Part (i) says that the total variation distance to stationarity
starting from x, for reversible chains, can be made small just by making the return
time to x close to its stationary probability.

Remark 10.16. Note that by conditioning on X0,

Eπ(τx) =
∑

y∈Ω

Ey(τx)π(y) ≤ max
y∈Ω

Ey(τx) ≤ thit.

Thus the bound (10.23) implies

tmix(1/4) ≤ 2thit + 1. (10.24)
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Figure 10.4. Adding states mxy for each pair x, y ∈ Ω.

Remark 10.17. Equation 10.23 may not hold if the chain is not reversible;
see Exercise 10.15. However, a similar inequality for the Cesaro mixing time t⋆mix

(defined in Section 6.6) does not require laziness or reversibility: Theorem 6.15
implies that

t⋆mix(1/4) ≤ 4thit + 1

for any irreducible chain.

To prove Theorem 10.14, we will need a few preliminary results.

Proposition 10.18. Let P be the transition matrix for a finite reversible chain
on state space Ω with stationary distribution π.

(i) For all t ≥ 0 and x ∈ Ω we have P 2t+2(x, x) ≤ P 2t(x, x).
(ii) If the chain PL is lazy, that is PL(x, x) ≥ 1/2 for all x, then for all t ≥ 0 and

x ∈ Ω we have P t+1
L (x, x) ≤ P tL(x, x).

See Exercise 12.6 for a proof using eigenvalues. Here, we give a direct proof
using the Cauchy-Schwarz inequality.

Proof. (i) Since P 2t+2(x, x) =
∑

y,z∈Ω P
t(x, y)P 2(y, z)P t(z, x), we have

π(x)P 2t+2(x, x) =
∑

y,z∈Ω

P t(y, x)π(y)P 2(y, z)P t(z, x) =
∑

y,z∈Ω

ψ(y, z)ψ(z, y),

(10.25)

where ψ(y, z) = P t(y, x)
√
π(y)P 2(y, z). (By Exercise 1.8, the matrix P 2 is re-

versible with respect to π.)
By Cauchy-Schwarz, the right-hand side of (10.25) is at most

∑

y,z∈Ω

ψ(y, z)2 =
∑

y∈Ω

[P t(y, x)]2π(y) = π(x)P 2t(x, x).

(ii) Given a lazy chain PL = (P + I)/2, enlarge the state space by adding a
new state mxy = myx for each pair of states x, y ∈ Ω. (See Figure 10.4.)

On the larger state space ΩK define a transition matrix K by

K(x,mxy) = P (x, y) for x, y ∈ Ω,

K(mxy, x) = K(mxy, y) = 1/2 for x 6= y,

K(mxx, x) = 1 for all x,

other transitions having K-probability 0. Then K is reversible with stationary
measure πK given by πK(x) = π(x)/2 for x ∈ Ω and πK(mxy) = π(x)P (x, y).
Clearly K2(x, y) = PL(x, y) for x, y ∈ Ω, so K2t(x, y) = P tL(x, y), and the claimed
monotonicity follows. �



136 10. HITTING TIMES

The following proposition, which does not require reversibility, relates the mean
hitting time of a state x to return probabilities.

Proposition 10.19 (Hitting time from stationarity). Consider a finite irre-
ducible aperiodic chain with transition matrix P with stationary distribution π on
Ω. Then for any x ∈ Ω,

π(x)Eπ(τx) =

∞∑

t=0

[P t(x, x) − π(x)]. (10.26)

We give two proofs, one using generating functions and one using stopping
times, following (Aldous and Fill, 1999, Lemma 11, Chapter 2).

Proof of Proposition 10.19 via generating functions. Define

fk := Pπ{τx = k} and uk := P k(x, x) − π(x).

Since Pπ{τx = k} ≤ Pπ{τx ≥ k} ≤ Cαk for some α < 1 (see (1.18)), the power
series F (s) :=

∑∞
k=0 fks

k converges in an interval [0, 1 + δ1] for some δ1 > 0.

Also, since |P k(x, x)− π(x)| ≤ d(k) and d(k) decays at least geometrically fast
(Theorem 4.9), U(s) :=

∑∞
k=0 uks

k converges in an interval [0, 1 + δ2] for some
δ2 > 0. Note that F ′(1) =

∑∞
k=0 kfk = Eπ(τx) and U(1) equals the right-hand side

of (10.26).
For every m ≥ 0,

π(x) = Pπ{Xm = x} =

m∑

k=0

fkP
m−k(x, x) =

m∑

k=0

fk
[(
Pm−k(x, x) − π(x)

)
+ π(x)

]

=

m∑

k=0

fk[um−k + π(x)].

Thus, the constant sequence with every element equal to π(x) is the convolution of
the sequence {fk}∞k=0 with the sequence {uk + π(x)}∞k=0, so its generating function∑∞
m=0 π(x)sm = π(x)(1 − s)−1 equals the product of the generating function F

with the generating function

∞∑

m=0

[um + π(x)]sm = U(s) + π(x)

∞∑

m=0

sm = U(S) +
π(x)

1− s .

(See Exercise 10.9.) That is, for 0 < s < 1,

π(x)

1− s =
∞∑

m=0

π(x)sm = F (s)

[
U(s) +

π(x)

1− s

]
,

and multiplying by 1 − s gives π(x) = F (s)[(1 − s)U(s) + π(x)], which clearly
holds also for s = 1. Differentiating the last equation at s = 1, we obtain that
0 = F ′(1)π(x) − U(1), and this is equivalent to (10.26). �

Proof of Proposition 10.19 via stopping times. Define

τ (m)
x := min{t ≥ m : Xt = x},

and write µm := Pm(x, ·). By the Convergence Theorem (Theorem 4.9), µm tends
to π as m → ∞. By Lemma 10.5, we can represent the expected number of visits
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to x before time τ
(m)
x as

m−1∑

k=0

P k(x, x) = π(x)Ex

(
τ (m)
x

)
= π(x)[m + Eµm(τx)].

Thus
∑m−1

k=0 [P k(x, x) − π(x)] = π(x)Eµm (τx).
Taking m→∞ completes the proof. �

We are now able to prove Theorem 10.14.

Proof of Theorem 10.14. (i) By Cauchy-Schwarz,


1

2

∑

y∈Ω

π(y)

∣∣∣∣
Pm(x, y)

π(y)
− 1

∣∣∣∣




2

≤ 1

4

∑

y∈Ω

π(y)

[
Pm(x, y)

π(y)
− 1

]2
.

Therefore

‖Pm(x, ·)− π‖2TV ≤
1

4

∑

y∈Ω

[
Pm(x, y)Pm(y, x)

π(x)
− 2Pm(x, y) + 1

]

=
1

4

[
P 2m(x, x)

π(x)
− 1

]
.

(ii) By the identity (10.26) in Proposition 10.19 and the monotonicity in Proposi-
tion 10.18(ii), for any m > 0 we have

π(x)Eπ (τx) ≥
2m∑

k=1

[P k(x, x) − π(x)] ≥ 2m[P 2m(x, x) − π(x)].

Dividing by 8mπ(x) and invoking (10.22) gives

Eπ (τx)

8m
≥ ‖Pm(x, ·) − π‖2TV,

and the left-hand side is less than 1/16 for m ≥ 2Eπ(τx). �

Example 10.20 (Lazy random walk on the cycle). In Section 5.3.1 we proved
that tmix ≤ n2 for the lazy random walk on the cycle Zn. However, Theorem 10.14
can also be used.

Label the states of Zn with {0, 1, . . . , n− 1}. By identifying the states 0 and n,
we can see that Ek(τ0) for the lazy simple random walk on the cycle must be the
same as the expected time to ruin or success in a lazy gambler’s ruin on the path
{0, 1, . . . , n}. Hence, for lazy simple random walk on the cycle, Exercise 2.1 implies

thit = max
x,y

Ex(τy) = max
0≤k≤n

2k(n− k) =

⌊
n2

2

⌋
.

(The factor of 2 comes from the laziness.) Therefore, (10.24) gives

tmix ≤ n2 + 1.
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10.6. Mixing for the Walk on Two Glued Graphs

For a graph G = (V,E) and a vertex v⋆ ∈ V , define the set

W = {(v, i) : v ∈ V, i ∈ {1, 2}}, (10.27)

with the elements (v⋆, 1) and (v⋆, 2) identified. Let H be the graph with vertex set
W and edge set

{{(v, i), (w, j)} : {v, w} ∈ E, i = j}. (10.28)

Think of H as two copies of G joined together at the single vertex v⋆.
We state the main result of this section:

Proposition 10.21. For a graph G, let H be the graph with the vertex set
W defined in (10.27) and edge set defined in (10.28). Let τGcouple be the time for
a coupling of two random walks on G to meet. Then there is a coupling of two
random walks on H which has a coupling time τHcouple satisfying

max
u,v∈H

Eu,v

(
τHcouple

)
≤ max

x,y∈G
E
(
τGcouple

)
+ max

x∈G
Ex

(
τGv⋆

)
. (10.29)

(Here τGv⋆
is the hitting time of v⋆ in the graph G.)

Proof. Let ψ : W → V be defined by ψ(v, i) = v, and let ϕ : W → {1, 2} be
defined by ϕ(v, i) = i.

Given a random walk (X0
t ) on G, we show now that a random walk (Xt) can

be defined on H satisfying ψ(Xt) = X0
t . Suppose that (Xs)s≤t has already been

defined and that ϕ(Xt) = i. If X0
t 6= v⋆, then define Xt+1 = (X0

t+1, i). If X0
t = v⋆,

then toss a coin, and define

Xt+1 =

{
(X0

t+1, 1) if heads,

(X0
t+1, 2) if tails.

We now define a coupling (Xt, Yt) of two random walks on H . Let (X0
t , Y

0
t ) be

a coupling of two random walks on G. Until time

τGcouple := min{t ≥ 0 : X0
t = Y 0

t },

define (Xt)t≤τG
couple

and (Yt)t≤τG
couple

by lifting the walks (X0
t ) and (Y 0

t ) to H via

the procedure described above.
If XτG

couple
= YτG

couple
, then let (Xt) and (Yt) evolve together for t ≥ τGcouple.

Suppose, without loss of generality, that ϕ(XτG
couple

) = 1 and ϕ(YτG
couple

) = 2.

Until time

τ(v⋆,1) := inf{t ≥ τGcouple : Xt = (v⋆, 1)},
couple (Yt) to (Xt) by setting Yt = (ψ(Xt), 2). Observe that τ(v⋆,1) = τHcouple, since

(v⋆, 1) is identified with (v⋆, 2). The expected difference τHcouple− τGcouple is bounded

by maxx∈GEx(τv⋆), whence for u, v ∈ H ,

Eu,v(τ
H
couple) ≤ Eψ(u),ψ(v)(τ

G
couple) + max

x∈G
Ex(τv⋆).

�

We can now return to the example mentioned in this chapter’s introduction:
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Corollary 10.22. Consider the lazy random walk on two tori glued at a single
vertex. (See Example 7.4 and in particular Figure 7.2.) There are constants c1, c2
such that

c1n
2 logn ≤ tmix ≤ c2n2 logn, (10.30)

where tmix is the mixing time defined in (4.33).

Proof of upper bound in (10.30). Applying Proposition 10.21, using the
bounds in Proposition 10.13 and the bound (5.8) for the coupling on the torus used
in Theorem 5.5 shows that there is a coupling with

max
x,y∈G

Ex,y(τcouple) ≤ C1n
2 logn. (10.31)

Applying Theorem 5.2 shows that

d̄(t) ≤ C1n
2 logn

t
,

proving the right-hand inequality in (10.30). �

Exercises

Exercise 10.1. Prove Lemma 10.5 by copying the proof in Proposition 1.14
that π̃ as defined in (1.19) satisfies π̃ = π̃P , substituting Gτ (a, x) in place of π̃(x).

Exercise 10.2. Consider the problem of waiting for the sequence TTT to
appear in a sequence of fair coin tosses. Is this the same as the waiting time for
the sequence HTH?

These waiting times are hitting times for a Markov chain: let Xt be the triplet
consisting of the outcomes of tosses (t, t + 1, t+ 2). Then (Xt) is a Markov chain,
and the waiting time for TTT is a hitting time. Find E(τTTT ) and E(τHTH).

Exercise 10.3. Let G be a connected graph on at least 3 vertices in which the
vertex v has only one neighbor, namely w. Show that for the simple random walk
on G, Evτw 6= Ewτv.

Exercise 10.4. Consider simple random walk on the binary tree of depth k
with n = 2k+1 − 1 vertices (first defined in Section 5.3.4).

(a) Let a and b be two vertices at level m whose most recent common ancestor c
is at level h < m. Show that Eaτb = Eτa,c, and find its value.

(b) Show that the maximal value of Eaτb is achieved when a and b are leaves whose
most recent common ancestor is the root of the tree.

Exercise 10.5. Let 0 = (0, 0, . . . , 0) be the all-zero vector in them-dimensional
hypercube {0, 1}m, and let v be a vertex with Hamming weight k. Write hm(k) for
the expected hitting time from v to 0 for simple (that is, not lazy) random walk
on the hypercube. Determine hm(1) and hm(m). Deduce that both mink>0 hm(k)
and maxk>0 hm(k) are asymptotic to 2m as m tends to infinity. (We say that f(m)
is asymptotic to g(m) if their ratio tends to 1.)

Hint : Consider the multigraph Gm obtained by gluing together all vertices of
Hamming weight k for each k between 1 and m− 1. This is a graph on the vertex
set {0, 1, 2, . . . ,m} with k

(
m
k

)
edges from k − 1 to k.

Exercise 10.6. Use Proposition 10.21 to bound the mixing time for two hy-
percubes identified at a single vertex.
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Exercise 10.7. Let (Xt) be a random walk on a network with conductances
{ce}. Show that

Ea(τbca) = [R(a↔ b) +R(b↔ c) +R(c↔ a)]
∑

e∈E
ce,

where τbca is the first time that the sequence (b, c, a) appears as a subsequence of
(X1, X2, . . .).

Exercise 10.8. Show that for a random walk (Xt) on a network, for every
three vertices a, x, z,

Px{τz < τa} =
R(a↔ x)−R(x↔ z) +R(a↔ z)

2R(a↔ z)
.

Hint: Run the chain from x until it first visits a and then z. This will also be the
first visit to z from x, unless τz < τa. In the latter case the path from x to a to z
involves an extra commute from z to a beyond time τz. Thus, starting from x we
have

τaz = τz + 1{τz<τa}τ
′
az, (10.32)

where the variable τ ′az refers to the chain starting from its first visit to z. Now take
expectations and use the cycle identity (Lemma 10.10).

Exercise 10.9. Suppose that {ak} is a sequence with generating function
A(s) :=

∑∞
k=0 aks

k and {bk} is a sequence with generating function B(s) :=∑∞
k=0 bks

l. Let {ck} be the sequence defined as ck :=
∑k

j=0 ajbk−j , called the

convolution of {ak} and {bk}. Show that the generating function of {ck} equals
A(s)B(s).

Exercise 10.10. Let τ ♯x denote the first even time that the Markov chain visits
x. Prove that the inequality

tmix(1/4) ≤ 8 max
x∈Ω

Eπ

(
τ ♯x
)

+ 1

holds without assuming the chain is lazy (cf. Theorem 10.14).

Exercise 10.11. Show that for simple random walk (not necessarily lazy) on
Zn, with n odd, tmix = O(n2).

Hint: Use Exercise 10.10.

Exercise 10.12. Recall the Cesaro mixing time t⋆mix defined in Section 6.6.
Show that t⋆mix(1/4) ≤ 6tmix(1/8).

Exercise 10.13. Show that t⋆mix(2
−k) ≤ kt⋆mix(1/4) for all k ≥ 1.

Exercise 10.14. Consider a lazy biased random walk on the n-cycle. That
is, at each time t ≥ 1, the particle walks one step clockwise with probability p ∈
(1/4, 1/2), stays put with probability 1/2, and walks one step counterclockwise with
probability 1/2− p.

Show that tmix(1/4) is bounded above and below by constant multiples of n2,
but t⋆mix(1/4) is bounded above and below by constant multiples of n.

Exercise 10.15. Show that equation (10.23) may not hold if the chain is not
reversible.

Hint: Consider the lazy biased random walk on the cycle.
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Exercise 10.16. Suppose that τ is a strong stationary time for simple random
walk started at the vertex v on the graph G. Let H consist of two copies G1 and
G2 of G, glued at v. Note that degH(v) = 2 degG(v). Let τv be the hitting time
of v:

τv = min{t ≥ 0 : Xt = v}.
Show that starting from any vertex x in H , the random time τv + τ is a strong
stationary time for H (where τ is applied to the walk after it hits v).

Remark 10.23. It is also instructive to give a general direct argument control-
ling mixing time in the graph H described in Exercise 10.16:

Let hmax be the maximum expected hitting time of v in G, maximized over
starting vertices. For t > 2khmax + tmixG(ε) we have in H that

|P t(x,A) − π(A)| < 2−k + ε. (10.33)

Indeed for all x in H , we have Px{τv > 2hmax} < 1/2 and iterating, Px{τv >
2khmax} < (1/2)k. On the other hand, conditioning on τv < 2khmax, the bound
(10.33) follows from considering the projected walk.

Notes

For more on waiting times for patterns in coin tossing, see Section 17.3.2.
The mean commute identity appears in Chandra, Raghavan, Ruzzo, Smolensky,

and Tiwari (1996/97).
Theorem 10.14 is a simplified version of Lemma 15 in Aldous and Fill (1999,

Chapter 4), which bounds tmix by O(t⊙).
A graph similar to our glued tori was analyzed in Saloff-Coste (1997, Section

3.2) using other methods. This graph originated in Diaconis and Saloff-Coste (1996,
Remark 6.1).





CHAPTER 11

Cover Times

11.1. Cover Times

Let (Xt) be a finite Markov chain with state space Ω. The cover time τcov
of (Xt) is the first time at which all the states have been visited. More formally,
τcov is the minimal value such that, for every state y ∈ Ω, there exists t ≤ τcov with
Xt = y.

We also define a deterministic version of the cover time by taking the expected
value from the worst-case initial state:

tcov = max
x∈Ω

Exτcov. (11.1)

The cover time of a Markov chain is a natural concept. It can be large enough
for relatively small chains to arouse mathematical curiosity. Of course, there are
also “practical” interpretations of the cover time. For instance, we might view the
progress of a web crawler as a random walk on the graph of World Wide Web pages:
at each step, the crawler chooses a linked page at random and goes there. The time
taken to scan the entire collection of pages is the cover time of the underlying graph.

Example 11.1 (Cover time of cycle). Lovász (1993) gives an elegant compu-
tation of the expected cover time tcov of simple random walk on the n-cycle. This
walk is simply the remainder modulo n of a simple random walk on Z. The walk
on the remainders has covered all n states exactly when the walk on Z has first
visited n distinct states.

Let cn be the expected value of the time when a simple random walk on Z

has first visited n distinct states, and consider a walk which has just reached its
(n− 1)-st new state. The visited states form a subsegment of the number line and
the walk must be at one end of that segment. Reaching the n-th new state is now
a gambler’s ruin situation: the walker’s position corresponds to a fortune of 1 (or
n− 1), and we are waiting for her to reach either 0 or n. Either way, the expected
time is (1)(n− 1) = n− 1, as shown in Exercise 2.1. It follows that

cn = cn−1 + (n− 1) for n ≥ 1.

Since c1 = 0 (the first state visited is X0 = 0), we have cn = n(n− 1)/2.

11.2. The Matthews Method

It is not surprising that there is an essentially monotone relationship between
hitting times and cover times: the longer it takes to travel between states, the
longer it should take to visit all of them. In one direction, it is easy to write down
a bound. Fix an irreducible chain with state space Ω. Recall the definition (10.5)
of thit, and let x, y ∈ Ω be states for which thit = Exτy. Since any walk started at
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x must have visited y by the time all states are covered, we have

thit = Exτy ≤ Exτcov ≤ tcov. (11.2)

It is more interesting to give an upper bound on cover times in terms of hitting
times. A walk covering all the states can visit them in many different orders, and
this indeterminacy can be exploited. Randomizing the order in which we check
whether states have been visited (which, following Aldous and Fill (1999), we will
call the Matthews method—see Matthews (1988a) for the original version) allows
us to prove both upper and lower bounds. Despite the simplicity of the arguments,
these bounds are often remarkably good.

Theorem 11.2 (Matthews (1988a)). Let (Xt) be an irreducible finite Markov
chain on n states. Then

tcov ≤ thit

(
1 +

1

2
+ · · ·+ 1

n

)
.

Proof. Without loss of generality, we may assume that our state space is
{1, . . . , n}. Choose an arbitrary initial state x ∈ Ω and let σ ∈ Sn be a uniform
random permutation, chosen independently of the chain. We will look for states in
order σ. Let Tk be the first time that the states σ(1), . . . , σ(k) have all been visited,
and let Lk = XTk

be the last state among σ(1), . . . , σ(k) to be visited.
Of course, when σ(1) = x, we have T1 = 0. We will not usually be so lucky.

For any s ∈ Ω, we have

Ex(T1 | σ(1) = s) = Ex(τs) ≤ thit.

Since the events {σ(1) = s} are disjoint for distinct s ∈ Ω, Exercise 11.1 ensures
that Ex(T1) ≤ thit.

How much further along is T2 than T1?

• When the chain visits σ(1) before σ(2), then T2 − T1 is the time required
to travel from σ(1) to σ(2), and L2 = σ(2).
• When the chain visits σ(2) before σ(1), we have T2−T1 = 0 and L2 = σ(1).

Let’s analyze the first case a little more closely. For any two distinct states r, s ∈ Ω,
define the event

A2(r, s) = {σ(1) = r and σ(2) = L2 = s}.
Clearly

Ex(T2 − T1 | A2(r, s)) = Er(τs) ≤ thit.

Conveniently,

A2 =
⋃

r 6=s
A2(r, s)

is simply the event that σ(2) is visited after σ(1), that is, L2 = σ(2). By Exer-
cise 11.1,

Ex(T2 − T1 | A2) ≤ thit.

Just as conveniently, Ac2 is the event that σ(2) is visited before σ(1). It immediately
follows that

Ex(T2 − T1 | Ac2) = 0.
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Since σ was chosen uniformly and independently of the chain trajectory, it is equally
likely for the chain to visit σ(2) before σ(1) or after σ(1). Thus

Ex(T2 − T1) = Px(A2)Ex(T2 − T1 | A2) + Px(A
c
2)Ex(T2 − T1 | Ac2)

≤ 1

2
thit.

We estimate Tk − Tk−1 for 3 ≤ k ≤ n in the same fashion. Now we carefully
track whether Lk = σ(k) or not. For any distinct r, s ∈ Ω, define

Ak(r, s) = {σ(k − 1) = r and σ(k) = Lk = s}.

Suppose Lk−1 = XTk
has distribution µ. Then by Exercise 11.1 we have

Ex(Tk − Tk−1 | Ak(r, s)) = Eµ(τs) =

n∑

i=1

µ(i)Ei(τs) ≤ thit (11.3)

and

Ak =
⋃

r 6=s
Ak(r, s)

is the event that Lk = σ(k). Just as above, Exercise 11.1 implies that

Ex(Tk − Tk−1 | Ak) ≤ thit,

while

Ex(Tk − Tk−1 | Ack) = 0.

Since the permutation σ was chosen both uniformly and independently of the tra-
jectory of the chain, each of σ(1), . . . , σ(k) is equally likely to be the last visited.
Thus Px(Ak) = 1/k and

Ex(Tk − Tk−1) = Px(Ak)Ex(Tk − Tk−1 | Ak) + Px(A
c
k)Ex(Tk − Tk−1 | Ack)

≤ 1

k
thit.

Finally, summing all these estimates yields

Ex(τcov) = Ex(Tn)

= Ex(T1) + Ex(T2 − T1) + · · ·+ Ex(Tn − Tn−1)

≤ thit

(
1 +

1

2
+ · · ·+ 1

n

)
.

�

Example 11.3. The proof above strongly parallels the standard argument for
the coupon collecting problem, which we discussed in Section 2.2 and have applied
several times: for instance, coupon collector bounds were used to lower bound mix-
ing times for both random walk on the hypercube (Proposition 7.13) and Glauber
dynamics on the graph with no edges (Exercise 7.3). For random walk on a com-
plete graph with self-loops, the cover time coincides with the time to “collect” all
coupons. In this case Eα(τβ) = n is constant for α 6= β, so the upper bound is
tight.
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A slight modification of this technique can be used to prove lower bounds:
instead of looking for every state along the way to the cover time, we look for the
elements of some A ⊆ Ω. Define τAcov to be the first time such that every state of
A has been visited by the chain. When the elements of A are far away from each
other, in the sense that the hitting time between any two of them is large, the time
to visit just the elements of A can give a good lower bound on the overall cover
time.

Proposition 11.4. Let A ⊂ X. Set tAmin = mina,b∈A,a6=bEa(τb). Then

tcov ≥ max
A⊆Ω

tAmin

(
1 +

1

2
+ · · ·+ 1

|A| − 1

)
.

Proof. Fix an initial state x ∈ A and let σ be a uniform random permutation
of the elements of A, chosen independently of the chain trajectory. Let Tk be the
first time at which all of σ(1), σ(2), . . . , σ(k) have been visited, and let Lk = XTk

.
With probability 1/|A| we have σ(1) = x and T1 = 0. Otherwise, the walk

must proceed from x to σ(1). Thus

Ex(T1) ≥
1

|A|0 +
|A| − 1

|A| tAmin =

(
1− 1

|A|

)
tAmin. (11.4)

For 2 ≤ k ≤ |A| and r, s ∈ A, define

Bk(r, s) = {σ(k − 1) = r and σ(k) = Lk = s},

so that, by an argument similar to that of (11.3), using (an obvious corollary to)
Exercise 11.1, we have

Ex(Tk − Tk−1 | Bk(r, s)) ≥ tAmin.

Then

Bk =
⋃

r,s∈A
Bk(r, s)

is the event that Lk = σ(k). Now

Ex(Tk − Tk−1 | Bck) = 0 and Ex(Tk − Tk−1|Bk) ≥ tAmin.

By the uniformity and independence of σ we have P(Bk) = 1/k and thus

Ex(Tk − Tk−1) ≥
1

k
tAmin. (11.5)

Adding up (11.4) and the bound of (11.5) for 2 ≤ k ≤ |A| gives

Ex(τ
A
cov) ≥ tAmin

(
1 +

1

2
+ · · ·+ 1

|A| − 1

)

(note that the negative portion of the first term cancels with the last term).
Since tcov ≥ Ex(τcov) ≥ Ex(τ

A
cov) for every x ∈ A, we are done. �

Remark 11.5. While any subset A yields a lower bound, some choices for A
are uninformative. For example, when the underlying graph of (Yt) contains a leaf,
tAmin = 1 for any set A containing both the leaf and its (unique) neighbor.
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11.3. Applications of the Matthews Method

11.3.1. Binary trees. Consider simple random walk on the rooted binary
tree with depth k and n = 2k+1−1 vertices, which we first discussed in Section 5.3.4.
The maximal hitting time will be realized by pairs of leaves a, b whose most recent
common ancestor is the root (see Exercise 10.4). For such a pair, the hitting time
will, by symmetry, be the same as the commute time between the root and one of
the leaves. By Proposition 10.6 (the Commute Time Identity), we have

Eaτb = 2(n− 1)k

(since the effective resistance between the root and the leaf is k, by Example 9.7,
and the total conductance cG of the network is twice the number of edges). Hence
Theorem 11.2 gives

tcov ≤ 2(n− 1)k

(
1 +

1

2
+ · · ·+ 1

n

)
= (2 + o(1))(log 2)nk2. (11.6)

What about a lower bound? We need an appropriate set A ⊆ X . Fix a level
h in the tree, and let A be a set of 2h leaves chosen so that each vertex at level h
has a unique descendant in A. Notice that the larger h is, the more vertices there
are in A—and the closer together those vertices can be. We will choose a value of
h below to optimize our bound.

Consider two distinct leaves a, b ∈ A. If their closest common ancestor is at
level h′ < h, then the hitting time from one to the other is the same as the commute
time from their common ancestor to one of them, say a. Again, by the Commute
Time Identity (Proposition 10.6) and Example 9.7, this is exactly

Eaτb = 2(n− 1)(k − h′),

which is clearly minimized when h′ = h− 1. By Proposition 11.4,

tcov ≥ 2(n− 1)(k − h+ 1)

(
1 +

1

2
+ · · ·+ 1

2h − 1

)
= (2 + o(1))(log 2)n(k − h)h.

(11.7)
Setting h = ⌊k/2⌋ in (11.7) gives

tcov ≥
1

4
· (2 + o(1))(log 2)nk2. (11.8)

There is still a factor of 4 gap between the upper bound of (11.6) and the lower
bound of (11.8). In fact, the upper bound is sharp. See the Notes.

11.3.2. Tori. In Section 10.4 we derived fairly sharp (up to constants) esti-
mates for the hitting times of simple random walks on finite tori of various dimen-
sions. Let’s use these bounds and the Matthews method to determine equally sharp
bounds on the expected cover times of tori. We discuss the case of dimension at
least 3 first, since the details are a bit simpler.

When the dimension d ≥ 3, Proposition 10.13 tells us that there exist constants
cd and Cd such that for any distinct vertices x, y of Zdn,

cdn
d ≤ Ex(τy) ≤ Cdnd.
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Remarkably, this bound does not depend on the distance between x and y! By
Theorem 11.2, the average cover time satisfies

tcov ≤ Cdnd
(

1 +
1

2
+ · · ·+ 1

nd

)
(11.9)

= Cddn
d logn(1 + o(1)). (11.10)

To derive an almost-matching lower bound from Proposition 11.4, we must
choose a set A large enough that the sum of reciprocals in the second factor is
substantial. Let’s take A to be Zdn itself (any set containing a fixed positive fraction
of the points of the torus would work as well). Then

tcov ≥ tAmin

(
1 +

1

2
+ · · ·+ 1

|A| − 1

)

≥ cddnd logn(1 + o(1)),

which is only a constant factor away from our upper bound.
In dimension 2, Proposition 10.13 says that when x and y are vertices of Z2

n at
distance k,

c2n
2 log(k) ≤ Ex(τy) ≤ C2n

2 log(k).

In this case the Matthews upper bound gives

E(τcov) ≤ 2C2n
2(log n)2(1 + o(1)), (11.11)

since the furthest apart two points can be is n.
To get a good lower bound, we must choose a set A which is as large as pos-

sible, but for which the minimum distance between points is also large. Assume
for simplicity that n is a perfect square, and let A be the set of all points in Z2

n

both of whose coordinates are multiples of
√
n. Then Proposition 11.4 and Propo-

sition 10.13 imply

E(τcov) ≥ c2n2 log(
√
n)

(
1 +

1

2
+ · · ·+ 1

n− 1

)

=
c2
2
n2(logn)2(1 + o(1)).

Figure 11.1 shows the points of a 75×75 torus left uncovered by a single random
walk trajectory at equally spaced fractions of its cover time.

Exercises 11.4 and 11.5 use improved estimates on the hitting times to get our
upper and lower bounds for cover times on tori even closer together.

11.3.3. Waiting for all patterns in coin tossing. In Section 17.3.2, we
will use elementary martingale methods to compute the expected time to the first
occurrence of a specified pattern (such as HTHHTTH) in a sequence of indepen-
dent fair coin tosses. Here we examine the time required for all 2k patterns of
length k to have appeared. In order to apply the Matthews method, we first give
a simple universal bound on the expected hitting time of any pattern.

Consider the Markov chain whose state space is the collection Ω = {0, 1}k
of binary k-tuples and whose transitions are as follows: at each step, delete the
leftmost bit and append on the right a new fair random bit independent of all
earlier bits. We can also view this chain as sliding a window of width k from left to
right along a stream of independent fair bits. (In fact, the winning streak chain of
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Figure 11.1. Black squares show the states unvisited by a single
trajectory of simple random walk on a 75 × 75 torus. This tra-
jectory took 145,404 steps to cover. The diagrams show the walk
after 10%, 20%, . . . , 100% of its cover time.

Example 4.15 is a lumping of this chain—see Lemma 2.5.) We call this the shift

chain on binary k-tuples.
In the coin tossing picture, it is natural to consider the waiting time wx for

a pattern x ∈ {0, 1}k, which is defined to be the number of steps required for x
to appear using all “new” bits—that is, without any overlap with the initial state.
Note that

wx ≥ k and wx ≥ τx for all x ∈ {0, 1}k. (11.12)

Also, wx does not depend on the initial state of the chain. Hence

Ewx ≥ Exτ
+
x = 2k (11.13)

(the last equality follows immediately from (1.26), since our chain has a uniform
stationary distribution).

Lemma 11.6. Fix k ≥ 1. For the shift chain on binary k-tuples,

Hk := max
x∈{0,1}k

Ewx = 2k+1 − 2.

Proof. When k = 1, wx is geometric with parameter 2. Hence H1 = 2.
Now fix a pattern x of length k + 1 and let x− be the pattern consisting of

the first k bits of x. To arrive at x, we must first build up x−. Flipping one more
coin has probability 1/2 of completing pattern x. If it does not, we resume waiting
for x. The additional time required is certainly bounded by the time required to
construct x from entirely new bits. Hence

Ewx ≤ Ewx− + 1 +
1

2
Ewx. (11.14)

To bound Hk+1 in terms of Hk, choose an x that achieves Hk+1 = Ewx. On the
right-hand-side of (11.14), the first term is bounded by Hk, while the third is equal
to (1/2)Hk+1. We conclude that

Hk+1 ≤ Hk + 1 +
1

2
Hk+1,

which can be rewritten as

Hk+1 ≤ 2Hk + 2.
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This recursion, together with the initial condition H1 = 2, implies Hk ≤ 2k+1 − 2.
When x is a constant pattern (all 0’s or all 1’s) of length k and y is any pattern

ending in the opposite bit, we have Eyτx = Hk = 2k+1 − 2. Indeed, since one
inappropriate bit requires a copy of x to be built from new bits, equality of hitting
time and waiting time holds throughout the induction above. �

We can now combine Lemma 11.6 with (11.12) and the Matthews upper bound
of Theorem 11.2, obtaining

Ex(τcov) ≤ Hk

(
1 +

1

2
+ · · ·+ 1

2k

)
= (log 2)k2k+1(1 + o(1)).

Looking more closely at the relationship between hitting times and waiting
times will allow us to improve this upper bound by a factor of 2 and to prove a
matching lower bound.

Lemma 11.7. Let θ = θa,b = Pa(τ
+
b < k). Then for any a, b ∈ {0, 1}k we have

Ewb ≤
Eaτ

+
b + kθ

1− θ .

Proof. The following inequality is true:

wb ≤ τ+
b + 1{τ+

b <k}
(k + w∗

b ), (11.15)

where w∗
b is the amount of time required to build b with all new bits, starting after

the k-th bit has been added. (Note that w∗
b has the same distribution as wb.) Why?

When τ+
b ≥ k, we have wb = τ+

b . When τ+
b < k, we can ensure a copy of b made

from new bits by waiting for k bits, then restarting our counter and waiting for a
copy of b consisting of bits added after the first k.

Since w∗
b in independent of the event {τ+

b < k}, taking expectations on both
sides of (11.15) yields

Ewb ≤ Eaτ
+
b + θ(k + Ewb)

(since Eawb does not depend on the initial state a, we drop the subscript), and
rearranging terms completes the proof. �

Proposition 11.8. The cover time satisfies

tcov ≥ (log 2)k2k(1 + o(1)).

Proof. Fix j = ⌈log2 k⌉ and let A ⊆ {0, 1}k consist of those bitstrings that
end with j zeroes followed by a 1. Fix a, b ∈ A, where a 6= b. By Lemma 11.7, we
have

Eaτ
+
b > (1− θ)Ewb − kθ,

where our choice of A ensures

θ = Pa(τ
+
b < k) < 2−(j+1) + · · ·+ 2−(k−1) < 2−j .

By (11.13) we may conclude

Eaτ
+
b > 2k(1 + o(1)).

Now apply Proposition 11.4. Since |A| = 2k−j−1, we get

tcov ≥ (k − j − 1)(log 2)2k(1 + o(1)) = (log 2)k2k(1 + o(1)).

�
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To improve the upper bound, we apply a variant on the Matthews method
which, at first glance, may seem unlikely to help. For any B ⊆ Ω, the argument for
the Matthews bound immediately gives

Exτ
B
cov ≤ max

b,b′∈B
Ebτ

′
b

(
1 +

1

2
+ · · ·+ 1

|B|

)
. (11.16)

Certainly the total cover time τcov is bounded by the time taken to visit first all
the states in B and then all the states in Bc. Hence

Exτcov ≤ Exτ
B
cov + max

y∈Ω
Eyτ

Bc

cov. (11.17)

If the states that take a long time to hit form a small fraction of Ω, then separating
those states from the rest can yield a better bound on tcov than direct application of
Theorem 11.2. For the current example of waiting for all possible patterns in coin
tossing, we improve the bound by a factor of 2—obtaining an asymptotic match
with the lower bound of Proposition 11.8.

Proposition 11.9. The cover time satisfies

tcov ≤ (log 2)k2k(1 + o(1)).

Proof. We partition the state space {0, 1}k into two sets. Fix j = ⌈log2 k⌉
and let B be the set of all strings b ∈ {0, 1}k with the following property: any
bitstring that is both a suffix and a prefix of b must have length less than k− j. (In
other words, elements of B must be shifted by more than j bits in order to agree
with themselves. For any string b ∈ B, we must have τ+

b > j.)
Since for m < k there are only 2m strings of length k that agree with themselves

after shifting by m bits, we have |Bc| = 2 + 4 + · · ·+ 2j ≤ 2j+1 ≤ 4k.
For a, b ∈ B, we can use Lemma 11.7 to bound the maximum expected hitting

time. We have

Eaτb ≤ Ewb ≤
Ebτ

+
b + kθ

1− θ .

(Since Ewb does not depend on the initial state, we have taken the initial state to
be b as we apply Lemma 11.7.)

Since our chain has a uniform stationary distribution, (1.26) implies that Ebτ
+
b =

2k. By our choice of B, we have θ = Pb(τ
+
b < k) < 1/k. Thus

Eaτb ≤
2k + k(1/k)

1− 1/k
= 2k(1 + o(1)). (11.18)

For a, b ∈ Bc, we again use Lemma 11.6 to bound Eaτb. Finally we ap-
ply (11.17), obtaining

tcov ≤ (log |B|+ o(1))
(
2k(1 + o(1)

)
+ (log |Bc|+ o(1))

(
2k+1 + o(1))

)

= (log 2)k2k(1 + o(1)).

�

Exercises

Exercise 11.1. Let Y be a random variable on some probability space, and let
B =

⋃
j Bj be a partition of an event B into (finitely or countably many) disjoint

subevents Bj .

(a) Prove that when E(Y | Bj) ≤M for every j, then E(Y | B) ≤M .
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(b) Give an example to show that the conclusion of part (a) can fail when the
events Bj are not disjoint.

Exercise 11.2. What upper and lower bounds does the Matthews method give
for cycle Zn? Compare to the actual value, computed in Example 11.1, and explain
why the Matthews method gives a poor result for this family of chains.

Exercise 11.3. Show that the cover time of the m-dimensional hypercube is
asymptotic to m2m log(2) as m→∞.

Exercise 11.4. In this exercise, we demonstrate that for tori of dimension
d ≥ 3, just a little more information on the hitting times suffices to prove a matching
lower bound.

(a) Show that when a sequence of pairs of points xn, yn ∈ Zdn has the property
that the distance between them tends to infinity with n, then the upper-bound
constant Cd of (10.18) can be chosen so that Exn(τyn)/nd → Cd.

(b) Give a lower bound on tcov that has the same initial constant as the upper
bound of (11.9).

Exercise 11.5. Following the example of Exercise 11.4, derive a lower bound
for E(τcov) on the two-dimensional torus that is within a factor of 4 of the upper
bound (11.11).

Notes

The Matthews method first appeared in Matthews (1988a). Matthews (1989)
looked at the cover time of the hypercube, which appears in Exercise 11.3.

The argument we give for a lower bound on the cover time of the binary tree is
due to Zuckerman (1992). Aldous (1991a) shows that the upper bound is asymp-
totically sharp; Peres (2002) presents a simpler version of the argument.

In the American Mathematical Monthly, Herb Wilf (1989) described his surprise
at the time required for a simulated random walker to visit every pixel of his com-
puter screen. This time is, of course, the cover time for the two-dimensional finite
torus. The exact asymptotics of the expected cover time on Z2

n have been deter-
mined. Zuckerman (1992) estimated the expected cover time to within a constant,
while Dembo, Peres, Rosen, and Zeitouni (2004) showed that

E(τcov) ∼
4

π
n2(log n)2.

Móri (1987) found the cover time for all patterns of length k using ideas from
Aldous (1983a). The collection Godbole and Papastavridis (1994) has many fur-
ther papers on this topic. A single issue of the Journal of Theoretical Prob-
ability contained several papers on cover times: these include Aldous (1989a),
Aldous (1989b), Broder and Karlin (1989), Kahn, Linial, Nisan, and Saks (1989),
and Zuckerman (1989).

Aldous (1991b) gives a condition guaranteeing that the cover time is well-
approximated by its expected value. See Theorem 19.8 for a statement.



CHAPTER 12

Eigenvalues

12.1. The Spectral Representation of a Reversible Transition Matrix

We begin by collecting some elementary facts about the eigenvalues of transition
matrices, which we leave to the reader to verify (Exercise 12.1):

Lemma 12.1. Let P be the transition matrix of a finite Markov chain.

(i) If λ is an eigenvalue of P , then |λ| ≤ 1.
(ii) If P is irreducible, the vector space of eigenfunctions corresponding to the

eigenvalue 1 is the one-dimensional space generated by the column vector 1 :=
(1, 1, . . . , 1)T .

(iii) If P is irreducible and aperiodic, then −1 is not an eigenvalue of P .

Denote by 〈·, ·〉 the usual inner product on R
Ω, given by 〈f, g〉 =∑x∈Ω f(x)g(x).

We will also need another inner product, denoted by 〈·, ·〉π and defined by

〈f, g〉π :=
∑

x∈Ω

f(x)g(x)π(x). (12.1)

We write ℓ2(π) for the vector space RΩ equipped with the inner product (12.1).
Because we regard elements of RΩ as functions from Ω to R, we will call eigenvectors
of the matrix P eigenfunctions.

Recall that the transition matrix P is reversible with respect to the station-
ary distribution π if π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω. The reason for
introducing the inner product (12.1) is

Lemma 12.2. Let P be reversible with respect to π.

(i) The inner product space (RΩ, 〈·, ·〉π) has an orthonormal basis of real-valued

eigenfunctions {fj}|Ω|
j=1 corresponding to real eigenvalues {λj}.

(ii) The matrix P can be decomposed as

P t(x, y)

π(y)
=

|Ω|∑

j=1

fj(x)fj(y)λ
t
j .

(iii) The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be the
constant vector 1, in which case

P t(x, y)

π(y)
= 1 +

|Ω|∑

j=2

fj(x)fj(y)λ
t
j . (12.2)

Proof. Define A(x, y) := π(x)1/2π(y)−1/2P (x, y). Reversibility of P im-
plies that A is symmetric. The spectral theorem for symmetric matrices (Theo-
rem A.11) guarantees that the inner product space (RΩ, 〈·, ·〉) has an orthonormal

basis {ϕj}|Ω|
j=1 such that ϕj is an eigenfunction with real eigenvalue λj .

153
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The reader should directly check that
√
π is an eigenfunction of A with corre-

sponding eigenvalue 1; we set ϕ1 :=
√
π and λ1 := 1.

If Dπ denotes the diagonal matrix with diagonal entries Dπ(x, x) = π(x), then

A = D
1
2
πPD

− 1
2

π . If fj := D
− 1

2
π ϕj , then fj is an eigenfunction of P with eigenvalue

λj :

Pfj = PD
− 1

2
π ϕj = D

− 1
2

π (D
1
2
π PD

− 1
2

π )ϕj = D
− 1

2
π Aϕj = D

− 1
2

π λjϕj = λjfj.

Although the eigenfunctions {fj} are not necessarily orthonormal with respect to
the usual inner product, they are orthonormal with respect to the inner product
〈·, ·〉π defined in (12.1):

δij = 〈ϕi, ϕj〉 = 〈D
1
2
π fi, D

1
2
π fj〉 = 〈fi, fj〉π . (12.3)

(The first equality follows since {ϕj} is orthonormal with respect to the usual inner
product.) This proves (i).

Let δy be the function

δy(x) =

{
1 if y = x,

0 if y 6= x.

Considering (RΩ, 〈·, ·〉π) with its orthonormal basis of eigenfunctions {fj}|Ω|
j=1, the

function δy can be written via basis decomposition as

δy =

|Ω|∑

j=1

〈δy, fj〉πfj =

|Ω|∑

j=1

fj(y)π(y)fj . (12.4)

Since P tfj = λtjfj and P t(x, y) = (P tδy)(x),

P t(x, y) =

|Ω|∑

j=1

fj(y)π(y)λtjfj(x).

Dividing by π(y) completes the proof of (ii), and (iii) follows from observations
above. �

It follows from Lemma 12.2 that for a function f : Ω→ R,

P tf =

|Ω|∑

j=1

〈f, fj〉πfjλtj . (12.5)

12.2. The Relaxation Time

For a reversible transition matrix P , we label the eigenvalues of P in decreasing
order:

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1. (12.6)

Define

λ⋆ := max{|λ| : λ is an eigenvalue of P, λ 6= 1}. (12.7)

The difference γ⋆ := 1 − λ⋆ is called the absolute spectral gap . Lemma 12.1
implies that if P is aperiodic and irreducible, then γ⋆ > 0.

The spectral gap of a reversible chain is defined by γ := 1−λ2. Exercise 12.3
shows that if the chain is lazy, then γ⋆ = γ.
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The relaxation time trel of a reversible Markov chain with absolute spectral
gap γ⋆ is defined to be

trel :=
1

γ⋆
.

One operational meaning of the relaxation time comes from the inequality

Varπ(P
tf) ≤ (1 − γ⋆)2t Varπ(f). (12.8)

(Exercise 12.4 asks for a proof.) By the Convergence Theorem (Theorem 4.9),
P tf(x) → Eπ(f) for any x ∈ Ω, i.e., the function P tf approaches a constant
function. Using (12.8), we can make a quantitative statement: if t ≥ trel, then the
standard deviation of P tf is bounded by 1/e times the standard deviation of f .
Let i⋆ be the value for which |λi⋆ | is maximized. Then equality in (12.8) is achieved
for f = fi⋆ , whence the inequality is sharp.

We prove both upper and lower bounds on the mixing time in terms of the
relaxation time and the stationary distribution of the chain.

Theorem 12.3. Let P be the transition matrix of a reversible, irreducible
Markov chain with state space Ω, and let πmin := minx∈Ω π(x). Then

tmix(ε) ≤ log

(
1

επmin

)
trel. (12.9)

Proof. Using (12.2) and applying the Cauchy-Schwarz inequality yields

∣∣∣∣
P t(x, y)

π(y)
− 1

∣∣∣∣ ≤
|Ω|∑

j=2

|fj(x)fj(y)|λt⋆ ≤ λt⋆




|Ω|∑

j=2

f2
j (x)

|Ω|∑

j=2

f2
j (y)




1/2

. (12.10)

Using (12.4) and the orthonormality of {fj} shows that

π(x) = 〈δx, δx〉π =

〈 |Ω|∑

j=1

fj(x)π(x)fj ,

|Ω|∑

j=1

fj(x)π(x)fj

〉

π

= π(x)2
|Ω|∑

j=1

fj(x)
2.

Consequently,
∑|Ω|

j=2 fj(x)
2 ≤ π(x)−1. This bound and (12.10) imply that

∣∣∣∣
P t(x, y)

π(y)
− 1

∣∣∣∣ ≤
λt⋆√

π(x)π(y)
≤ λt⋆
πmin

=
(1− γ⋆)t
πmin

≤ e−γ⋆t

πmin
. (12.11)

Applying Lemma 6.13 shows that d(t) ≤ π−1
min exp(−γ⋆t). The conclusion now

follows from the definition of tmix(ε). �

Theorem 12.4. For a reversible, irreducible, and aperiodic Markov chain,

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
. (12.12)

Remark 12.5. If the absolute spectral gap γ⋆ is small because the smallest
eigenvalue λ|Ω| is near −1, but the spectral gap γ is not small, the slow mixing
suggested by this lower bound can be rectified by passing to a lazy chain to make
the eigenvalues positive.
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Proof. Suppose that f is an eigenfunction of P with eigenvalue λ 6= 1, so that
Pf = λf . Since the eigenfunctions are orthogonal with respect to 〈·, ·〉π and 1 is
an eigenfunction,

∑
y∈Ω π(y)f(y) = 〈1, f〉π = 0. It follows that

|λtf(x)| = |P tf(x)| =

∣∣∣∣∣∣
∑

y∈Ω

[
P t(x, y)f(y)− π(y)f(y)

]
∣∣∣∣∣∣
≤ ‖f‖∞2d(t).

With this inequality, we can obtain a lower bound on the mixing time. Taking x
with |f(x)| = ‖f‖∞ yields

|λ|t ≤ 2d(t). (12.13)

Therefore, |λ|tmix(ε) ≤ 2ε, whence

tmix(ε)

(
1

|λ| − 1

)
≥ tmix(ε) log

(
1

|λ|

)
≥ log

(
1

2ε

)
.

Minimizing the left-hand side over eigenvalues different from 1 and rearranging
finishes the proof. �

Corollary 12.6. For a reversible, irreducible, and aperiodic Markov chain,

lim
t→∞

d(t)1/t = λ⋆.

Proof. One direction is immediate from (12.13), and the other follows from
(12.11). �

Example 12.7 (Relaxation time of random transpositions). By Corollary 8.10
and Proposition 8.11, we know that for the random transpositions chain on n cards,

tmix = Θ(n logn).

Hence trel = O(n log n). The stationary distribution is uniform on Sn. Since
Stirling’s Formula implies log(n!) ∼ n logn, Theorem 12.3 gives only a constant
lower bound. In fact, the relaxation time is known (through other methods) to be
exactly n/2. See Diaconis (1988).

12.3. Eigenvalues and Eigenfunctions of Some Simple Random Walks

Simple random walk on the n-cycle was introduced in Example 1.4. In Exam-
ple 2.10, we noted that it can be viewed as a random walk on an n-element cyclic
group. Here we use that interpretation to find the eigenvalues and eigenfunctions
of this chain and some closely related chains.

12.3.1. The cycle. Let ω = e2πi/n. In the complex plane, the set Wn :=
{ω, ω2, . . . , ωn−1, 1} of the n-th roots of unity forms a regular n-gon inscribed in
the unit circle. Since ωn = 1, we have

ωjωk = ωk+j = ωk+j mod n.

Hence (Wn, ·) is a cyclic group of order n, generated by ω. In this section, we
view simple random walk on the n-cycle as the random walk on the (multiplicative)
groupWn with increment distribution uniform on {ω, ω−1}. Let P be the transition
matrix of this walk. Every (possibly complex-valued) eigenfunction f of P satisfies

λf(ωk) = Pf(ωk) =
f(ωk−1) + f(ωk+1)

2
for 0 ≤ k ≤ n− 1.
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Figure 12.1. For simple random walk on the cycle, the eigenval-
ues must be the cosines. Here n = 10. The black vertices represent
ω = e2πi/10, while the grey vertices represent (1/2)(ω2 + ω0) and
(1/2)(ω3 + ω−1), respectively.

For 0 ≤ j ≤ n− 1, define ϕj(ω
k) := ωkj . Then

Pϕj(ω
k) =

ϕj(ω
k−1) + ϕj(ω

k+1)

2
=
ωjk+j + ωjk−j

2
= ωjk

(
ωj + ω−j

2

)
. (12.14)

Hence ϕj is an eigenfunction of P with eigenvalue ωj+ω−j

2 = cos(2πj/n). What is
the underlying geometry? As Figure 12.1 illustrates, for any ℓ and j the average
of the vectors ωℓ−j and ωℓ+j is a scalar multiple of ωℓ. Since the chord connecting
ωℓ+j with ωℓ−j is perpendicular to ωℓ, the projection of ωℓ+j onto ωℓ has length
cos(2πj/n).

Because ϕj is an eigenfunction of the real matrix P with a real eigenvalue, both
its real part and its imaginary parts are eigenfunctions. In particular, the function
fj : Wn → R defined by

fj(ω
k) = Re(ϕj(ω

k)) = Re(e2πijk/n) = cos

(
2πjk

n

)
(12.15)

is an eigenfunction. We note for future reference that fj is invariant under complex
conjugation of the states of the chain.

We have λ2 = cos(2π/n) = 1− 4π2

2n2 +O(n−4), so the spectral gap γ is of order

n−2 and the relaxation time is of order n2.
When n = 2m is even, cos(2πm/n) = −1 is an eigenvalue, so γ⋆ = 0. The walk

in this case is periodic, as we pointed out in Example 1.8.

12.3.2. Lumped chains and the path. Consider the projection of simple
random walk on the n-th roots of unity, as described in the preceding section, onto
the real axis. The resulting process can take values on a discrete set of points. At
most of them (ignoring for the moment those closest to 1 and −1), it is equally likely
to move to the right or to the left—just like random walk on the path. Using this
idea, we can determine the eigenvalues and eigenfunctions of the random walk on a
path with either reflecting boundary conditions or an even chance of holding at the
endpoints. First, we give a general lemma on the eigenvalues and eigenfunctions of
projected chains (defined in Section 2.3.1).
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Figure 12.2. A random walk on the 12-cycle projects to a ran-
dom walk on the 7-path. This random walk is reflected when it
hits an endpoint.

Lemma 12.8. Let Ω be the state space of a Markov chain (Xt) with transition
matrix P . Let ∼ be an equivalence relation on Ω with equivalence classes Ω♯ =
{[x] : x ∈ Ω} such that [Xt] is a Markov chain with transition matrix P ♯([x], [y]) =
P (x, [y]). Then:

(i) Let f : Ω → R be an eigenfunction of P with eigenvalue λ which is constant
on each equivalence class. Then the natural projection f ♯ : Ω♯ → R of f ,
defined by f ♯([x]) = f(x), is an eigenfunction of P ♯ with eigenvalue λ.

(ii) Conversely, if g : Ω♯ → R is an eigenfunction of P ♯ with eigenvalue λ, then
its lift g♭ : Ω → R, defined by g♭(x) = g([x]), is an eigenfunction of P with
eigenvalue λ.

Proof. For the first assertion, we can simply compute

(Pf ♯)([x]) =
∑

[y]∈Ω′

P ♯([x], [y])f ♯([y]) =
∑

[y]∈Ω′

P (x, [y])f(y)

=
∑

[y]∈Ω′

∑

z∈[y]

P (x, z)f(z) =
∑

z∈Ω

P (x, z)f(z) = (Pf)(x) = λf(x) = λf([x]).

To prove the second assertion, just run the computations in reverse:

(Pf)(x) =
∑

z∈Ω

P (x, z)f(z) =
∑

[y]∈Ω′

∑

z∈[y]

P (x, z)f(z) =
∑

[y]∈Ω′

P (x, [y])f(y)

=
∑

[y]∈Ω′

P ♯([x], [y])f ♯([y]) = (P ♯f ♯)([x]) = λf ♯([x]) = λf(x).

�

Example 12.9 (Path with reflection at the endpoints). Let ω = eπi/(n−1) and
let P be the transition matrix of simple random walk on the 2(n−1)-cycle identified
with random walk on the multiplicative group W2(n−1) = {ω, ω2, . . . , ω2n−1 = 1},
as in Section 12.3.1. Now declare ωk ∈ W2(n−1) to be equivalent to its conjugate

ω−k. This equivalence relation is compatible with the transitions in the sense
required by Lemma 2.5. If we identify each equivalence class with the common
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Figure 12.3. A random walk on the “odd” states of a 16-cycle
projects to a random walk on the 4-path. This lumped walk has
holding probability 1/2 at the endpoints of the path.

projection vk = cos(πk/(n−1)) of its elements onto the real axis, the lumped chain
is a simple random walk on the path with n vertices W ♯ = {v0, v1, . . . , vn−1} and
reflecting boundary conditions. That is, when the walk is at v0, it moves to v1 with
probability 1 and when the walk is at vn−1, it moves to vn−2 with probability 1.
(See Figure 12.2.)

By Lemma 2.5 and (12.14), the functions f ♯j : W ♯ → R defined by

f ♯j (vk) = cos

(
πjk

(n− 1)

)
(12.16)

for 0 ≤ j ≤ n−1 are eigenfunctions of the projected walk. The eigenfunction f ♯j has

eigenvalue cos(πj/(n − 1)). Since we obtain n linearly independent eigenfunctions
for n distinct eigenvalues, the functions in (12.16) form a basis.

Example 12.10 (Path with holding probability 1/2 at endpoints). Let ω =
eπi/(2n). We consider simple random walk on the cycle of length 2n, realized as a
multiplicative random walk on the 2n-element set

Wodd = {ω, ω3, . . . , ω4n−1}
that at each step multiplies the current state by a uniformly chosen element of
{ω2, ω−2}.

Note that this walk is nearly identical to standard simple random walk on the
2n-th roots of unity; we have rotated the state space through an angle of π/(2n),
or, equivalently, multiplied each state by ω. The analysis of Section 12.3.1 still
applies, so that the function fj : Wodd → R defined by

fj(ω
2k+1) = cos

(
π(2k + 1)j

2n

)
(12.17)

is an eigenfunction with eigenvalue cos(πj/n).
Now declare each ω2k+1 ∈ Wodd to be equivalent to its conjugate ω−2k−1.

This equivalence relation is compatible with the transitions in the sense required
by Lemma 2.5. Again identify each equivalence class with the common projection
uk = cos(π(2k + 1)/(2n)) of its elements onto the real axis. The lumped chain is
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a simple random walk on the path with n vertices W ♯ = {u0, u1, . . . , un−1} and
loops at the endpoints. That is, when the walk is at u0, it moves to u1 with
probability 1/2 and stays at u0 with probability 1/2, and when the walk is at un−1,
it moves to un−2 with probability 1/2 and stays at un−1 with probability 1/2. (See
Figure 12.3.)

By Lemma 2.5 and (12.17), the functions f ♯j : W ♯ → R defined by

f ♯j (wk) = cos

(
π(2k + 1)j

2n

)
(12.18)

for j = 0, . . . , n − 1 are eigenfunctions of the random walk on the path W ♯ with

holding at the boundary. The eigenvalue of f ♯j is cos(πj/n). These n linearly
independent eigenfunctions form a basis.

12.4. Product Chains

For each j = 1, 2, . . . , d, let Pj be an irreducible transition matrix on the
state space Ωj and let πj be its stationary distribution. Let w be a probability

distribution on {1, . . . , d}. Consider the chain on Ω̃ := Ω1 × Ω2 · · · × Ωd which
selects at each step a coordinate i according to the distribution w, and then moves
only in the i-th coordinate according to the transition matrix Pi. Let x denote the
vector (x1, . . . , xd). The transition matrix P̃ for this chain is

P̃ (x,y) =

d∑

j=1

wjPj(xj , yj)
∏

i : i6=j
1{xi = yi}. (12.19)

See Exercise 12.7 for a different product chain.
If f (j) is a function on Ωj for each j = 1, 2, . . . , d, the tensor product of

{f (j)}dj=1 is the function on Ω̃ defined by

(f (1) ⊗ f (2) ⊗ · · · ⊗ f (d))(x1, . . . , xd) := f (1)(x1)f
(2)(x2) · · · f (d)(xd).

If each Pj is irreducible, then so is P̃ . If we let π̃ := π1 ⊗ · · · ⊗ πd (regarding πj as

a function on Ωj), then it is straightforward to verify that π̃ is stationary for P̃ .

Lemma 12.11. Suppose that for each j = 1, 2, . . . , d, the transition matrix Pj
on state space Ωj has eigenfunction ϕ(j) with eigenvalue λ(j). Let w be a probability
distribution on {1, . . . , d}.

(i) The function ϕ̃ := ϕ(1)⊗· · ·⊗ϕ(d) is an eigenfunction of the transition matrix

P̃ defined in (12.19), with eigenvalue
∑d
j=1 wjλ

(j).

(ii) Suppose for each j, the set Bj is an orthogonal basis in ℓ2(πj). The collection

B̃ = {ϕ(1) ⊗ · · · ⊗ ϕ(d) : ϕ(i) ∈ Bi}
is a basis for ℓ2(π1 × · · · × πd).

Proof. Define P̃j on Ω̃ by

P̃j(x,y) = Pj(xj , yj)
∏

i : i6=j
1{xi = yi}.

This corresponds to the chain on Ω̃ which always moves in the j-th coordinate
according to Pj . It is simple to check that P̃j ϕ̃(x) = λjϕ̃(x). From this and noting
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that P̃ =
∑d

j=1 wjP̃j , it follows that

P̃ ϕ̃(x) =

d∑

j=1

wjP̃jϕ̃(x) =




d∑

j=1

wjλ
(j)


 ϕ̃(x).

We now prove part (ii). Let ϕ̃ := ϕ(1) ⊗ · · · ⊗ ϕ(d) and ψ̃ := ψ(1) ⊗ · · · ⊗ ψ(d),

where ϕ(j), ψ(j) ∈ Bj for all j and ϕ̃ 6= ψ̃. Let j0 be such that ϕ(j0) 6= ψ(j0). We
have that

〈ϕ̃, ψ̃〉π̃ =

d∏

j=1

〈ϕ(j), ψ(j)〉πj = 0,

since the j0-indexed term vanishes. Therefore, the elements of B̃ are orthogonal.
Since there are |Ω1| × · · · × |Ωd| elements of B̃, which equals the dimension of X̃,

the collection B̃ is an orthogonal basis for ℓ2(π̃). �

Corollary 12.12. Let γj be the spectral gap for Pj. The spectral gap γ̃ for
the product chain satisfies

γ̃ = min
1≤j≤d

wjγj .

Proof. By Lemma 12.11, the set of eigenvalues is
{

d∑

i=1

wiλ
(i) :

d∑

i=1

wi = 1, wi ≥ 0, λ(i) an eigenvalue of Pj

}
. (12.20)

Let i0 be such that wi0λ
(i0) = max1≤i≤d wiλ(i). The second largest eigenvalue

corresponds to taking λ(i) = 1 for i 6= i0 and λ(i0) = 1− γi0 . �

We can apply Corollary 12.12 to bound the spectral gap for Glauber dynamics
(defined in Section 3.3.2) when π is a product measure:

Lemma 12.13. Suppose that {Vi} is a partition of a finite set V , the set S is

finite, and that π is a probability distribution on SV satisfying π =
∏d
i=1 πi, where

π is a probability on SVi . Let γ be the spectral gap for the Glauber dynamics on
SV for π, and let γi be the spectral gap for the Glauber dynamics on SVi for πi. If
n = |V | and nj = |Vj |, then

1

nγ
= max

1≤j≤d
1

njγj
. (12.21)

Remark 12.14. Suppose the graph G can be decomposed into connected com-
ponents G1, . . . , Gr and that π is the Ising model on G. Then π =

∏r
i=1 πi, where πi

is the Ising model on Gi. The corresponding statement is also true for the hardcore
model and the uniform distribution on proper colorings.

Proof of Lemma 12.13. If Ω(x, v) = {y ∈ Ω : y(w) = x(w) for all w 6= v},
then the transition matrix is given by

P (x, y) =
∑

v∈V

1

n

π(y)

π(Ω(x, v))
1{y ∈ Ω(x, v)}.
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For x ∈ SV , write xi for the projection of x onto SVi , whence x = (x1, . . . , xd). If
v ∈ Vj , then

π(Ω(x, v)) =
∏

i : i6=j
πi(xi)

∑

zj∈SVj

zj(w)=xj(w) for w 6=v

πj(zj).

Also, again for v ∈ Vj , if y ∈ Ω(x, v), then

π(y) =


 ∏

i : i6=j
πi(xi)


πj(yj).

Define for v ∈ Vi the set Ωi(x, v) := {zi ∈ SVi : zi(w) = xi(w) for w 6= v}. We
have

P (x, y) =

d∑

j=1

∑

v∈Vj

1

n

π(y)1{y ∈ Ω(x, v)}
π(Ω(x, v))

=

d∑

j=1

nj
n

1

nj

∑

v∈Vj

∏

i : i6=j
1{yi = xi}

πi(yi)1{yi ∈ Ωi(x, v)}
πi(Ωi(x, v))

=

d∑

j=1

nj
n
P̃j(x, y),

where P̃j is the transition matrix of the lift of the Glauber dynamics on SVj to
a chain on SV . (The lift is defined in (12.20).) The identity (12.21) follows from
Corollary 12.12. �

Example 12.15 (Random walk on n-dimensional hypercube). Consider the
chain (Xt) on Ω := {−1, 1} which is an i.i.d. sequence of random signs. That is,
the transition matrix is

P (x, y) =
1

2
for all x, y ∈ {−1, 1}. (12.22)

Let I1(x) = x, and note that

PI1(x) =
1

2
+
−1

2
= 0.

Thus there are two eigenfunction: I1 (with eigenvalue 0) and 1, the constant func-
tion (with eigenvalue 1).

Consider the lazy random walker on the n-dimensional hypercube, but for
convenience write the state space as {−1, 1}n. In this state space, the chain moves
by selecting a coordinate uniformly at random and refreshing the chosen coordinate
with a new random sign, independent of everything else. The transition matrix is
exactly (12.19), where each Pj is the two-state transition matrix in (12.22).

By Lemma 12.11, the eigenfunctions are of the form

f(x1, . . . , xn) =

n∏

j=1

fj(xj)
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where fj is either I1 or 1. In other words, for each subset of coordinates J ⊂
{1, 2, . . . , n},

fJ(x1, . . . , xn) :=
∏

j∈J
xj

is an eigenfunction. The corresponding eigenvalue is

λJ =

∑n
i=1(1− 1{i∈J})

n
=
n− |J |
n

.

We take f∅(x) := 1, which is the eigenfunction corresponding to the eigenvalue 1.
The eigenfunction f{1,...,n} has eigenvalue 0. Each fJ with |J | = 1 has corresponding
eigenvalue λ2 = 1− 1/n, and consequently γ⋆ = 1/n.

Theorem 12.3 gives

tmix(ε) ≤ n (− log ε+ log(2n)) = n2
(
log 2− n−1 log ε

)
= O(n2).

Note that this bound is not as good as the bound obtained previously in Section
6.5.2. However, in the next section we will see that careful use of eigenvalues yields
a better bound than was obtain in Section 6.5.2.

12.5. An ℓ2 Bound

For each p ≥ 0, the ℓp(π) norm on RΩ is defined as

‖f‖p :=

[∑

x∈Ω

|f(x)|pπ(x)

]1/p

.

An important case is p = 2, as ℓ2(π) is the inner product space with norm ‖f‖2 =√
〈f, f〉π.

Lemma 12.16. Let P be a reversible transition matrix, with eigenvalues

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1

and associated eigenfunctions {fj}, orthonormal with respect to 〈·, ·〉π. Then

(i)

4
∥∥P t(x, ·)− π

∥∥2

TV
≤
∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
2

2

=

|Ω|∑

j=2

fj(x)
2λ2t
j .

(ii) If the chain is transitive, then

4
∥∥P t(x, ·) − π

∥∥2

TV
≤
∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
2

2

=

|Ω|∑

j=2

λ2t
j .

Proof.
Proof of (i). By Lemma 12.2,

∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
2

2

=

∥∥∥∥∥∥

|Ω|∑

j=2

λtjfj(x)fj

∥∥∥∥∥∥

2

2

=

|Ω|∑

j=2

fj(x)
2λ2t
j . (12.23)

Note that by Proposition 4.2,

∥∥P t(x, ·) − π
∥∥

TV
=

1

2

∑

y∈Ω

∣∣∣∣
P t(x, y)

π(y)
− 1

∣∣∣∣π(y) =
1

2

∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
1

,
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whence by Exercise 12.5,

4‖P t(x, ·)− π‖2TV =

∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
2

1

≤
∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
2

2

, (12.24)

which with (12.23) establishes (i).

Proof of (ii). Suppose the Markov chain is transitive. Then π is uniform
(cf. Proposition 2.16), and the left-hand side of (12.23) does not depend on x.
Therefore, for any x0 ∈ Ω,

∥∥∥∥
P t(x0, ·)
π(·) − 1

∥∥∥∥
2

2

=

|Ω|∑

j=2

fj(x)
2λ2t
j . (12.25)

Summing over x ∈ X on both sides of (12.25),

|Ω|
∥∥∥∥
P t(x0, ·)
π(·) − 1

∥∥∥∥
2

2

= |Ω|
|Ω|∑

j=2

[∑

x∈Ω

fj(x)
2π(x)

]
λ2t
j ,

where we have multiplied and divided by π(x) = 1/|Ω| on the right-hand side. Since
‖fj‖2 = 1, the inner sum on the right-hand side equals 1, and so

∥∥∥∥
P t(x0, ·)
π(·) − 1

∥∥∥∥
2

2

=

|Ω|∑

j=2

λ2t
j .

Combining with (12.24) establishes (ii). �

Example 12.17. For lazy simple random walk on the hypercube {0, 1}n, the
eigenvalues and eigenfunctions were found in Example 12.15. This chain is transi-
tive, so applying Lemma 12.16 shows that

4‖P t(x, ·)− π‖2TV ≤
n∑

k=1

(
1− k

n

)2t(
n

k

)
≤

n∑

k=1

e−2tk/n

(
n

k

)
=
(
1 + e−2t/n

)n
− 1.

(12.26)
Taking t = (1/2)n logn+ cn above shows that

4‖P t(x, ·)− π‖2TV ≤
(

1 +
1

n
e−2c

)n
− 1 ≤ ee−2c − 1.

The right-hand is bounded, for example, by 2e−2c provided c > 1. Recall that
d(t) := maxx∈Ω ‖P t(x, ·)− π‖TV . The argument in Proposition 7.13 shows that

d((1/2)n logn− cn) ≥ 1− 8

e2c
[1 + o(1)] .

Thus we see that in a window of order n around (1/2)n logn, the distance d drops
from near one to near zero. This behavior is called cutoff and is discussed in
Chapter 18.
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12.6. Time Averages

Suppose that, given a probability distribution π on a finite set Ω and a real-
valued function f : Ω → R, you want to determine Eπ(f) =

∑
x∈Ω f(x)π(x). If Ω

is large or the sum Eπ(f) is otherwise difficult to compute exactly, then a practical
solution may be to estimate Eπ(f) by averaging f applied to random samples from
π.

If you have available an i.i.d. sequence (Xt)
∞
t=1 of Ω-valued random elements

with common distribution π, then the sequence (f(Xt))
∞
t=1 is also i.i.d., each ele-

ment with expectation Eπ(f). Because Ω is finite, the variance Var(f(X1)) of each
random variable f(Xt) is finite. The Law of Large Numbers suggests estimating

Eπ(f) by t−1
∑t
s=1 f(Xs), and using Chebyshev’s inequality, we can give a lower

bound on the number of independent samples t needed to ensure that an error of
size more than η is made with probability at most ε.

Theorem 12.18. Let f be a real-valued function on Ω, and let (Xt) be an i.i.d.
sequence of Ω-valued elements, each with distribution π. Then

P

{∣∣∣∣∣
1

t

t∑

s=1

f(Xs)− Eπ(f)

∣∣∣∣∣ > η

}
≤ Varπ(f)

η2t
.

In particular, if t ≥ Varπ(f)/(η2ε), then the left-hand side is bounded by ε.

The proof is immediate by an application of Chebyshev’s inequality to the
random variable t−1

∑t
s=1 f(Xs), which has variance t−1 Varπ(f).

It may be difficult or impossible to get independent exact samples from π. As
discussed in Chapter 3, the Markov chain Monte Carlo method is to construct a
Markov chain (Xt) for which π is the stationary distribution. In this case, provided
that t is a multiple of tmix, the random variable Xt has a distribution close to π.
Moreover, Xt and Xt+s are approximately independent if s is a multiple of tmix.
Thus, in view of Theorem 12.18, one might guess that t should be a multiple of
[Varπ(f)/η2]tmix to ensure that |t−1

∑t
s=1 f(Xs)−Eπ(f)| < η with high probability.

However, the next theorem shows that after a “burn-in” period of the order of tmix,
a multiple of [Varπ(f)/η2]trel samples suffices.

Theorem 12.19. Let (Xt) be a reversible Markov chain. If r ≥ tmix(ε/2) and
t ≥ [4 Varπ(f)/(η2ε)]trel, then for any starting state x ∈ Ω,

Px

{∣∣∣∣∣
1

t

t−1∑

s=0

f(Xr+s)− Eπ(f)

∣∣∣∣∣ ≥ η
}
≤ ε. (12.27)

We first prove a lemma needed for the proof of Theorem 12.19.

Lemma 12.20. Let (Xt) be a reversible Markov chain and ϕ an eigenfunction
of the transition matrix P with eigenvalue λ and with 〈ϕ,ϕ〉π = 1. For λ 6= 1,

Eπ



(
t−1∑

s=0

ϕ(Xs)

)2

 ≤ 2t

1− λ. (12.28)

If f is any real-valued function defined on Ω with Eπ(f) = 0, then

Eπ



(
t−1∑

s=0

f(Xs)

)2

 ≤ 2tEπ(f

2)

γ
. (12.29)
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Proof. For r < s,

Eπ [ϕ(Xr)ϕ(Xs)] = Eπ [Eπ (ϕ(Xr)ϕ(Xs) | Xr) ]

= Eπ [ϕ(Xr)Eπ (ϕ(Xs) | Xr) ] = Eπ

[
ϕ(Xr) (P s−rϕ)(Xr)

]
.

Since ϕ is an eigenfunction and Eπ(ϕ2) = 〈ϕ,ϕ〉π = 1,

Eπ [ϕ(Xr)ϕ(Xs)] = λs−rEπ

[
ϕ(Xr)

2
]

= λs−rEπ(ϕ
2) = λs−r.

Then by considering separately the diagonal and cross terms when expanding the
square,

Eπ



(
t−1∑

s=0

ϕ(Xs)

)2

 = t+ 2

t−1∑

r=0

t−1−r∑

s=1

λs. (12.30)

Evaluating the geometric sum shows that

Eπ



(
t−1∑

s=0

ϕ(Xs)

)2

 = t+

2tλ− 2λ(1 − λt)/(1− λ)
1− λ

=
t(1 + λ)− 2λg(λ)

1− λ ,

where g(λ) := (1 − λt)/(1 − λ). Note that g(λ) ≥ 0 for λ ∈ (−1, 1). When
−1 ≤ λ ≤ 0, we have g(λ) ≤ 1, whence for t ≥ 2,

t(1 + λ)− 2λg(λ) ≤ t(1 + λ)− tλ = t ≤ 2t.

When 1 > λ > 0, clearly

t(1 + λ)− 2λg(λ) ≤ t(1 + λ) ≤ 2t.

This proves the inequality (12.28).
Let f be a real-valued function on Ω with Eπ(f) = 0. Let {fj}Ωj=1 be the

orthonormal eigenfunctions of P of Lemma 12.2. Decompose f as f =
∑|Ω|

j=1 ajfj.

By Parseval’s Identity, Eπ(f2) =
∑|Ω|
j=1 a

2
j . Observe that a1 = 〈f, f1〉π = 〈f,1〉π =

Eπ(f) = 0.

Defining Gj :=
∑t−1

s=0 fj(Xs), we can write

t−1∑

s=0

f(Xs) =

|Ω|∑

j=1

ajGj .

If r ≤ s and j 6= k, then

Eπ [fj(Xs)fk(Xr)] = Eπ [fk(Xr)Eπ(fj(Xs) | Xr)]

= Eπ

[
fk(Xr)(P

s−rfj)(Xr)
]

= λs−rj Eπ [fk(Xr)fj(Xr)]

= λs−rj Eπ(fkfj)

= 0.

Consequently, Eπ (GjGk) = 0 for j 6= k. It follows that

Eπ



(
t−1∑

s=0

f(Xs)

)2

 =

|Ω|∑

i=2

a2
iEπ

(
G2
i

)
. (12.31)
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By (12.28), the right-hand side is bounded by

|Ω|∑

j=2

2ta2
j

1− λj
≤ 2tEπ(f

2)

γ
.

�

Proof of Theorem 12.19. Assume without loss of generality that Eπ(f) =
0; if not, replace f by f − Eπ(f).

Let µr be the optimal coupling of P r(x, ·) with π, which means that
∑

x 6=y
µr(x, y) = ‖P r(x, ·) − π‖TV .

We define a process (Yt, Zt) as follows: let (Y0, Z0) have distribution µr. Given
(Y0, Z0), let (Yt) and (Zt) move independently with transition matrix P , until the
first time they meet. After they meet, evolve them together according to P . The
chain (Yt, Zt)

∞
t=0 has transition matrix

Q((x, y), (z, w)) =





P (x, z) if x = y and z = w,

P (x, z)P (y, w) if x 6= y,

0 otherwise.

The sequences (Ys) and (Zs) are each Markov chains with transition matrix P ,
started with distributions P r(x, ·) and with π, respectively. In particular, (Ys)s≥0

has the same distribution as (Xr+s)s≥0.
Because the distribution of (Y0, Z0) is µr,

P{Y0 6= Z0} = ‖P r(x, ·) − π‖TV . (12.32)

Since (Ys)s≥0 and (Xr+s)s≥0 have the same distribution, we rewrite the probability
in (12.27) as

Px

{∣∣∣∣∣
1

t

t−1∑

s=0

f(Xr+s)− Eπ(f)

∣∣∣∣∣ > η

}
= P

{∣∣∣∣∣
1

t

t−1∑

s=0

f(Ys)− Eπ(f)

∣∣∣∣∣ > η

}
.

By considering whether or not Y0 = Z0, this probability is bounded above by

P {Y0 6= Z0}+ P

{∣∣∣∣∣
1

t

t−1∑

s=0

f(Zs)− Eπ(f)

∣∣∣∣∣ > η

}
. (12.33)

By definition of tmix(ε) and the equality (12.32), if r ≥ tmix(ε/2), then the first term

is bounded by ε/2. By Lemma 12.20, the variance of t−1
∑t−1
s=0 f(Zs) is bounded

by 2 Varπ(f)/(tγ). Therefore, Chebyshev’s inequality bounds the second term by
ε/2, provided that t ≥ [4 Varπ(f)/(η2ε)]trel. �

Exercises

Exercise 12.1. Let P be a transition matrix.

(a) Show that all eigenvalues λ of P satisfy |λ| ≤ 1.
Hint : Letting ‖f‖∞ := maxx∈Ω |f(x)|, show that ‖Pf‖∞ ≤ ‖f‖∞. Apply this
with the eigenfunction ϕ corresponding to the eigenvalue λ.

(b) Assume P is irreducible. Let T (x) = {t : P t(x, x) > 0}. (Lemma 1.6 shows
that T (x) does not depend on x.) Show that T (x) ⊂ 2Z if and only if −1 is an
eigenvalue of P .
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(c) Assume P is irreducible, and let ω be an a-th root of unity. Show that T (x) ⊂
aZ if and only if ω is an eigenvalue of P .

Exercise 12.2. Let P be irreducible, and suppose that A is a matrix with
0 ≤ A(i, j) ≤ P (i, j) and A 6= P . Show that any eigenvalue λ of A satisfies |λ| < 1.

Exercise 12.3. Let P̃ = (1/2)P + (1/2)I be the transition matrix of the lazy

version of the chain with transition matrix P . Show that all the eigenvalues of P̃
are non-negative.

Exercise 12.4. Show that for a function f : Ω→ R,

Varπ(P tf) ≤ (1 − γ⋆)2t Varπ(f).

Exercise 12.5. Show that for any f : Ω → R, the function p 7→ ‖f‖p is
non-decreasing for p ≥ 1.

Exercise 12.6. Let P be a reversible transition matrix with stationary distri-
bution π. Use Lemma 12.2 to prove that P 2t+2(x, x) ≤ P 2t(x, x).

Exercise 12.7. Let P1 and P2 by transition matrices on state spaces Ω1 and
Ω2, respectively. Consider the chain on Ω1 ×Ω2 which moves independently in the
first and second coordinates according to P1 and P2, respectively. Its transition
matrix is the tensor product P1 ⊗ P2, defined as

P1 ⊗ P2((x, y), (z, w)) = P1(x, z)P2(y, w).

The tensor product of a function ϕ on Ω1 and a function ψ on Ω2 is the function
on Ω1 × Ω2 defined by (ϕ⊗ ψ)(x, y) = ϕ(x)ψ(y).

Let ϕ and ψ be eigenfunctions of P1 and P2, respectively, with eigenvalues λ
and µ. Show that ϕ⊗ ψ is an eigenfunction of P1 ⊗ P2 with eigenvalue λµ.

Notes

Analyzing Markov chains via the eigenvalues of their transition matrices is
classical. See Feller (1968, Chapter XVI) or Karlin and Taylor (1981, Chapter
10) (where orthogonal polynomials are used to compute the eigenvalues of cer-
tain families of chains). The effectiveness of the ℓ2 bound was first demonstrated
by Diaconis and Shahshahani (1981). Diaconis (1988) uses representation theory
to calculate eigenvalues and eigenfunctions for random walks on groups.

Spielman and Teng (1996) show that for any planar graph with n vertices and
maximum degree ∆, the relaxation time is at least c(∆)n, where c(∆) is a constant
depending on the ∆.

Angel, Peres, and Wilson (2008) analyze the spectral gaps of an interesting
family of card shuffles.

For a lazy birth-and-death chain on {0, . . . , L}, let λ1, . . . , λL be the eigenvalues
of the transition matrix restricted to {0, 1, . . . , L− 1}. Then the first hitting time
of L starting from 0 has the same distribution as X1 + X2 + · · · +XL, where Xi

is geometric with success probability 1− λi. A continuous-time version of this was
proven in Karlin and McGregor (1959) (see also Keilson (1979) and Fill (2007)).
The discrete-time version appears in Diaconis and Fill (1990).
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CHAPTER 13

Eigenfunctions and Comparison of Chains

13.1. Bounds on Spectral Gap via Contractions

In Chapter 5 we used coupling to give a direct bound on the mixing time (cf.
Corollary 5.3). We now show that coupling can also be used to obtain bounds on
the relaxation time.

Theorem 13.1 (M. F. Chen (1998)). Let Ω be a metric space with metric ρ,
and let P be the transition matrix of a Markov chain with state space Ω. Suppose
there exists a constant θ < 1 such that for each x, y ∈ Ω there exists a coupling
(X1, Y1) of P (x, ·) and P (y, ·) satisfying

Ex,y (ρ(X1, Y1)) ≤ θρ(x, y). (13.1)

If λ 6= 1 is an eigenvalue of P , then |λ| ≤ θ. In particular, the absolute spectral gap
satisfies

γ⋆ ≥ 1− θ.
The Lipschitz constant of a function f : Ω→ R is defined by

Lip(f) := max
x,y∈Ω
x 6=y

|f(x)− f(y)|
ρ(x, y)

.

Proof. For any function f ,

|Pf(x)− Pf(y)| = |Ex,y (f(X1)− f(Y1))| ≤ Ex,y (|f(X1)− f(Y1)|) .
By the definition of Lip(f) and the hypothesis (13.1),

|Pf(x)− Pf(y)| ≤ Lip(f)Ex,y (ρ(X1, Y1)) ≤ θ Lip(f)ρ(x, y).

This proves that
Lip(Pf) ≤ θ Lip(f).

Taking ϕ to be a non-constant eigenfunction with eigenvalue λ,

|λ|Lip(ϕ) = Lip(λϕ) = Lip(Pϕ) ≤ θ Lip(ϕ).

�

Example 13.2 (Metropolis chain for random colorings). Recall the Metropolis
chain whose stationary distribution is uniform over all proper q-colorings of a graph,
introduced in Example 3.5. At each move this chain picks a vertex v uniformly at
random and a color k uniformly at random, then recolors v with k if the resulting
coloring is proper.

The proof of Theorem 5.7 constructed, in the case q > 3∆, a coupling (X1, Y1)
of P (x, ·) with P (y, ·) for each pair (x, y) such that

E (ρ(X1, Y1)) ≤
(

1− 1

3n∆

)
ρ(x, y).

171



172 13. EIGENFUNCTIONS AND COMPARISON OF CHAINS

Applying Theorem 13.1 shows that if q > 3∆ , where ∆ is the maximum degree of
the graph, then

γ⋆ ≥
1

3n∆
.

Example 13.3. Consider the Glauber dynamics for the hardcore model at
fugacity λ, introduced in Section 3.3.4. In the proof of Theorem 5.8, for each pair
(x, y), a coupling (X1, Y1) of P (x, ·) with P (y, ·) is constructed which satisfies

E (ρ(X1, Y1)) ≤
(

1− 1

n

[
1 + λ(1 −∆)

1 + λ

])
ρ(x, y).

Therefore,

γ⋆ ≥
1

n

[
1 + λ(1 −∆)

1 + λ

]
.

Example 13.4. Consider again the lazy random walk on the hypercube {0, 1}n,
taking the metric to be the Hamming distance ρ(x, y) =

∑d
i=1 |xi − yi|.

Let (X1, Y1) be the coupling which updates the same coordinate in both chains
with the same bit. The distance decreases by one if one among the ρ(x, y) disagree-
ing coordinates is selected and otherwise remains the same. Thus,

Ex,y (ρ(X1, Y1)) ≤
(

1− ρ(x, y)

n

)
ρ(x, y) +

ρ(x, y)

n
(ρ(x, y) − 1)

=

(
1− 1

n

)
ρ(x, y).

Applying Theorem 13.1 yields the bound γ⋆ ≥ n−1. In Example 12.15 it was shown
that γ⋆ = n−1, so the bound of Theorem 13.1 is sharp in this case.

13.2. Wilson’s Method for Lower Bounds

A general method due to David Wilson for obtaining a lower bound on mixing
time uses an eigenfunction Φ to construct a distinguishing statistic.

Theorem 13.5 (Wilson’s method). Let (Xt) be an irreducible aperiodic Markov
chain with state space Ω and transition matrix P . Let Φ be an eigenfunction of P
with eigenvalue λ satisfying 1/2 < λ < 1. Fix 0 < ε < 1 and let R > 0 satisfy

Ex

(
|Φ(X1)− Φ(x)|2

)
≤ R (13.2)

for all x ∈ Ω. Then for any x ∈ Ω

tmix(ε) ≥
1

2 log(1/λ)

[
log

(
(1− λ)Φ(x)2

2R

)
+ log

(
1− ε
ε

)]
. (13.3)

At first glance, Theorem 13.5 appears daunting! Yet it gives sharp lower bounds
in many important examples. Let’s take a closer look and work through an example,
before proceeding with the proof.

Remark 13.6. In applications, ε may not be tiny. For instance, when proving
a family of chains has a cutoff, we will need to consider all values 0 < ε < 1.
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Remark 13.7. Generally λ will be taken to be the second largest eigenvalue
in situations where γ⋆ = γ = 1− λ is small. Under these circumstances a one-term
Taylor expansion yields

1

log(1/λ)
=

1

γ⋆ +O(γ⋆)2
= trel(1 +O(γ⋆)). (13.4)

According to Theorems 12.3 and 12.4,

log

(
1

2ε

)
(trel − 1) ≤ tmix(ε) ≤ − log(επmin)trel,

where πmin = minx∈Ω π(x). One way to interpret (13.4) is that the denominator
of (13.3) gets us up to the relaxation time (ignoring constants, for the moment).
The numerator, which depends on the geometry of Φ, determines how much larger
a lower bound we can get.

Example 13.8. Recall from Example 12.15 that the second-largest eigenvalue
of the lazy random walk on the n-dimensional hypercube {0, 1}n is 1 − 1

n . The
corresponding eigenspace has dimension n, but a convenient representative to take
is

Φ(x) = W (x)− n

2
,

where W (x) is the Hamming weight (i.e. the number of 1’s) in the bitstring x. For
any bitstring y, we have

Ey((Φ(X1)− Φ(y))2) =
1

2
(1) +

1

2
(0) =

1

2
,

since the value changes by exactly 1 whenever the walk actually moves. Now apply
Theorem 13.5, taking the initial state to be the all-ones vector 1 and R = 1/2. We
get

tmix(ε) ≥
1

−2 log(1− n−1)

{
log
[
n−1(n/2)2

]
+ log [(1− ε)/ε]

}

=
n

2

[
1 +O(n−1)

]
[logn+ log[(1 − ε)/ε]− log 4]

= (1/2)n logn+ (1/2)n[1 +O(n−1)] log[(1 − ε)/ε] +O(n).

Example 12.17 shows that the leading term (1/2)n logn is sharp. We obtained
a similar lower bound in Proposition 7.13, using the Hamming weight directly as
a distinguishing statistic. The major difference between the proof of Proposition
7.13 and the argument given here is that the previous proof used the structure of
the hypercube walk to bound the variances. Wilson’s method can be seen as a
natural (in hindsight!) extension of that argument. What makes Theorem 13.5
widely applicable is that the hypothesis (13.2) is often easily checked and yields
good bounds on the variance of the distinguishing statistic Φ(Xt).

Proof of Theorem 13.5. Since

E(Φ(Xt+1)|Xt = z) = λΦ(z) (13.5)

for all t ≥ 0 and z ∈ Ω, we have

ExΦ(Xt) = λtΦ(x) for t ≥ 0 (13.6)
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by induction. Fix a value t, let z = Xt, and define Dt = Φ(Xt+1)−Φ(z). By (13.5)
and (13.2), respectively, we have

Ex(Dt | Xt = z) = (λ− 1)Φ(z)

and

Ex(D
2
t | Xt = z) ≤ R.

Hence

Ex(Φ(Xt+1)
2 | Xt = z) = Ex((Φ(z) +Dt)

2 | Xt = z)

= Φ(z)2 + 2Ex(DtΦ(z) | Xt = z) + Ex(D
2
t | Xt = z)

≤ (2λ− 1)Φ(z)2 +R.

Averaging over the possible values of z ∈ Ω with weights P t(x, z) = Px{Xt = z}
gives

ExΦ(Xt+1)
2 ≤ (2λ− 1)ExΦ(Xt)

2 +R.

At this point, we could apply this estimate inductively, then sum the resulting
geometric series. It is equivalent (and neater) to subtract R/(2(1− λ)) from both
sides, obtaining

ExΦ(Xt+1)
2 − R

2(1− λ) ≤ (2λ− 1)

(
ExΦ(Xt)

2 − R

2(1− λ)

)
.

Iterating the above inequality shows that

ExΦ(Xt)
2 − R

2(1− λ) ≤ (2λ− 1)t
[
Φ(x)2 − R

2(1− λ)

]
.

Leaving off the non-positive term −(2λ − 1)tR/[2(1 − λ)] on the right-hand side
above shows that

ExΦ(Xt)
2 ≤ (2λ− 1)tΦ(x)2 +

R

2(1− λ) . (13.7)

Combining (13.6) and (13.7) gives

VarxΦ(Xt) ≤
[
(2λ− 1)t − λ2t

]
Φ(x)2 +

R

2(1− λ) <
R

2(1− λ) , (13.8)

since 2λ− 1 < λ2 ensures the first term is negative.
Let X∞ have distribution π and let t→∞ in (13.6). Theorem 4.9 implies that

E(Φ(X∞)) = 0 (as does the orthogonality of eigenfunctions). Similarly, letting
t→∞ in (13.8) gives

VarxΦ(X∞) ≤ R

2(1− λ) .

Applying Proposition 7.8 with r2 = 2(1−λ)λ2tΦ(x)2

R gives

∥∥P t(x, ·) − π
∥∥

TV
≥ r2

4 + r2
=

(1− λ)λ2tΦ(x)2

2R+ (1− λ)λ2tΦ(x)2
. (13.9)

If we take

t ≤ 1

2 log(1/λ)

[
log

(
(1 − λ)Φ(x)2

2R

)
+ log

(
1− ε
ε

)]
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(so that t is at most the right-hand side of (13.3)), then

(1− λ)λ2tΦ(x)2 >
ε

1− ε(2R)

and hence the right-hand side of (13.9) is at least ε. �

Remark 13.9. The variance estimate of (13.8) may look crude, but onlyO(λ2t)
is being discarded. In applications this is generally quite small.

Example 13.10 (Product chains). Let P be the transition matrix of a fixed
Markov chain with state space Ω, and let Qn be the transition matrix of the n-
dimensional product chain on state space Ωn, as defined in Section 12.4. At each
move, a coordinate is selected at random, and in the chosen coordinate, a transition
is made using P . Using Wilson’s method, we can derive a lower bound on the mixing
time of this family in terms of the parameters of the original chain.

Let λ = supi6=1 λi be the largest non-trivial eigenvalue of P , and let γ = 1− λ.
Let f : Ω → C be an eigenfunction of P with eigenvalue λ. By Lemma 12.11, for
1 ≤ k ≤ n, the function Φk : Ωn → C defined by

Φk(y1, . . . , yn) = f(yk)

is an eigenfunction of Qn with eigenvalue

n− 1

n
(1) +

1

n
(λ) = 1− γ

n
.

Hence Φ = Φ1 + · · ·+ Φn is also an eigenfunction with the same eigenvalue.
Let Y0, Y1, Y2, . . . be a realization of the factor chain, and set

R = sup
y∈Ω

Ey|f(Y1)− f(y)|2.

Since the product chain moves by choosing a coordinate uniformly and then using P
to update that coordinate, the same value ofR bounds the corresponding parameter
for the product chain Qn.

Set m = maxy∈Ω |f(y)|. Then applying Theorem 13.5 to the eigenfunction Φ of
Qn tells us that for this product chain,

tmix(ε) ≥
1

−2 log
(
1− γ

n

)
{

log

[
(γ/n)n2m2

2R

]
+ log[(1 − ε)/ε]

}

=
n logn

2γ
+O(n) log[(1 − ε)/ε]. (13.10)

13.3. The Dirichlet Form and the Bottleneck Ratio

13.3.1. The Dirichlet form. Let P be a reversible transition matrix with
stationary distribution π. The Dirichlet form associated to the pair (P, π) is
defined for functions f and h on Ω by

E(f, h) := 〈(I − P )f, h〉π.
Lemma 13.11. For a reversible transition matrix P with stationary distribution

π, if

E(f) :=
1

2

∑

x,y∈Ω

[f(x)− f(y)]
2
π(x)P (x, y), (13.11)

then E(f) = E(f, f).
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Proof. Expanding the square on the right-hand side of (13.11) shows that

E(f) =
1

2

∑

x,y∈Ω

f(x)2π(x)P (x, y) −
∑

x,y∈Ω

f(x)f(y)π(x)P (x, y)

+
1

2

∑

x,y∈Ω

f(y)2π(x)P (x, y).

By reversibility, π(x)P (x, y) = π(y)P (x, y), and the first and last terms above are
equal to the common value

1

2

∑

x∈Ω

f(x)2π(x)
∑

y∈Ω

P (x, y) =
1

2

∑

x∈Ω

f(x)2π(x).

Therefore,

E(f) =
∑

x∈Ω

f(x)2π(x) −
∑

x∈Ω

f(x)


∑

y∈Ω

f(y)P (x, y)


π(x)

= 〈f, f〉π − 〈f, Pf〉π
= 〈f, (I − P )f〉π
= E(f, f).

�

We write f ⊥π g to mean 〈f, g〉π = 0. Let 1 denote the function on Ω which
is identically 1. Observe that Eπ(f) = 〈f,1〉π, whence Eπ(f) = 0 if and only if
f ⊥π 1.

Lemma 13.12. The spectral gap γ = 1− λ2 satisfies

γ = min
f∈R

Ω

f⊥π1, ‖f‖2=1

E(f) = min
f∈R

Ω

f⊥π1, f 6≡0

E(f)

‖f‖22
. (13.12)

Remark 13.13. Since E(f) = E(f + c) for any constant c and ‖f −Eπ(f)‖22 =
Varπ(f), if f is a non-constant element of RΩ, then

E(f)

Varπ(f)
=
E(f − Eπ(f))

‖f − Eπ(f)‖22
.

Therefore,

γ = min
f∈R

Ω

Varπ(f) 6=0

E(f)

Varπ(f)
.

Proof. Let n = |Ω|. As noted in the proof of Lemma 12.2, if f1, f2, . . . , fn
are the eigenfunctions of P associated to the eigenvalues ordered as in (12.6), then
{fk} is an orthonormal basis for the inner-product space (Rn, 〈·, ·〉π). We can
and will always take f1 = 1. Therefore, any function f can be written as f =∑n
j=1〈f, fj〉πfj . Computing the ℓ2(π) norm of f and using the orthogonality of

{fj} shows that

‖f‖22 = 〈f, f〉π =

|Ω|∑

j=1

|〈f, fj〉π|2.
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Accordingly, if ‖f‖2 = 1 and f ⊥π 1 (equivalently, 〈f, f1〉π = 0), then f =∑|Ω|
j=2 ajfj where

∑|Ω|
j=2 a

2
j = 1. Thus,

〈(I − P )f, f〉π =

|Ω|∑

j=2

a2
j (1− λj) ≥ 1− λ2,

from which follows the first equality in (13.12). To obtain the second equality, for

f ∈ RΩ satisfying f ⊥ 1 and f 6≡ 0, note that f̃ := f/‖f‖2 satisfies ‖f̃‖2 = 1 and

E(f̃) = Ef/‖f‖22. �

13.3.2. The bottleneck ratio revisited. We have already met the bottle-
neck ratio Φ⋆ in Section 7.2, where we established a lower bound on tmix directly
in terms of Φ⋆.

The following theorem bounds γ in terms of the bottleneck ratio:

Theorem 13.14 (Jerrum and Sinclair (1989), Lawler and Sokal (1988)). Let
λ2 be the second largest eigenvalue of a reversible transition matrix P , and let
γ = 1− λ2. Then

Φ2
⋆

2
≤ γ ≤ 2Φ⋆. (13.13)

While the lower and upper bounds in Theorem 13.14 look quite different, there
exist both examples where the upper bound is the correct order and examples where
the lower bound is the correct order. Before proving the theorem, we consider such
examples.

Example 13.15 (Lazy random walk on the n-dimensional hypercube). Con-
sider the set S = {x : x1 = 0}. Then

Φ(S) = 2
∑

x∈S,y∈Sc

2−nP (x, y) = 2−n+12n−1n−1(1/2) =
1

2n
.

Therefore, Φ⋆ ≤ 1/(2n). We know that γ = n−1 (cf. Example 12.15), whence
applying Theorem 13.14 shows that

1

n
≤ 2Φ⋆ ≤

1

n
.

That is, 2Φ⋆ = n−1 = γ, showing that for this example, the upper bound in (13.13)
is sharp.

Example 13.16 (Lazy random walk on the 2n-cycle). Consider a lazy random
walk on a 2n-cycle. Using the computations in Section 12.3.1 (for the non-lazy
chain),

λ2 =
cos(π/n) + 1

2
= 1− π2

4n2
+O(n−4).

Therefore, γ = π2/(4n2) +O(n−4).
For any set S,

Φ(S) =
|∂S|

(
1
4

) (
1
2n

)

|S|
2n

where ∂S = {(x, y) : x ∈ S, y 6∈ S}. It is clear that the minimum of Φ(S) over
sets S with π(S) ≤ 1/2 is attained at a segment of length n, whence Φ⋆ = 1/(2n).



178 13. EIGENFUNCTIONS AND COMPARISON OF CHAINS

The lower bound in (13.13) gives the bound

γ ≥ 1

8n2
,

which is of the correct order.

Proof of upper bound in Theorem 13.14. By Lemmas 13.12 and 13.11,

γ = min
f 6≡0

Eπ(f)=0

∑
x,y∈Ω π(x)P (x, y) [f(x)− f(y)]

2

∑
x,y∈Ω π(x)π(y) [f(x)− f(y)]

2 . (13.14)

For any S with π(S) ≤ 1/2 define the function fS by

fS(x) =

{
−π(Sc) for x ∈ S,
π(S) for x 6∈ S.

Since Eπ(fs) = 0, it follows from (13.14) that

γ ≤ 2Q(S, Sc)

2π(S)π(Sc)
≤ 2Q(S, Sc)

π(S)
≤ 2Φ(S).

Since this holds for all S, the upper bound is proved. �

13.3.3. Proof of lower bound in Theorem 13.14*. We need the following
lemma:

Lemma 13.17. Given a non-negative function ψ defined on Ω, order Ω so that
ψ is non-increasing. If π{ψ > 0} ≤ 1/2, then

Eπ(ψ) ≤ Φ−1
⋆

∑

x,y∈Ω
x<y

[ψ(x)− ψ(y)]Q(x, y).

Proof. Recalling that Φ⋆ is defined as a minimum in (7.6), letting S = {x :
ψ(x) > t} with t > 0 shows that

Φ⋆ ≤
Q(S, Sc)

π(S)
=

∑
x,y∈ΩQ(x, y)1{ψ(x)>t≥ψ(y)}

π{ψ > t} .

Rearranging and noting that ψ(x) > ψ(y) only for x < y,

π{ψ > t} ≤ Φ−1
⋆

∑

x<y

Q(x, y)1{ψ(x)>t≥ψ(y)}.

Integrating over t, noting that
∫∞
0 1{ψ(x)>t≥ψ(y)}dt = ψ(x) − ψ(y), and using Ex-

ercise 13.1 shows that

Eπ(ψ) ≤ Φ−1
⋆

∑

x<y

[ψ(x)− ψ(y)]Q(x, y).

�

To complete the proof of the lower bound in Theorem 13.14, let f2 be an
eigenfunction corresponding to the eigenvalue λ2, so that Pf2 = λ2f2. Assume
that π{f2 > 0} ≤ 1/2. (If not, use −f2 instead.) Defining f := max{f2, 0},

(I − P )f(x) ≤ γf(x) for all x. (13.15)
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This is verified separately in the two cases f(x) = 0 and f(x) > 0. In the former
case, (13.15) reduces to −Pf(x) ≤ 0, which holds because f(x) ≥ 0. In the case
f(x) > 0, note that since f ≥ f2,

(I − P )f(x) ≤ (I − P )f2(x) = (1 − λ2)f2(x) = γf(x).

Because f ≥ 0,

〈(I − P )f, f〉π ≤ γ〈f, f〉π.
Equivalently,

γ ≥ 〈(I − P )f, f〉π
〈f, f〉π

.

Note there is no contradiction to (13.12) becauseEπ(f) 6= 0. Applying Lemma 13.17
with ψ = f2 shows that

〈f, f〉2π ≤ Φ−2
⋆

[∑

x<y

[
f2(x)− f2(y)

]
Q(x, y)

]2

.

By the Cauchy-Schwarz inequality,

〈f, f〉2π ≤ Φ−2
⋆

[∑

x<y

[f(x)− f(y)]
2
Q(x, y)

] [∑

x<y

[f(x) + f(y)]
2
Q(x, y)

]
.

Using the identity (13.11) of Lemma 13.11 and

[f(x) + f(y)]
2

= 2f2(x) + 2f2(y)− [f(x)− f(y)]
2
,

we find that

〈f, f〉2π ≤ Φ−2
⋆ 〈(I − P )f, f〉π [2〈f, f〉π − 〈(I − P )f, f〉π] .

Let R := 〈(I − P )f, f〉π/〈f, f〉π and divide by 〈f, f〉2π to show that

Φ2
⋆ ≤ R(2−R)

and

1− Φ2
⋆ ≥ 1− 2R+R2 = (1−R)2 ≥ (1 − γ)2.

Finally, (
1− Φ2

⋆

2

)2

≥ 1− Φ2
⋆ ≥ (1− γ)2,

proving that γ ≥ Φ2
⋆/2, as required.

13.4. Simple Comparison of Markov Chains

If the transition matrix of a chain can be bounded by a constant multiple of the
transition matrix for another chain and the stationary distributions of the chains
agree, then Lemma 13.12 provides an easy way to compare the spectral gaps. This
technique is illustrated by the following example:

Example 13.18 (Metropolis and Glauber dynamics for Ising). For a graph
with vertex set V with |V | = n, let π be the Ising probability measure on {−1, 1}V :

π(σ) = Z(β)−1 exp


β

∑

v,w∈V
v∼w

σ(v)σ(w)


 .
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(See Section 3.3.5.) The Glauber dynamics chain moves by selecting a vertex v at
random and placing a positive spin at v with probability

p(σ, v) =
eβS(σ,v)

eβS(σ,v) + e−βS(σ,v)
,

where S(σ,w) :=
∑

u :u∼w σ(u). Therefore, if P denotes the transition matrix for
the Glauber chain, then for all configurations σ and σ′ which differ only at the
vertex v, we have

P (σ, σ′) =
1

n
· eβσ

′(v)S(σ,v)

eβσ′(v)S(σ,v) + e−βσ′(v)S(σ,v)
=

1

n

(
r2

1 + r2

)
, (13.16)

where r = eβσ
′(v)S(σ,v).

We let P̃ denote the transition matrix for the Metropolis chain using the base
chain which selects a vertex v at random and then changes the spin at v. If σ and
σ′ are two configurations which disagree at the single site v, then

P̃ (σ, σ′) =
1

n

(
1 ∧ e2βσ′(v)S(σ,v)

)
=

1

n

(
1 ∧ r2

)
. (13.17)

(See Section 3.2.)

If E is the Dirichlet form corresponding to P and Ẽ is the Dirichlet form corre-

sponding to P̃ , then from (13.16) and (13.17)

1

2
≤ E(f)

Ẽ(f)
≤ 1.

Therefore, the gaps are related by

γ ≤ γ̃ ≤ 2γ.

Example 13.19 (Induced chains). If (Xt) is a Markov chain with transition
matrix P , for a non-empty subset A ⊂ Ω, the induced chain on A is the chain
with state space A and transition matrix

PA(x, y) = Px{Xτ+
A

= y}

for all x, y ∈ A. Intuitively, the induced chain is the original chain, but watched
only during the time it spends at states in A.

Theorem 13.20 (Aldous (1999)). Let (Xt) be a reversible Markov chain on Ω
with stationary measure π and spectral gap γ. Let A ⊂ Ω be non-empty and let γA
be the spectral gap for the chain induced on A. Then γA ≥ γ.

Proof.

π(x)PA(x, y) = π(y)PA(y, x),

as is seen by summing over paths, so PA is reversible with respect to the conditional
distribution πA(B) := π(A ∩ B)/π(A). By Lemma 13.12, there exists ϕ : A → R

with 〈ϕ,1〉πA = 0 and

γA =
E(ϕ)

‖ϕ‖2ℓ2(πA)

.

Let ψ : Ω→ R be the harmonic extension of ϕ:

ψ(x) := Ex[ϕ(XτA)].
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Observe that for x ∈ A,

Pψ(x) =
∑

y∈Ω

P (x, y)ψ(y) =
∑

y∈Ω

P (x, y)Ey [ϕ(XτA)] = Ex[ϕ(Xτ+
A

)] = PAϕ(x).

Also, (I − P )ψ(y) = 0 for y 6∈ A. Now

E(ψ) = 〈(I − P )ψ, ψ〉π =
∑

x∈A
[(I − P )ψ(x)]ψ(x)π(x)

=
∑

x∈A
[(I − PA)ϕ(x)]ϕ(x)π(x) = π(A)E(ϕ).

Also, writing ψ̄ = 〈ψ,1〉π, we have

Varπ(ψ) ≥
∑

x∈A
[ϕ(x) − ψ̄]2π(x) ≥ π(A)

∑

x∈A
ϕ(x)2πA(x) = π(A)〈ϕ,ϕ〉πA .

Thus

γ ≤ E(ψ)

Varπ(ψ)
≤ π(A)E(ϕ)

π(A)‖ϕ‖2ℓ2(πA)

= γA.

�

Remark 13.21. The proof we give above is a bit simpler than Aldous’s original
proof but follows similar ideas.

The following gives a general comparison between chains when the ratios of both
the Dirichlet forms and the stationary distributions can be bounded by constants.

Lemma 13.22. Let P and P̃ be reversible transition matrices with stationary
distributions π and π̃, respectively. If Ẽ(f) ≤ αE(f) for all f , then

γ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
αγ. (13.18)

Proof. Note that Eπ(f) minimizes Eπ(f − α)2 among all real values α, and
the value attained at the minimum is Varπ(f). Therefore,

Varπ(f) ≤ Eπ(f − Eπ̃(f))2 =
∑

x∈Ω

[f(x)− Eπ̃(f)]2 π(x).

If c(π, π̃) := maxx∈Ω π(x)/π̃(x), then the right-hand side above is bounded by

c(π, π̃)
∑

x∈Ω

[f(x)− Eπ̃(f)]
2
π̃(x) = c(π, π̃)Varπ̃(f),

whence
1

Varπ̃(f)
≤ c(π, π̃)

Varπ(f)
. (13.19)

By the hypothesis that Ẽ(f) ≤ αEf and (13.19) we see that for any f ∈ R
Ω with

Varπ(f) 6= 0,

Ẽ(f)

Varπ̃(f)
≤ α · c(π, π̃) · E(f)

Varπ(f)
.

By Remark 13.13, taking the minimum over all non-constant f ∈ RΩ on both sides
of the above inequality proves (13.18). �
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13.5. The Path Method

Recall that in Section 5.3.2 we used coupling to show that for lazy simple ran-
dom walk on the d-dimensional torus Zdn we have tmix ≤ Cdn

2. If some edges are
removed from the graph (e.g. some subset of the horizontal edges at even heights),
then coupling cannot be applied due to the irregular pattern, and the simple com-
parison techniques of Section 13.4 do not apply, since the sets of allowable transi-
tions do not coincide. In this section, we show how such perturbations of “nice”
chains can be studied via comparison. The technique will be exploited later when
we study site Glauber dynamics via comparison with block dynamics in Section 15.5
and some further shuffling methods in Chapter 16.

The following theorem—proved in various forms by Jerrum and Sinclair (1989),
Diaconis and Stroock (1991), and Quastel (1992), and in the form presented here by
Diaconis and Saloff-Coste (1993a)—allows one to compare the behavior of similar
reversible chains to achieve bounds on the relaxation time.

For a reversible transition matrix P , define E = {(x, y) : P (x, y) > 0}. An
E-path from x to y is a sequence Γ = (e1, e2, . . . , em) of edges in E such that
e1 = (x, x1), e2 = (x1, x2), . . . , em = (xm−1, y) for some vertices x1, . . . , xm−1 ∈ Ω.
The length of an E-path Γ is denoted by |Γ|. As usual, Q(x, y) denotes π(x)P (x, y).

Let P and P̃ be two reversible transition matrices with stationary distributions
π and π̃, respectively. Supposing that for each (x, y) ∈ Ẽ there is an E-path from
x to y, choose one and denote it by Γxy. Given such a choice of paths, define the
congestion ratio B by

B := max
e∈E


 1

Q(e)

∑

x,y
Γxy∋e

Q̃(x, y)|Γxy|


 . (13.20)

Theorem 13.23 (The Comparison Theorem). Let P and P̃ be reversible tran-
sition matrices, with stationary distributions π and π̃, respectively. If B is the
congestion ratio for a choice of E-paths, as defined in (13.20), then

Ẽ(f) ≤ BE(f). (13.21)

Consequently,

γ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
Bγ. (13.22)

Corollary 13.24. Let P be a reversible and irreducible transition matrix with
stationary distribution π. Suppose Γxy is a choice of E-path for each x and y, and
let

B = max
e∈E

1

Q(e)

∑

x,y
Γxy∋e

π(x)π(y)|Γxy |.

Then the spectral gap satisfies γ ≥ B−1.

Proof. Let P̃ (x, y) = π(y), and observe that the stationary measure for P̃ is
clearly π̃ = π. For f ∈ RΩ such that 0 = Eπ(f) = 〈f,1〉π,

Ẽ(f) =
1

2

∑

x,y∈Ω

[f(x)− f(y)]
2
π(x)π(y) = ‖f‖22.
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Applying Theorem 13.23 shows that E(f) ≥ B−1‖f‖22. Lemma 13.12 implies that
γ ≥ B−1. �

Proof of Theorem 13.23. For a directed edge e = (z, w), we define∇f(e) :=
f(w)− f(z). Observe that

2Ẽ(f) =
∑

(x,y)∈Ẽ
Q̃(x, y)[f(x)− f(y)]2 =

∑

x,y

Q̃(x, y)


 ∑

e∈Γx,y

∇f(e)




2

.

Applying the Cauchy-Schwarz inequality yields

2Ẽ(f) ≤
∑

x,y

Q̃(x, y)|Γxy|
∑

e∈Γx,y

[∇f(e)]2 =
∑

e∈E


 ∑

Γxy∋e
Q̃(x, y)|Γxy|


 [∇f(e)]

2
.

By the definition of the congestion ratio, the right-hand side is bounded above by
∑

(z,w)∈E
BQ(z, w)[f(w) − f(z)]2 = 2BE(f),

completing the proof of (13.21).
The inequality (13.22) follows from Lemma 13.22. �

Example 13.25 (Comparison for simple random walks on graphs). If two

graphs have the same vertex set but different edge sets E and Ẽ, then

Q(x, y) =
1

2|E|1(x,y)∈E and Q̃(x, y) =
1

2|Ẽ|
1(x,y)∈Ẽ.

Therefore, the congestion ratio is simply

B =


max
e∈E

∑

Γxy∋e
|Γxy|


 |E|
|Ẽ|

.

In our motivating example, we only removed horizontal edges at even heights from
the torus. Since all odd-height edges remain, we can take |Γxy| ≤ 3 since we can
traverse any missing edge in the torus by moving upwards, then across the edge of
odd height, and then downwards. The horizontal edge in this path would then be
used by at most 3 paths Γ (including the edge itself). Since we removed at most
one quarter of the edges, B ≤ 12.

Thus the relaxation time for the perturbed torus also satisfies trel = O(n2).

13.5.1. Averaging over paths. In Theorem 13.23, for each e = (x, y) ∈ Ẽ
we select a single path Γxy from x to y using edges in E. Generally there will be
many paths between x and y using edges from E, and it is often possible to reduce
the worst-case bottlenecking specifying by a measure νxy on the set Pxy of paths
from x to y. One can think of this measure as describing how to select a random
path between x and y.

In this case, the congestion ratio is given by

B := max
e∈E


 1

Q(e)

∑

(x,y)∈Ẽ

Q̃(x, y)
∑

Γ:e∈Γ∈Pxy

νxy(Γ)|Γ|


 . (13.23)
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Corollary 13.26. Let P and P̃ be two reversible transition matrices with
stationary distributions π and π̃, respectively. If B is the congestion ratio for a
choice of randomized E-paths, as defined in (13.23), then

γ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
Bγ. (13.24)

The proof of Corollary 13.26 is exactly parallel to that of Theorem 13.23. Ex-
ercise 13.3 asks you to fill in the details.

13.5.2. Comparison of random walks on groups. When the two Markov
chains that we are attempting to compare are both random walks on the same
group G, it is enough to write the support of the increments of one walk in terms
of the support of the increments of the other. Then symmetry can be used to get
an evenly-distributed collection of paths.

To fix notation, let µ and µ̃ be the increment measures of two irreducible and
reversible random walks on a finite group G. Let S and S̃ be the support sets of
µ and µ̃, respectively, and, for each a ∈ S̃, fix an expansion a = s1 . . . sk, where
si ∈ S for 1 ≤ i ≤ k. Write N(s, a) for the number of times s ∈ S appears in the

expansion of a ∈ S̃, and let |a| = ∑
s∈S N(s, a) be the total number of factors in

the expansion of a.
In this case the appropriate congestion ratio is

B := max
s∈S

1

µ(s)

∑

a∈S̃
µ̃(a)N(s, a) |a|. (13.25)

Corollary 13.27. Let µ and µ̃ be the increment measures of two irreducible
and reversible random walks on a finite group G. Let γ and γ̃ be their spectral gaps,
respectively.

Then

γ̃ ≤ Bγ, (13.26)

where B is the congestion ratio defined in (13.25).

Proof. Let P and P̃ be the transition matrices of the random walks on G
with increment measures µ and µ̃, respectively. Let E = {(g, h)|P (g, h) > 0}. For
e = (g, h) ∈ E, we have

Q(e) = Q(g, h) =
P (g, h)

|G| =
µ(hg−1)

|G| .

(Recall that the uniform distribution is stationary for every random walk on G.)

Define Ẽ and Q̃ in a parallel way.
To obtain a path corresponding to an arbitrary edge (b, c) ∈ Ẽ, write c = ab

where a ∈ S̃ has generator expansion s1 . . . sk. Then

c = s1 . . . skb

determines a path Γbc from b to c using only edges in E.
We now estimate the congestion ratio

max
e∈E




1

Q(e)

∑

g,h
Γgh∋e

Q̃(g, h)|Γgh|


 . (13.27)
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For how many pairs {g, h} ∈ Ẽ does a specific e ∈ E appear in Γgh? Let s ∈ S
be the generator corresponding to e, that is, e = {b, sb} for some b ∈ G. For every

occurrence of an edge {c, sc} using s in the generator path for some a ∈ S̃, the edge

e appears in the path for {c−1b, ac−1b} ∈ Ẽ.
Hence the congestion ratio simplifies to

B = max
e∈E



|G|
P (e)

∑

g,h
Γgh∋e

P̃ (g, h)

|G| |Γgh|


 = max

s∈S
1

µ(s)

∑

a∈S̃
N(s, a)|a|µ̃(a).

Applying Theorem 13.23 completes the proof. �

Remark 13.28. The generalization to randomized paths goes through in the
group case just as it does for general reversible chains (Corollary 13.26). We must

now for each generator a ∈ S̃ specify a measure νa on the set Pa = {(s1, . . . , sk) :
s1 · · · sk = a} of expansions of a in terms of elements of S. If we let |Γ| be the
number of elements in an expansion Γ = (s1, . . . , sk) and N(a,Γ) be the number of
times a appears in Γ, then the appropriate congestion ratio is

B := max
s∈S

1

µ(s)

∑

a∈S̃
µ̃(a)

∑

Γ∈Pa

νa(Γ)N(s,Γ) |Γ|. (13.28)

Exercise 13.4 asks you to fill in the details.
Using randomized paths can be useful, for example, when the generating set

S of the “new” walk is much larger than the generating set S̃ of the already-
understood walk; in such a case averaging over paths can spread the bottlenecking
over all generators, rather than just a few.

13.6. Expander Graphs*

When a graph has a narrow bottleneck, the corresponding random walk must
mix slowly. How efficiently can a family of graphs avoid bottlenecks? What prop-
erties does such an optimal family enjoy?

A family {Gn} of graphs is defined to be a (d, α)-expander family if the
following three conditions hold for all n:

(i) limn→∞ |V (Gn)| =∞.
(ii) Gn is d-regular.
(iii) The bottleneck ratio of simple random walk on Gn satisfies Φ⋆(Gn) ≥ α.

Proposition 13.29. When {Gn} is a (d, α)-expander family, the lazy random
walks on {Gn} satisfy tmix(Gn) = O(log |V (Gn)|).

Proof. Theorem 13.14 implies that for all Gn the spectral gap for the simple
random walk satisfies γ ≥ α2/2. Since each Gn is regular, the stationary distribu-
tion of the lazy random walk is uniform, and Theorem 12.3 tells us that for the
lazy walk tmix(Gn) = O(log |V (Gn)|). �

Remark 13.30. Given the diameter lower bound of Section 7.1.2, Proposi-
tion 13.29 says that expander families exhibit the fastest possible mixing (up to
constant factors) for families of graphs of bounded degree.
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It is not at all clear from the definition that families of expanders exist. Below
we construct a family of 3-regular expander graphs. This is a version of the first
construction of an expander family, due to Pinsker (1973). Our initial construction
allows multiple edges; we then describe modifications that yield 3-regular simple
graphs.

Let V (Gn) = {a1, . . . , an, b1, . . . , bn}. Choose permutations σ1, σ2 ∈ Sn uni-
formly at random and independent of each other, and set

E(Gn) = {(ai, bi), (ai, bσ1(i)), (ai, bσ2(i)) : 1 ≤ i ≤ n}. (13.29)

Proposition 13.31. For the family {Gn} of random multigraphs described
in (13.29),

lim
n→∞

P{Φ⋆(Gn) > 0.01} = 1.

Proof. Assume that δ < .03. We first show that with probability tending to
1 as n → ∞, every subset of A of size k ≤ n/2 has more than (1 + δ)k neighbors.
Note that every edge in Gn connects a vertex in A = {a1, . . . , an} to a vertex in
B = {b1, . . . , bn} (that is, Gn is bipartite).

Let S ⊂ A be a set of size k ≤ n/2, and let N(S) be the set of neighbors of S.
We wish to bound the probability that |N(S)| ≤ (1 + δ)k. Since (ai, bi) is an edge
for any 1 ≤ i ≤ n, we get immediately that |N(S)| ≥ k. We can upper bound the
probability that N(S) is small by first enumerating the possibilities for the set of
δk “surplus” vertices allowed in N(S), then making sure both σ1(S) and σ2(S) fall
within the specified set. This argument gives

P {|N(S)| ≤ (1 + δ)k} ≤
(
n
δk

)(
(1+δ)k
k

)2
(
n
k

)2 ,

so

P {for some S, |S| ≤ n/2 and |N(S)| ≤ (1 + δ)k} ≤
n/2∑

k=1

(
n

k

)( n
δk

)(
(1+δ)k
δk

)2
(
n
k

)2 .

Exercise 13.5 asks you to show that this summation tends to 0 for δ < .03.
We finish by checking that if every subset of A of size k ≤ n/2 has more than

(1 + δ)k neighbors, then Φ⋆ > δ/2. Why? For S ⊂ V with |S| ≤ n, let

A′ = S ∩A and B′ = S ∩B.
Without loss of generality we may assume |A′| ≥ |B′|. If |A′| ≤ n/2, then by
hypothesis A′ has more than (δ/2)|S| neighbors in B−B′: all those edges connect
elements of S to elements of Sc. If |A′| ≥ n/2, let A′′ ⊆ A′ be an arbitrary subset
of size ⌈n/2⌉. Again, A′′ must have more than (δ/2)|S| neighbors in B − B′, and
all the corresponding edges connect S and Sc.

Taking δ = .02 completes the proof. �

Corollary 13.32. There exists a family of (3, 0.001)-expanders.

Proof. We claim first that we can find a family of (deterministic) 3-regular
multigraphs {Gn} such that each has at most 100 double edges, no triple edges, and
bottleneck ratio at least 0.01. Why? Proposition 13.31 guarantees that asymptot-
ically almost every random graph in the model of (13.29) has the bottleneck ratio
property. Since a triple edge implies that the two vertices involved are discon-
nected from the rest of the graph, no graph with the bottleneck property has triple
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Figure 13.1. Modifying a 3-regular multigraph to get a 3-regular graph.

edges. Furthermore, the expectation and variance of the number of double edges
produced by each pair of the three permutations {id, σ1, σ2} are both 1 (as can be
easily checked using indicators), so the probability of a total of more than 100 dou-
ble edges is much less than 1. For large enough n, this event must have non-trivial
intersection with the event that the bottleneck ratio is at least 0.01. We select one
graph in that intersection for each sufficiently large n.

We still must repair the double edges. Subdivide each one with a vertex; then
connect the two added vertices with an edge (as shown in Figure 13.1). Call the

resulting graphs {G̃n}. These modifications will have a negligible effect on the
bottleneck ratio for sufficiently large n. �

Remark 13.33. In fact, as n tends to ∞, the probability that Gn is a simple
graph tends to 1/e3—see Riordan (1944). Verifying this fact (which we will not do
here) also suffices to demonstrate the existence of an expander family.

Exercises

Exercise 13.1. Let Y be a non-negative random variable. Show that

E(Y ) =

∫ ∞

0

P{Y > t}dt.

Hint : Write Y =
∫∞
0 1{Y >t}dt.

Exercise 13.2. Show that for lazy simple random walk on the box {1, . . . , n}d,
the parameter γ⋆ satisfies γ−1

⋆ = O(n2).

Exercise 13.3. Prove Corollary 13.26. Hint : follow the outline of the proof
of Theorem 13.23.

Exercise 13.4. Prove that the statement of Corollary 13.27 remains true in
the situation outlined in Remark 13.28.

Exercise 13.5. To complete the proof of Proposition 13.31, prove that for
δ < 0.03

lim
n→∞

n/2∑

k=1

(
n
δk

)(
(1+δ)k
δk

)2
(
n
k

) = 0.

Notes

Wilson’s method first appeared in Wilson (2004a). Wilson (2003) extended his
lower bound to complex eigenvalues. See Mossel et al. (2004) for another variant.

The connection between the spectral gap of the Laplace-Beltrami operator
on Riemannian manifolds and an isoperimetric constant is due to Cheeger (1970);
hence the bottleneck ratio is often called the Cheeger constant . The relationship
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between the bottleneck ratio and the spectral gap for random walks on graphs was
observed by Alon and Milman (1985) and Alon (1986). The method of canonical
paths for bounding relaxation time was introduced in Sinclair and Jerrum (1989)
and Lawler and Sokal (1988), then further developed in Diaconis and Stroock (1991)
and Sinclair (1992).

The bottleneck constant is also sometimes called conductance, especially in
the computer science literature. We avoid this term, because it clashes with our
use of “conductance” for electrical networks in Chapter 9.

The Comparison Theorem is an extension of the method of canonical paths.
A special case appeared in Quastel (1992); the form we give here is from Diaconis
and Saloff-Coste (1993a) and Diaconis and Saloff-Coste (1993b). See also Madras
and Randall (1996), Randall and Tetali (2000), and Dyer, Goldberg, Jerrum, and
Martin (2006). Considering random paths, rather than a “canonical” path between
each pair of states, is sometimes called the method of multicommodity flows. We
avoid this term because it clashes (partially) with our use of “flow” in Chapter 9.
Here a probability measure on paths for x to y clearly determines a unit flow from
x to y; however, a flow by itself does not contain enough information to determine
the congestion ratio of (13.23).

Pinsker (1973) showed that random regular graphs are expanders. Expander
graphs are used extensively in computer science and communications networks. See
Sarnak (2004) for a brief exposition and Hoory, Linial, and Wigderson (2006) or
Lubotzky (1994) for a full discussion, including many deterministic constructions.

Complements. Theorem 13.1 can be combined with Theorem 12.3 to get a
bound on mixing time when there is a coupling which contracts, in the reversible
case: If for each pair of states x, y, there exists a coupling (X1, Y1) of P (x, ·) and
P (y, ·) satisfying

Ex,y(ρ(X1, Y1)) ≤ θρ(x, y),
then

tmix(ε) ≤
− log(ε)− log(πmin)

1− θ . (13.30)

Compare with Corollary 14.7, which bounds mixing time directly from a contractive
coupling. Since πmindiam ≤ πmin|Ω| ≤ 1, it follows that − log(πmin) ≥ log(diam)
and the bound in (13.30) is never better than the bound given by Corollary 14.7.
In fact, (13.30) can be much worse. For example, for the hypercube, π−1

min = 2d,
while the diameter is d.



CHAPTER 14

The Transportation Metric and Path Coupling

Let P be a transition matrix on a metric space (Ω, ρ), where the metric ρ
satisfies ρ(x, y) ≥ 1{x 6= y}. Suppose, for all states x and y, there exists a coupling
(X1, Y1) of P (x, ·) with P (y, ·) that contracts ρ on average, i.e., which satisfies

Ex,yρ(X1, Y1) ≤ e−αρ(x, y) (14.1)

for some α > 0. The diameter of Ω is defined to be diam(Ω) := maxx,y∈Ω ρ(x, y).
By iterating (14.1), we have

Ex,yρ(Xt, Yt) ≤ e−αtdiam(Ω).

We conclude that
∥∥P t(x, ·)− P t(y, ·)

∥∥
TV
≤ Px,y{Xt 6= Yt} = Px,y{ρ(Xt, Yt) ≥ 1}

≤ Ex,yρ(Xt, Yt) ≤ diam(Ω)e−αt,

whence

tmix(ε) ≤
⌈

1

α
[log(diam(Ω)) + log(1/ε)]

⌉
.

This is the method used in Theorem 5.7 to bound the mixing time of the Metropolis
chain for proper colorings and also used in Theorem 5.8 for the hardcore chain.

Path coupling is a technique that simplifies the construction of couplings
satisfying (14.1), when ρ is a path metric, defined below. While the argument
just given requires verification of (14.1) for all pairs x, y ∈ Ω, the path-coupling
technique shows that it is enough to construct couplings satisfying (14.1) only for
neighboring pairs.

14.1. The Transportation Metric

Recall that a coupling of probability distributions µ and ν is a pair (X,Y ) of
random variables defined on a single probability space such that X has distribution
µ and Y has distribution ν.

For a given distance ρ defined on the state space Ω, the transportation metric

between two distributions on Ω is defined by

ρK(µ, ν) := inf{E(ρ(X,Y )) : (X,Y ) is a coupling of µ and ν}. (14.2)

By Proposition 4.7, if ρ(x, y) = 1{x 6=y}, then ρK(µ, ν) = ‖µ− ν‖TV .

Remark 14.1. It is sometimes convenient to describe couplings using proba-
bility distributions on the product space Ω×Ω, instead of random variables. When
q is a probability distribution on Ω×Ω, its projection onto the first coordinate

is the probability distribution on Ω equal to

q(· × Ω) =
∑

y∈Ω

q(·, y).

189
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Likewise, its projection onto the second coordinate is the distribution q(Ω×·).
Given a coupling (X,Y ) of µ and ν as defined above, the distribution of (X,Y )

on Ω×Ω has projections µ and ν on the first and second coordinates, respectively.
Conversely, given a probability distribution q on Ω × Ω with projections µ and ν,
the identity function on the probability space (Ω× Ω, q) is a coupling of µ and ν.

Consequently, since E(ρ(X,Y )) =
∑

(x,y)∈Ω×Ω ρ(x, y)q(x, y) when (X,Y ) has

distribution q, the transportation metric can also be written as

ρK(µ, ν) = inf





∑

(x,y)∈Ω×Ω

ρ(x, y)q(x, y) : q(· × Ω) = µ, q(Ω× ·) = ν



 . (14.3)

Remark 14.2. The set of probability distributions on Ω×Ω can be identified

with the (|Ω|2-1)-dimensional simplex, which is a compact subset of R
|Ω|2 . The set

of distributions on Ω×Ω which project on the first coordinate to µ and project on
the second coordinate to ν is a closed subset of this simplex and hence is compact.
The function

q 7→
∑

(x,y)∈Ω×Ω

ρ(x, y)q(x, y)

is continuous on this set. Hence there is a q⋆ such that
∑

(x,y)∈Ω×Ω

ρ(x, y)q⋆(x, y) = ρK(µ, ν).

Such a q⋆ is called an optimal coupling of µ and ν. Equivalently, there is a pair
of random variables (X⋆, Y⋆), also called an optimal coupling, such that

E(ρ(X⋆, Y⋆)) = ρK(µ, ν).

Lemma 14.3. The function ρK defined in (14.2) is a metric on the space of
probability distributions on Ω.

Proof. We check the triangle inequality and leave the verification of the other
two conditions to the reader.

Let µ, ν and η be probability distributions on Ω. Let p be a probability distribu-
tion on Ω×Ω which is a coupling of µ and ν, and let q be a probability distribution
on Ω × Ω which is a coupling of ν and η. Define the probability distribution r on
Ω× Ω× Ω by

r(x, y, z) :=
p(x, y)q(y, z)

ν(y)
. (14.4)

(See Remark 14.4 for the motivation of this definition.) Note that the projection
of r onto its first two coordinates is p, and the projection of r onto its last two
coordinates is q. The projection of r onto the first and last coordinates is a coupling
of µ and η.

Assume now that p is an optimal coupling of µ and ν. (See Remark 14.2.)
Likewise, suppose that q is an optimal coupling of ν and η.

Let (X,Y, Z) be a random vector with probability distribution r. Since ρ is a
metric,

ρ(X,Z) ≤ ρ(X,Y ) + ρ(Y, Z).

Taking expectation, because (X,Y ) is an optimal coupling of µ and ν and (Y, Z) is
an optimal coupling of ν and η,

E(ρ(X,Z)) ≤ E(ρ(X,Y )) + E(ρ(Y, Z)) = ρK(µ, ν) + ρK(ν, η).
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Since (X,Z) is a coupling (although not necessarily optimal) of µ and η, we conclude
that

ρK(µ, η) ≤ ρK(µ, ν) + ρK(ν, η).

�

The transportation metric ρK extends the metric ρ on Ω to a metric on the
space of probability distributions on Ω. In particular, if δx denotes the probability
distribution which puts unit mass on x, then ρK(δx, δy) = ρ(x, y).

Remark 14.4. The probability distribution r defined in (14.4) can be thought
of as three steps of a time-inhomogeneous Markov chain. The first state X is
generated according to µ. Given X = x, the second state Y is generated according
to p(x, ·)/µ(x), and given Y = y, the third state Z is generated according to
q(y, ·)/ν(y). Thus,

P{X = x, Y = y, Z = z} = µ(x)
p(x, y)

µ(x)

q(y, z)

ν(y)
= r(x, y, z).

14.2. Path Coupling

Suppose that the state space Ω of a Markov chain (Xt) is the vertex set of a
connected graph G = (Ω, E0) and ℓ is a length function defined on E0. That is, ℓ
assigns length ℓ(x, y) to each edge {x, y} ∈ E0. We assume that ℓ(x, y) ≥ 1 for all
edges {x, y}.

Remark 14.5. This graph structure may be different from the structure inher-
ited from the permissible transitions of the Markov chain (Xt).

Define a path in Ω from x to y to be a sequence of states ξ = (x0, x1, . . . , xr)
such that x0 = x and xr = y and such that {xi−1, xi} is an edge for i = 1, . . . , r.
The length of the path is defined to be

∑r
i=1 ℓ(xi−1, xi). The path metric on Ω

is defined by

ρ(x, y) = min{length of ξ : ξ a path from x to y}. (14.5)

Since we have assumed that ℓ(x, y) ≥ 1, it follows that ρ(x, y) ≥ 1{x 6= y},
whence for any pair (X,Y ),

P{X 6= Y } = E
(
1{X 6=Y }

)
≤ Eρ(X,Y ). (14.6)

Minimizing over all couplings (X,Y ) of µ and ν shows that

ρTV (µ, ν) ≤ ρK(µ, ν). (14.7)

While Bubley and Dyer (1997) discovered the following theorem and applied it
to mixing, the key idea is the application of the triangle inequality for the trans-
portation metric, which goes back to Kantorovich (1942).

Theorem 14.6 (Bubley and Dyer (1997)). Suppose the state space Ω of a Mar-
kov chain is the vertex set of a graph with length function ℓ defined on edges. Let
ρ be the corresponding path metric defined in (14.5). Suppose that for each edge
{x, y} there exists a coupling (X1, Y1) of the distributions P (x, ·) and P (y, ·) such
that

Ex,y (ρ(X1, Y1)) ≤ ρ(x, y)e−α = ℓ(x, y)e−α. (14.8)

Then for any two probability measures µ and ν on Ω,

ρK(µP, νP ) ≤ e−αρK(µ, ν). (14.9)
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Recall that d(t) = maxx∈Ω ‖P t(x, ·) − π‖TV and diam(Ω) = maxx,y∈Ω ρ(x, y).

Corollary 14.7. Suppose that the hypotheses of Theorem 14.6 hold. Then

d(t) ≤ e−αtdiam(Ω),

and consequently

tmix(ε) ≤
⌈− log(ε) + log(diam(Ω))

α

⌉
.

Proof. By iterating (14.9), it follows that

ρK(µP t, νP t) ≤ e−αtρK(µ, ν) ≤ e−αtmax
x,y

ρ(x, y). (14.10)

Applying (14.7) and setting µ = δx and ν = π shows that
∥∥P t(x, ·)− π

∥∥
TV
≤ e−αtdiam(Ω). (14.11)

�

Proof of Theorem 14.6. We begin by showing that for arbitrary (not nec-
essarily neighboring) x, y ∈ Ω,

ρK(P (x, ·), P (y, ·)) ≤ e−αρ(x, y). (14.12)

Fix x, y ∈ Ω, and let (x0, x1, . . . , xr) be a path achieving the minimum in (14.5).
By the triangle inequality for ρK ,

ρK(P (x, ·), P (y, ·)) ≤
r∑

k=1

ρK(P (xk−1, ·), P (xk, ·)). (14.13)

Since ρK is a minimum over all couplings, the hypotheses of the theorem imply
that, for any edge {a, b},

ρK(P (a, ·), P (b, ·)) ≤ e−αℓ(a, b). (14.14)

Using the bound (14.14) on each of the terms in the sum appearing on the right-
hand side of (14.13) shows that

ρK(P (x, ·), P (y, ·)) ≤ e−α
r∑

k=1

ℓ(xk−1, xk).

Since the path (x0, . . . , xk) was chosen to be of shortest length, the sum on the
right-hand side above equals ρ(x, y). This establishes (14.12).

Let η by an optimal coupling of µ and ν, so that

ρK(µ, ν) =
∑

x,y∈Ω

ρ(x, y)η(x, y). (14.15)

By (14.12), we know that for all x, y there exists a coupling θx,y of P (x, ·) and
P (y, ·) such that

∑

u,w∈Ω

ρ(u,w)θx,y(u,w) ≤ e−αρ(x, y). (14.16)
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Colors: {1, 2, 3, 4, 5, 6}

w

2

1

1

6

5

5

5

3

Figure 14.1. Updating at vertex w. The colors of the neighbors
are not available, as indicated.

Consider the probability distribution θ :=
∑

x,y∈Ω η(x, y)θx,y on Ω× Ω. (This is a

coupling of µP with νP .) We have by (14.16) and (14.15) that
∑

u,w∈Ω

ρ(u,w)θ(u,w) =
∑

x,y∈Ω

∑

u,w∈Ω

ρ(u,w)θx,y(u,w)η(x, y)

≤ e−α
∑

x,y∈Ω

ρ(x, y)η(x, y)

= e−αρK(µ, ν).

Therefore, the theorem is proved, because ρK(µP, νP ) ≤∑u,w∈Ω ρ(u,w)θ(u,w).
�

14.3. Fast Mixing for Colorings

Recall from Section 3.1 that proper q-colorings of a graph G = (V,E) are
elements of x ∈ Ω = {1, 2, . . . , q}V such that x(v) 6= x(w) for {v, w} ∈ E.

In Section 5.4.1, the mixing time of the Metropolis chain for proper q-colorings
was analyzed for sufficiently large q. Here we analyze the mixing time for the
Glauber dynamics.

As defined in Section 3.3, Glauber dynamics for proper q-colorings of a graph
G with n vertices operate as follows: at each move, a vertex is chosen uniformly
at random and the color of this vertex is updated. To update, a color is chosen
uniformly at random from the allowable colors, which are those colors not seen
among the neighbors of the chosen vertex.

We will use path coupling to bound the mixing time of this chain.

Theorem 14.8. Consider the Glauber dynamics chain for random proper q-
colorings of a graph with n vertices and maximum degree ∆. If q > 2∆, then the
mixing time satisfies

tmix(ε) ≤
⌈(

q −∆

q − 2∆

)
n (logn− log ε)

⌉
. (14.17)
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Proof. The metric here is ρ(x, y) =
∑

v∈V 1{x(v) 6= y(v)}, the number of
sites at which x and y differ. Two colorings are neighbors if and only if they differ
at a single vertex. Note that this neighboring rule defines a graph different from
the graph defined by the transitions of the chain, since the chain moves only among
proper colorings.

Recall that Av(x) is the set of allowable colors at v in configuration x.
Let x and y be two configurations which agree everywhere except at vertex

v. We describe how to simultaneously evolve two chains, one started at x and the
other started at y, such that each chain viewed alone is a Glauber chain.

First, we pick a vertex w uniformly at random from the vertex set of the graph.
(We use a lowercase letter for the random variable w to emphasize that its value is
a vertex.) We will update the color of w in both the chain started from x and the
chain started from y.

If v is not a neighbor of w, then we can update the two chains with the same
color. Each chain is updated with the correct distribution because Aw(x) = Aw(y).

Suppose now one of the neighbors of w is v. We will assume that |Aw(x)| ≤
|Aw(y)|. If not, run the procedure described below with the roles of x and y reversed.

Generate a random color U from Aw(y) and use this to update y at w. If
U 6= x(v), then update the configuration x at w to U . We subdivide the case
U = x(v) into subcases based on whether or not |Aw(x)| = |Aw(y)|:

case how to update x at w

|Aw(x)| = |Aw(y)| set x(w) = y(v)
|Aw(x)| < |Aw(y)| draw a random color from Aw(x)

The reader should check that this updates x at w to a color chosen uniformly from
Aw(x). The probability that the two configurations do not update to the same
color is 1/|Aw(y)|, which is bounded above by 1/(q −∆).

Given two states x and y which are at unit distance (that is, differ in one vertex
only), we have constructed a coupling (X1, Y1) of P (x, ·) and P (y, ·). The distance
ρ(X1, Y1) increases from 1 only in the case where a neighbor of v is updated and the
updates are different in the two configurations. Also, the distance decreases when
v is selected to be updated. In all other cases the distance stays at 1. Therefore,

Ex,y (ρ(X1, Y1)) ≤ 1− 1

n
+

deg(v)

n

(
1

q −∆

)
. (14.18)

The right-hand side of (14.18) is bounded by

1− 1

n

(
1− ∆

q −∆

)
. (14.19)

Because 2∆ < q, this is not more than 1. Letting c(q,∆) := [1−∆/(q −∆)],

Ex,y (ρ(X1, Y1)) ≤ exp

(
−c(q,∆)

n

)
.

Applying Corollary 14.7 shows that

max
x∈Ω

∥∥P t(x, ·)− π
∥∥

TV
≤ n exp

(
−c(q,∆)

n
t

)

and that

tmix(ε) ≤
⌈

n

c(q,∆)

(
logn+ log ε−1

)⌉
. (14.20)
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Available: {2,4,6} and 3

yx

? ?
wv vw

1 1

Colors: {1, 2, 3, 4, 5, 6}

5

5

5

5

5

13

6 6

1 1

5

22

Available: {2,4,6}

Figure 14.2. Jointly updating x and y when they differ only at
vertex v and |Aw(x)| < |Aw(y)|

(Note that c(q,∆) > 0 because q > 2∆.) This establishes (14.17). �

Some condition on q and ∆ is necessary to achieve the fast rate of convergence
(order n logn) established in Theorem 14.8, although the condition q > 2∆ is not
the best known. Example 7.5 shows that if ∆ is allowed to grow with n while q
remains fixed, then the mixing time can be exponential in n.

Exercise 7.3 shows that for the graph having no edges, in which case the colors
at distinct vertices do not interact, the mixing time is at least of order n logn.

14.4. Approximate Counting

14.4.1. Sampling and counting. For sufficiently simple combinatorial sets,
it can be easy both to count and to generate a uniform random sample.

Example 14.9 (One-dimensional colorings). Recall the definition of proper q-
coloring from Section 3.1. On the path with n vertices there are exactly q(q−1)n−1

proper colorings: color vertex 1 arbitrarily, and then for each successive vertex
i > 1, choose a color different from that of vertex i − 1. This description of the
enumeration is easily modified to a uniform sampling algorithm, as Exercise 14.3
asks the reader to check.

Example 14.10 (One-dimensional hardcore model). Now consider the set Ωn
of hardcore configurations on the path with n vertices (recall the definition of the
hardcore model in Section 3.3, and see Figure 14.3). Exercise 14.4 asks the reader to
check that |Ωn| = fn+1, where fn is the n-th Fibonacci number, and Exercise 14.5
asks the reader to check that the following recursive algorithm inductively generates
a uniform sample from Ωn: suppose you are able to generate uniform samples from
Ωk for k ≤ n−1. With probability fn−1/fn+1, put a 1 at location n, a 0 at location
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81 2 3 4 5 6 7

Figure 14.3. A configuration of the hardcore model on the 8-
vertex path. Filled circles correspond to occupied sites.

n− 1, and then generate a random element of Ωn−2 to fill out the configuration at
{1, 2, . . . , n − 2}. With the remaining probability fn/fn+1, put a 0 at location n
and fill out the positions {1, 2, . . . , n− 1} with a random element of Ωn−1.

Remark 14.11. For more examples of sets enumerated by the Fibonacci num-
bers, see Stanley (1986, Chapter 1, Exercise 14) and Section 6.6 of Graham, Knuth,
and Patashnik (1994). Benjamin and Quinn (2003) use combinatorial interpreta-
tions to prove Fibonacci identities (and many other things).

For both models, both sampling and counting become more difficult on more
complicated graphs. Fortunately, Markov chains (such as the Glauber dynamics for
both these examples) can efficiently sample large combinatorial sets which (unlike
the elementary methods described above and in greater generality in Appendix B)
do not require enumerating the set or even knowing how many elements are in the
set. In Section 14.4.2 we show how Markov chains can be used in an approximate
counting algorithm for colorings.

14.4.2. Approximately counting colorings. Many innovations in the study
of mixing times for Markov chains came from researchers motivated by the prob-
lem of counting combinatorial structures. While determining the exact size of a
complicated set may be a “hard” problem, an approximate answer is often possible
using Markov chains.

In this section, we show how the number of proper colorings can be estimated
using the Markov chain analyzed in the previous section. We adapt the method
described in Jerrum and Sinclair (1996) to this setting.

Theorem 14.12. Let Ω be the set of all proper q-colorings of the graph G of
n vertices and maximal degree ∆. Fix q > 2∆, and set c(q,∆) = 1 −∆/(q −∆).
Given η and ε, there is a random variable W which can be simulated using no more
than ⌈

n logn+ n log(3n/ε)

c(q,∆)

⌉⌈
27qn2

ηε2

⌉
(14.21)

uniform random variables and which satisfies

P{(1− ε)|Ω|−1 ≤W ≤ (1 + ε)|Ω|−1} ≥ 1− η.
Remark 14.13. This is an example of a fully polynomial randomized ap-

proximation scheme, an algorithm for approximating values of the function
n 7→ |Ωn| having a run-time that is polynomial in both the instance size n and
the inverse error tolerated, ε−1.

Proof. This proof follows closely the argument of Jerrum and Sinclair (1996).
Let x0 be a proper coloring of G. Enumerate the vertices of G as {v1, v2, . . . , vn}.
Define for k = 0, 1, . . . , n

Ωk = {x ∈ Ω : x(vj) = x0(vj) for j > k}.
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Elements of Ωk have k free vertices, while the n − k vertices {vk+1, . . . , vn} are
colored in agreement with x0.

A random element of Ωk can be generated using a slight modification to the
Glauber dynamics introduced in Section 3.3.1 and analyzed in Section 14.3. The
chain evolves as before, but only the colors at vertices {v1, . . . , vk} are permitted
to be updated. The other vertices are frozen in the configuration specified by x0.
The bound of Theorem 14.8 on tmix(ε) still holds, with k replacing n. In addition,
(14.20) itself holds, since k ≤ n. By definition of tmix(ε), if

t(n, ε) :=

⌈
n logn+ n log(3n/ε)

c(q,∆)

⌉
,

then ∥∥∥P t(n,ε)(x0, ·)− πk
∥∥∥

TV
<

ε

3n
, (14.22)

where πk is uniform on Ωk.
The ratio |Ωk−1|/|Ωk| can be estimated as follows: a random element from

Ωk can be generated by running the Markov chain for t(n, ε) steps. Repeating
an := 27qn/ηε2 times yields an elements of Ωk. Let Zk,i, for i = 1, . . . , an, be
the indicator that the i-th sample is an element of Ωk−1. (Observe that to check
if an element x of Ωk is also an element of Ωk−1, it is enough to determine if
x(vk) = x0(vk).) If xk,i is the starting location of the chain used to generate the
i-th sample, then

|EZk,i − πk(Ωk−1)| = |P t(n,ε)(xk,i,Ωk−1)− πk(Ωk−1)| ≤ d(t(n, ε)) ≤
ε

3n
.

Therefore, if Wk := a−1
n

∑an

i=1 Zk,i is the fraction of these samples which fall in
Ωk−1, then

∣∣∣∣EWk −
|Ωk−1|
|Ωk|

∣∣∣∣ ≤
1

an

an∑

i=1

|EZk,i − πk(Ωk−1)| ≤
ε

3n
. (14.23)

Because Zk,i is a Bernoulli(EZk,i) random variable and the Zk,i’s are independent,

Var(Wk) =
1

a2
n

an∑

i=1

EZk,i[1−EZk,i] ≤
1

a2
n

an∑

i=1

EZk,i ≤
E(Wk)

an
.

Consequently,

Var(Wk)

E2(Wk)
≤ 1

anE(Wk)
. (14.24)

Since |Ωk−1|/|Ωk| ≥ q−1, we have from (14.23) that, for n large enough,

E(Wk) ≥
1

q
− ε

3n
≥ 1

2q
.

Using the above in (14.24) shows that

Var(Wk)

E2(Wk)
≤ 2q

an
=

2ηε2

27n
. (14.25)
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Recall the inequality |∏ zi −
∏
wi| ≤

∑ |zi − wi|, valid for |zi| ≤ 1 and |wi| ≤ 1.
Letting W = W1 · · ·Wn, since the {Wk} are independent, we have

∣∣∣∣E(W )− 1

|Ω|

∣∣∣∣ =
∣∣∣∣∣
n∏

i=1

EWi −
n∏

i=1

|Ωi−1|
|Ωi|

∣∣∣∣∣

≤
n∑

i=1

∣∣∣∣EWi −
|Ωi−1|
|Ωi|

∣∣∣∣ ≤ n ·
ε

3n
=
ε

3
.

Therefore,

E(W ) =
1

|Ω| + ε̃, where |ε̃| ≤ ε/3. (14.26)

Also,

E

(
W

EW

)2

= E

n∏

i=1

(
Wi

EWi

)2

=

n∏

i=1

EW 2
i

(EWi)2
.

Subtracting 1 from both sides shows that

Var(W )

E2(W )
=

n∏

k=1

[
1 +

VarWk

E2(Wk)

]
− 1.

This identity, together with (14.25), shows that

Var(W )

E2(W )
≤

n∏

k=1

[
1 +

2ηε2

27n

]
− 1 ≤ ηε2

9
.

By Chebyshev’s inequality,

P

{∣∣∣∣
W

E(W )
− 1

∣∣∣∣ ≥ ε/3
}
≤ η.

Combining with (14.26),

P

{∣∣∣∣
W

|Ω|−1
− 1

∣∣∣∣ ≥ ε
}
≤ η.

For each of the n variables Wk, k = 1, . . . , n, we need to simulate each of an chains
for t(n, ε) steps. This shows that a total of (14.21) steps are needed. �

Exercises

Exercise 14.1. Let M be an arbitrary set, and, for a, b ∈M , define

ρ(a, b) =

{
0 if a = b,

1 if a 6= b.
(14.27)

Check that M is a metric space under the distance ρ and the corresponding trans-
portation metric is the total variation distance.

Exercise 14.2. A real-valued function f on a metric space (Ω, ρ) is called
Lipschitz if there is a constant c so that for all x, y ∈ Ω,

|f(x)− f(y)| ≤ cρ(x, y), (14.28)

where ρ is the distance on Ω. We denote the best constant c in (14.28) by Lip(f):

Lip(f) := max
x,y∈Ω
x 6=y

|f(x)− f(y)|
ρ(x, y)

.
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For a probability µ on Ω, the integral
∫
fdµ denotes the sum

∑
x∈Ω f(x)µ(x).

Define

ρ̃k(µ, ν) = sup
f : Lip(f)≤1

∣∣∣∣
∫
fdµ−

∫
fdν

∣∣∣∣ .

Show that ρ̃K ≤ ρK . (In fact, ρ̃K = ρK ; see Notes.)

Exercise 14.3. Let H(1) be a uniform sample from [k]. Given that H(i) has
been assigned for i = 1, . . . , j − 1, choose H(j) uniformly from [k] \ {H(j − 1)}.
Repeat for j = 2, . . . , n. Show that H is a uniform sample from the set of colorings
of the n-vertex path.

Exercise 14.4. Recall that the Fibonacci numbers are defined by f0 :=
f1 := 1 and fn := fn−1 + fn−2 for n ≥ 1. Show that the number of configurations
in the one-dimensional hardcore model with n sites is fn+1.

Exercise 14.5. Show that the algorithm described in Example 14.10 generates
a uniform sample from Ωn.

Exercise 14.6. Describe a simple exact sampling mechanism, in the style of
Exercises 14.3 and 14.5, for the Ising model on the n-vertex path.

Notes

The transportation metric was introduced in Kantorovich (1942). It has been
rediscovered many times and is also known as the Wasserstein metric, thanks
to a reintroduction in Vasershtein (1969). For some history of this metric, see
Vershik (2004). See also Villani (2003).

The name “transportation metric” comes from the following problem: suppose
a unit of materiel is spread over n locations {1, 2, . . . , n} according to the distribu-
tion µ, so that proportion µ(i) is at location i. You wish to re-allocate the materiel
according to another distribution ν, and the per unit cost of moving from location i
to location j is ρ(i, j). For each i and j, what proportion p(i, j) of mass at location
i should be moved to location j so that

∑n
i=1 µ(i)p(i, j), the total amount moved

to location j, equals ν(j) and so that the total cost is minimized? The total cost
when using p equals

n∑

i=1

n∑

j=1

ρ(i, j)µ(i)p(i, j).

Since q(i, j) = µ(i)p(i, j) is a coupling of µ and ν, the problem is equivalent to
finding the coupling q which minimizes

∑

1≤i,j≤n
ρ(i, j)q(i, j).

The problem of mixing for chains with stationary distribution uniform over
proper q-colorings was first analyzed by Jerrum (1995), whose bound we present
as Theorem 14.8, and independently by Salas and Sokal (1997). Vigoda (2000)
showed that if the number of colors q is larger than (11/6)∆, then the mixing times
for the Glauber dynamics for random colorings is O(n2 logn). Dyer, Greenhill,
and Molloy (2002) show that the mixing time is O(n log n) provided q ≥ (2 −
10−12)∆. A key open question is whether q > ∆ + C suffices for rapid mixing.
Frieze and Vigoda (2007) wrote a survey on using Markov chains to sample from
colorings.
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The inequality in Exercise 14.2 is actually an equality, as was shown in Kan-
torovich and Rubinstein (1958). In fact, the theorem is valid more generally on
separable metric spaces; the proof uses a form of duality. See Dudley (2002, Theo-
rem 11.8.2).

The relation between sampling and approximate counting first appeared in
Jerrum, Valiant, and Vazirani (1986). Jerrum, Sinclair, and Vigoda (2004) approx-
imately count perfect matchings in bipartite graphs. For more on approximate
counting, see Sinclair (1993).



CHAPTER 15

The Ising Model

The Ising model on a graph with vertex set V at inverse temperature β was
introduced in Section 3.3.5. It is the probability distribution on Ω = {−1, 1}V
defined by

π(σ) = Z(β)−1 exp


β

∑

v,w∈V
v∼w

σ(v)σ(w)


 .

Here we study in detail the Glauber dynamics for this distribution. As discussed
in Section 3.3.5, the transition matrix for this chain is given by

P (σ, σ′) =
1

n

∑

v∈V

eβ σ
′(v)S(σ,v)

eβ σ′(v)S(σ,v) + e−β σ′(v)S(σ,v)
· 1{σ′(w)=σ(w) for all w 6=v},

where S(σ, v) =
∑
w :w∼v σ(w).

This chain evolves by selecting a vertex v at random and updating the spin at v
according to the distribution π conditioned to agree with the spins at all vertices
not equal to v. If the current configuration is σ and vertex v is selected, then the
chance the spin at v is updated to +1 is equal to

p(σ, v) :=
eβS(σ,v)

eβS(σ,v) + e−βS(σ,v)
=

1 + tanh(βS(σ, v))

2
.

We will be particularly interested in how the mixing time varies with β. Gener-
ically, for small values of β, the chain will mix in a short amount of time, while for
large values of β, the chain will converge slowly. Understanding this phase transi-
tion between slow and fast mixing has been a topic of great interest and activity
over the past twenty years; here we only scratch the surface.

15.1. Fast Mixing at High Temperature

In this section we use the path coupling technique of Chapter 14 to show that
on any graph of bounded degree, for small values of β, the Glauber dynamics for
the Ising model is fast mixing.

Theorem 15.1. Consider the Glauber dynamics for the Ising model on a graph
with n vertices and maximal degree ∆.

(i) Let c(β) := 1−∆tanh(β). If ∆ · tanh(β) < 1, then

tmix(ε) ≤
⌈
n(logn+ log(1/ε))

c(β)

⌉
. (15.1)

In particular, (15.1) holds whenever β < ∆−1.

201
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(ii) Suppose every vertex of the graph has even degree. Let

ce(β) := 1− (∆/2) tanh(2β).

If (∆/2) · tanh(2β) < 1, then

tmix(ε) ≤
⌈
n(logn+ log(1/ε))

ce(β)

⌉
. (15.2)

Lemma 15.2. The function ϕ(x) := tanh(β(x + 1)) − tanh(β(x − 1)) is even
and decreasing on [0,∞), whence

sup
x∈R

ϕ(x) = ϕ(0) = 2 tanh(β) (15.3)

and

sup
k odd integer

ϕ(k) = ϕ(1) = tanh(2β). (15.4)

Proof. Let ψ(x) := tanh(βx); observe that ψ′(x) = β/ cosh2(βx). The func-
tion ψ′ is strictly positive and decreasing on [0,∞) and is even. Therefore, for
x > 0,

ϕ′(x) = ψ′(x+ 1)− ψ′(x− 1) < 0,

as is seen by considering separately the case where x − 1 > 0 and the case where
x− 1 ≤ 0. Because tanh is an odd function,

ϕ(−x) = ψ(−x+ 1)− ψ(−x− 1) = −ψ(x− 1) + ψ(x + 1) = ϕ(x),

so ϕ is even. �

Proof of Theorem 15.1. Define the distance ρ on Ω by

ρ(σ, τ) =
1

2

∑

u∈V
|σ(u)− τ(u)|.

The distance ρ is a path metric as defined in Section 14.2.
Let σ and τ be two configurations with ρ(σ, τ) = 1. The spins of σ and τ agree

everywhere except at a single vertex v. Assume that σ(v) = −1 and τ(v) = +1.
Define N (v) := {u : u ∼ v} to be the set of neighboring vertices to v.
We describe now a coupling (X,Y ) of one step of the chain started in configu-

ration σ with one step of the chain started in configuration τ .
Pick a vertex w uniformly at random from V . If w 6∈ N (v), then the neighbors

of w agree in both σ and τ . As the probability of updating the spin at w to +1,
given in (3.10), depends only on the spins at the neighbors of w, it is the same
for the chain started in σ as for the chain started in τ . Thus we can update both
chains together.

If w ∈ N (v), the probabilities of updating to +1 at w are no longer the same
for the two chains, so we cannot always update together. We do, however, use a
single random variable as the common source of noise to update both chains, so the
two chains agree as often as is possible. In particular, let U be a uniform random
variable on [0, 1] and set

X(w) =

{
+1 if U ≤ p(σ,w),

−1 if U > p(σ,w)
and Y (w) =

{
+1 if U ≤ p(τ, w),

−1 if U > p(τ, w).

Set X(u) = σ(u) and Y (u) = τ(u) for u 6= w.
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If w = v, then ρ(X,Y ) = 0. If w 6∈ N (v) ∪ {v}, then ρ(X,Y ) = 1. If w ∈ N (v)
and p(σ,w) < U ≤ p(τ, w), then ρ(X,Y ) = 2. Thus,

Eσ,τ (ρ(X,Y )) ≤ 1− 1

n
+

1

n

∑

w∈N (v)

[p(τ, w)− p(σ,w)] . (15.5)

Noting that S(w, τ) = S(w, σ) + 2 = S + 2, we obtain

p(τ, w)− p(σ,w) =
eβ(S+2)

eβ(S+2) + e−β(S+2)
− eβS

eβS + e−βS

=
1

2
[tanh(β(S + 2))− tanh(βS)] . (15.6)

Letting S̃ = S + 1 in (15.6) and then applying (15.3) shows that

p(τ, w)− p(σ,w) =
1

2

[
tanh(β(S̃ + 1))− tanh(β(S̃ − 1))

]
≤ tanh(β). (15.7)

Using the above bound in inequality (15.5) shows that

Eσ,τ (ρ(X,Y )) ≤ 1− [1−∆tanh(β)]

n
≤ exp

(
−1−∆tanh(β)

n

)
= e−c(β)/n.

If ∆ tanh(β) < 1, then c(β) > 0. Observe that diam(Ω) = n. Applying Corol-
lary 14.7 with α = c(β)/n establishes (15.1).

Since tanh(x) ≤ x, if β < ∆−1, then ∆ tanh(β) < 1.
Proof of (ii). Note that if every vertex in the graph has even degree, then

S̃ = S + 1 takes on only odd values. Applying (15.4) shows that

p(τ, w) − p(σ,w) =
1

2

[
tanh(β(S̃ + 1))− tanh(β(S̃ − 1))

]
≤ tanh(2β)

2
.

Using the above bound in inequality (15.5) shows that

Eσ,τ (ρ(X,Y )) ≤ 1− 1− (∆/2) tanh(2β)

n
≤ e−ce(β)/n.

If (∆/2) tanh(2β) < 1, then we can apply Corollary 14.7 to obtain (15.2). �

15.2. The Complete Graph

Let G be the complete graph on n vertices, the graph which includes all
(
n
2

)

possible edges. Since the interaction term σ(v)
∑

w :w∼v σ(w) is of order n, we take
β = α/n so that the total contribution of a single site to β

∑
σ(v)σ(w) is O(1).

Theorem 15.3. Let G be the complete graph on n vertices, and consider
Glauber dynamics for the Ising model on G with β = α/n.

(i) If α < 1, then

tmix(ε) ≤
n(log n+ log(1/ε))

1− α . (15.8)

(ii) If α > 1, then there is a positive function r(α) so that tmix ≥ O (exp [r(α)n]).

Proof. Proof of (i). Note that ∆ tanh(β) = (n−1) tanh(α/n) ≤ α. Thus if α < 1,
then Theorem 15.1(i) establishes (15.8).

Proof of (ii). Define Ak := {σ : |{v : σ(v) = 1}| = k}. By counting,
π(Ak) = ak/Z(α), where

ak :=

(
n

k

)
exp

{
α

n

[(
k

2

)
+

(
n− k

2

)
− k(n− k)

]}
.
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Figure 15.1. The function ϕα defined in (15.9). The dashed
graph corresponds to α = 1.1, the solid line to α = 0.9.

Taking logarithms and applying Stirling’s formula shows that

log(a⌊cn⌋) = nϕα(c)[1 + o(1)],

where

ϕα(c) := −c log(c)− (1− c) log(1− c) + α

[
(1− 2c)2

2

]
. (15.9)

Taking derivatives shows that

ϕ′
α(1/2) = 0,

ϕ′′
α(1/2) = −4(1− α).

Hence c = 1/2 is a critical point of ϕα, and in particular it is a local maximum
or minimum depending on the value of α. See Figure 15.1 for the graph of ϕα for
α = 0.9 and α = 1.1. Take α > 1, in which case ϕα has a local minimum at 1/2.
Define

S =

{
σ :

∑

u∈V
σ(u) < 0

}
.

By symmetry, π(S) ≤ 1/2. Observe that the only way to get from S to Sc is
through A⌊n/2⌋, since we are only allowed to change one spin at a time. Thus

Q(S, Sc) ≤ ⌈(n/2)⌉
n

π(A⌈n/2⌉) and π(S) =
∑

j<⌈n/2⌉
π(Aj).

Let c1 be the value of c maximizing ϕα over [0, 1/2]. Since 1/2 is a strict local
minimum, c1 < 1/2. Therefore,

Φ(S) ≤ exp{ϕα(1/2)n[1 + o(1)]}
Z(α)π(A⌊c1n⌋)

=
exp{ϕα(1/2)n[1 + o(1)]}
exp{ϕα(c1)n[1 + o(1)]} .

Since ϕα(c1) > ϕα(1/2), there is an r(α) > 0 and constant b > 0 so that Φ⋆ ≤
be−nr(α). The conclusion follows from Theorem 7.3. �

15.3. The Cycle

Theorem 15.4. Let cO(β) := 1 − tanh(2β). The Glauber dynamics for the
Ising model on the n-cycle satisfies, for any β > 0 and fixed ε > 0,

1 + o(1)

2cO(β)
≤ tmix(ε)

n logn
≤ 1 + o(1)

cO(β)
. (15.10)
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Proof. Upper bound. Note that ∆ = 2, whence (∆/2) tanh(2β) = tanh(2β) <
1. Since the degree of every vertex in the cycle is two, Theorem 15.1(ii) shows that

tmix(ε) ≤
n(logn+ log(1/ε))

cO(β)

for all β.
Lower bound. We will use Wilson’s method (Theorem 13.5).
Claim: The function Φ : Ω→ R defined by Φ(σ) :=

∑n
i=1 σ(i) is an eigenfunc-

tion with eigenvalue

λ = 1− 1− tanh(2β)

n
. (15.11)

Proof of Claim: We first consider the action of P on ϕi : Ω → R defined by
ϕi(σ) := σi. Recall that if vertex i is selected for updating, a positive spin is placed
at i with probability

1 + tanh [β(σ(i− 1) + σ(i+ 1))]

2
.

(Cf. (3.10); here S(σ, i) =
∑

j : j∼i σ(j) = σ(i− 1) + σ(i+ 1).) Therefore,

(Pϕi)(σ) = (+1)

(
1 + tanh[β(σ(i − 1) + σ(i+ 1))]

2n

)

+ (−1)

(
1− tanh[β(σ(i− 1) + σ(i+ 1))]

2n

)
+

(
1− 1

n

)
σ(i)

=
tanh[β(σ(i− 1) + σ(i+ 1))]

n
+

(
1− 1

n

)
σ(i).

The variable [σ(i− 1) + σ(i+ 1)] takes values in {−2, 0, 2}; since the function tanh
is odd, it is linear on {−2, 0, 2} and in particular, for x ∈ {−2, 0, 2},

tanh(βx) =
tanh(2β)

2
x.

We conclude that

(Pϕi)(σ) =
tanh(2β)

2n
(σ(i− 1) + σ(i+ 1)) +

(
1− 1

n

)
σ(i).

Summing over i,

(PΦ)(σ) =
tanh(2β)

n
Φ(σ) +

(
1− 1

n

)
Φ(σ) =

(
1− 1− tanh(2β)

n

)
Φ(σ),

proving that Φ is an eigenfunction with eigenvalue λ defined in (15.11).
Note that if σ̃ is the state obtained after updating σ according to the Glauber

dynamics, then |Φ(σ̃) − Φ(σ)| ≤ 2. Therefore, taking x to be the configuration of
all ones, (13.3) yields

tmix(ε) ≥ [1 + o(1)]

[
n

2cO(β)

(
log

(
cO(β)
n n2

4

)
+ log

(
1

2ε

))]

=
[1 + o(1)]n logn

2cO(β)
.

�
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15.4. The Tree

Our applications of path coupling have heretofore used path metrics with unit
edge lengths. Let θ := tanh(β). The coupling of Glauber dynamics for the Ising
model that was used in Theorem 15.1 contracts the Hamming distance, provided
θ∆ < 1. Therefore, the Glauber dynamics for the Ising model on a b-ary tree mixes
in O(n log n) steps, provided θ < 1/(b + 1). We now improve this, showing that

the same coupling contracts a weighted path metric whenever θ < 1/(2
√
b). While

this result is not the best possible (see the Notes), it does illustrate the utility of
allowing for variable edge lengths in the path metric.

Let T be a finite, rooted b-ary tree of depth k. Fix 0 < α < 1. We define a
graph with vertex set {−1, 1}T by placing an edge between configurations σ and
τ if they agree everywhere except at a single vertex v. The length of this edge is
defined to be α|v|−k, where |v| denotes the depth of vertex v. The shortest path
between arbitrary configurations σ and τ has length

ρ(σ, τ) =
∑

v∈T
α|v|−k1{σ(v) 6=τ(v)}. (15.12)

Theorem 15.5. Let θ := tanh(β). Consider the Glauber dynamics for the Ising

model on T , the finite rooted b-ary tree of depth k. If α = 1/
√
b, then for any pair

of neighboring configurations σ and τ , there is a coupling (X1, Y1) of the Glauber
dynamics started from σ and τ such that the metric ρ defined in (15.12) contracts

when θ < 1/(2
√
b): there exists a constant 0 < cθ < 1 such that

Eσ,τ [ρ(X1, Y1)] ≤
(
1− cθ

n

)
ρ(σ, τ).

Therefore, if θ < 1/(2
√
b), then

tmix(ε) ≤
n

cθ

[
3

2
logn+ log(1/ε)

]
.

Proof. Suppose that σ and τ are configurations which agree everywhere ex-
cept v, where −1 = σ(v) = −τ(v). Therefore, ρ(σ, τ) = α|v|−k. Let (X1, Y1) be one
step of the coupling used in Theorem 15.1.

We say the coupling fails if a neighbor w of v is selected and the coupling does
not update the spin at w identically in both σ and τ . Given a neighbor of v is
selected for updating, the coupling fails with probability

p(τ, w) − p(σ,w) ≤ θ.
(See (15.7).)

If a child w of v is selected for updating and the coupling fails, then the distance
increases by

ρ(X1, Y1)− ρ(σ, τ) = α|v|−k+1 = αρ(σ, τ).

If the parent of w is selected for updating and the coupling fails, then the distance
increases by

ρ(X1, Y1)− ρ(σ, τ) = α|v|−k−1 = α−1ρ(σ, τ). (15.13)

Therefore,

Eσ,τ [ρ(X1, Y1)]

ρ(σ, τ)
≤ 1− 1

n
+

(α−1 + bα)θ

n
.
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The function α 7→ α−1 +bα is minimized over [0, 1] at α = 1/
√
b, where it has value

2
√
b. Thus, the right-hand side of (15.13), for this choice of α, equals

1− 1− 2θ
√
b

n
.

For θ < 1/[2
√
b] we obtain a contraction.

The diameter of the tree in the metric ρ is not more than α−kn = bk/2n.
Since bk < n, the diameter is at most n3/2. Applying Corollary 14.7 completes the
proof. �

We now show that at any temperature, the mixing time on a finite b-ary tree
is at most polynomial in the volume of the tree.

Theorem 15.6 (Kenyon, Mossel, and Peres (2001)). The Glauber dynamics
for the Ising model on the finite, rooted, b-ary tree of depth k satisfies

trel ≤ ncT (β,b)
k ,

where cT (β, b) := 2β(3b+ 1)/ log b+ 1 and nk is the number of vertices in the tree.

To prove Theorem 15.6, we first need a proposition showing the effect on the
dynamics of removing an edge of the underlying graph. The following applies more
generally than for trees.

Proposition 15.7. Let G = (V,E) have maximal degree ∆, where |V | = n,

and let G̃ = (V, Ẽ), where Ẽ ⊂ E. Let r = |E \ Ẽ|. If γ is the spectral gap
for Glauber dynamics for the Ising model on G and γ̃ is the spectral gap for the
dynamics on G̃, then

1

γ
≤ e2β(∆+2r)

γ̃

Proof. We have

π(σ) =
eβ

P
(v,w)∈Ẽ σ(v)σ(w)+β

P
(v,w)∈E\Ẽ σ(v)σ(w)

∑
τ e

β
P

(v,w)∈Ẽ τ(v)τ(w)+β
P

(v,w)∈E\Ẽ τ(v)τ(w)

≥ e−βr

eβr
eβ

P
(v,w)∈Ẽ σ(v)σ(w)

∑
τ e

β
P

(v,w)∈Ẽ τ(v)τ(w)

= e−2βrπ̃(σ).

Therefore,

π̃(σ) ≤ e2βrπ(σ). (15.14)

Since the transition matrix is given by (3.11), we have

P (σ, τ) ≥ 1

n

1

1 + e2β∆
1{P (σ, τ) > 0}

and also

P̃ (σ, τ) ≤ 1

n

e2β∆

1 + e2β∆
1{P (σ, τ) > 0}.

Combining these two inequalities shows that P̃ (σ, τ) ≤ e2β∆P (σ, τ), whence by
(15.14) we have

π̃(σ)P̃ (σ, τ) ≤ e2β(∆+r)π(σ)P (σ, τ),
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Figure 15.2. The tree T̃2,3.

and by (13.11), Ẽ(f) ≤ e2β(∆+r)E(f). Since π(σ) ≤ e2βrπ̃(σ) (as seen by reversing
the roles of π and π̃ in the proof of (15.14)), by Lemma 13.22 we have that

γ̃ ≤ e2β(∆+2r)γ.

�

Proof of Theorem 15.6. Let T̃b,k be the graph obtained by removing all
edges incident to the root. (See Figure 15.2.)

By Proposition 15.7,

trel(Tk+1)

nk+1
≤ e2β(3b+1) trel(T̃b,k+1)

nk+1
.

Applying Lemma 12.13 shows that

trel(T̃b,k+1)

nk+1
= max

{
1,
trel(Tk)

nk

}
.

Therefore, if tk := trel(Tk)/nk, then tk+1 ≤ e2β(3b+1) max{tk, 1}. We conclude that,
since nk ≥ bk,

trel(Tk) ≤ e2β(3b+1)knk = (bk)2β(3b+1)/ log bnk ≤ n2β(3b+1)/ log b+1
k .

�

Remark 15.8. The proof of Theorem 15.6 shows the utility of studying prod-
uct systems. Even though the dynamics on the tree does not have independent
components, it can be compared to the dynamics on disjoint components, which
has product form.

15.5. Block Dynamics

Let Vi ⊂ V for i = 1, . . . , b be subsets of vertices, which we will refer to as
blocks. The block dynamics for the Ising model is the Markov chain defined
as follows: a block Vi is picked uniformly at random among the b blocks, and the
configuration σ is updated according to the measure π conditioned to agree with σ
everywhere outside of Vi. More precisely, for W ⊂ V let

Ωσ,W := {τ ∈ Ω : τ(v) = σ(v) for all v 6∈ W}
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be the set of configurations agreeing with σ outside of W , and define the transition
matrix

PW (σ, τ) := π(τ | Ωσ,W ) =
π(τ)1{τ∈Ωσ,W}

π(Ωσ,W )
.

The block dynamics has transition matrix P̃ := b−1
∑n
i=1 PVi .

Theorem 15.9. Consider the block dynamics for the Ising model, with blocks
{Vi}bi=1. Let M := max1≤i≤b |Vi|, and let M⋆ := maxv∈V |{i : v ∈ Vi}|. Assume

that
⋃b
i=1 Vi = V . Write γB for the spectral gap of the block dynamics and γ for

the spectral gap of the single-site dynamics. Then

γB ≤
[
M2 ·M⋆ · (4e2β∆)M+1

]
γ.

Proof. We will apply the Comparison Theorem (Theorem 13.23), which re-
quires that we define, for each block move from σ to τ , a sequence of single-site
moves starting from σ and ending at τ .

For σ and τ which differ only in the block W , define the path Γσ,τ as follows:
enumerate the vertices where σ and τ differ as v1, . . . , vr. Obtain the k-th state in
the path from the (k − 1)-st by flipping the spin at vk.

For these paths, we must bound the congestion ratio, defined in (13.20) and
denoted here by R.

Suppose that e = (σ0, τ0), where σ0 and τ0 agree everywhere except at vertex v.

Since P̃ (σ, τ) > 0 only for σ and τ which differ by a single block update, |Γσ,τ | ≤M
whenever P̃ (σ, τ) > 0. Therefore,

Re :=
1

Q(e)

∑

σ,τ
e∈Γσ,τ

π(σ)P̃ (σ, τ)|Γσ,τ | ≤M
∑

σ,τ
e∈Γσ,τ

1

b

∑

i : v∈Vi

π(σ)PVi (σ, τ)

π(σ0)P (σ0, τ0)
. (15.15)

Observe that if σ and τ differ at r vertices, say D = {v1, . . . , vr}, then

π(σ)

π(τ)
=

exp
(
β
∑

{u,w}∩D 6=∅
σ(u)σ(w)

)

exp
(
β
∑

{u,w}∩D 6=∅
τ(u)τ(w)

)

≤ e2β∆r. (15.16)

Write σ
Vi→ τ to indicate that τ can be obtained from σ by a Vi-block update.

Bounding PVi(σ, τ) above by 1{σ Vi→ τ} and P (σ0, τ0) below by 1/(2ne2β∆) yields

PVi(σ, τ)

P (σ0, τ0)
≤ 2ne2β∆1{σ Vi→ τ}. (15.17)

Using the bounds (15.16) and (15.17) in (15.15) shows that

Re ≤
(
M

b

)(
2ne2β∆

) (
e2β∆

)M∑

i

1{v ∈ Vi}
∑

σ,τ
e∈Γσ,τ

1{σ Vi→ τ}. (15.18)

Since configurations σ and τ differing in a Vi-block move and satisfying e ∈ Γσ,τ
both agree with σ0 outside Vi, there are most (2M )2 = 4M such pairs. Therefore,
by (15.18),

R := max
e
Re ≤ 2

(n
b

)
Me2β∆(M+1)M⋆4M .
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Figure 15.3. The ladder graph with n = 32. The set of vertices
enclosed in the dashed box is a block of length ℓ = 3.

Since there is at least one block for each site by the hypothesis that
⋃
Vi = V , we

have (n/b) ≤M . Finally, we achieve the bound B ≤M2 ·M⋆
(
4e2β∆

)M+1
. �

The ladder graph shown in Figure 15.3 is essentially a one-dimensional graph,
so in view of Theorem 15.4 it should not be surprising that at any temperature it
has a mixing time of the order n logn. The proof is a very nice illustration of the
technique of comparing the single-site dynamics to block dynamics.

Write Ln for the circular ladder graph having vertex set Zn × {0, 1} and
edge set

{ {(k, a), (j, a)} : j ≡ k − 1 mod n, a ∈ {0, 1} } ∪ { {(k, 0), (k, 1)} : k ∈ Zn }.
See Figure 15.3 for an example with n = 32. We will call an edge of the form
{(k, 0), (k, 1)} a rung .

Theorem 15.10. Let Ln denote the circular ladder graph defined above. There
exist c0(β) and c1(β), not depending on n, such that the Glauber dynamics for the
Ising model on Ln satisfies trel ≤ c0(β)n, whence tmix ≤ c1(β)n2.

Proof. Define the random variable Υk on the probability space ({−1, 1}V , π)
by Υk(σ) := (σ(k, 0), σ(k, 1)). That is, Υk(σ) is the pair of spins on the k-th rung
in configuration σ.

Define the j-th ℓ-block to be the vertex set

Vj := {(k, a) : j + 1 ≤ k ≤ j + ℓ, a ∈ {0, 1}}.
For j ≤ i < j + ℓ, the conditional distribution of Υi+1, given (Υj, . . . ,Υi) and

Υj+ℓ+1, depends only on Υi and Υj+ℓ+1. Therefore, given Υj and Υj+ℓ+1, the

sequence (Υi)
j+ℓ
i=j is a time-inhomogeneous Markov chain. If block Vj is selected

to be updated in the block dynamics, the update can be realized by running this
chain. We call this the sequential method of updating.

We now describe how to couple the block dynamics started from σ with the
block dynamics started from τ , in the case that σ and τ differ at only a single site,
say (j, a). Always select the same block to update in both chains. If a block is
selected which contains (j, a), then the two chains can be updated together, and
the difference at (j, a) is eliminated. The only difficulty occurs when (j, a) is a
neighbor of a vertex belonging to the selected block.

We treat the case where block Vj is selected; the case where the block is im-
mediately to the left of (j, a) is identical. We will use the sequential method of

updating on both chains. Let (Υi)
j+ℓ
i=j denote the chain used to update σ, and let
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(Υ̃i)
j+ℓ
i=j denote the chain used to update τ . We run Υ and Υ̃ independently until

they meet, and after the two chains meet, we perform identical transitions in the
two chains.

Since π(σ)/π(σ̃) ≤ e12β when σ and σ̃ differ on a rung, the probability that
the spins on a rung take any of the four possible ±1 pairs, given the spins outside
the rung, is at least [4e12β]−1. Thus, as the sequential update chains move across
the rungs, at each rung there is a chance of at least (1/4)e−24β, given the previous
rungs, that the two chains will have the same value. Therefore, the expected total
number of vertices where the two updates disagree is bounded by 8e24β .

Let ρ denote Hamming distance between configurations, so ρ(σ, τ) = 1. Let
(X1, Y1) be the pair of configurations obtained after one step of the coupling. Since
ℓ of the n blocks will contain (j, a) and two of the blocks have vertices neighboring
(j, a), we have

Eσ,τρ(X1, Y1) ≤ 1− ℓ

n
+

2

n
8e24β.

If we take ℓ = ℓ(β) = 16e24β + 1, then

Eσ,τρ(X1, Y1) ≤ 1− 1

n
≤ e−1/n (15.19)

for any σ and τ with ρ(σ, τ) = 1. By Theorem 14.6, for any two configurations σ
and τ , there exists a coupling (X1, Y1) of the block dynamics satisfying

Eσ,τρ(X1, Y1) ≤ ρ(σ, τ)e−1/n.

Theorem 13.1 implies that γB ≥ 1/n. By Theorem 15.9, we conclude that γ ≥
c0(β)/n for some c0(β) > 0. Applying Theorem 12.3 shows that tmix ≤ c1(β)n2. �

Remark 15.11. In fact, for the Ising model on the circular ladder graph,
tmix ≤ c(β)n log n, although different methods are needed to prove this. See
Martinelli (1999).

15.6. Lower Bound for Ising on Square*

Consider the Glauber dynamics for the Ising model in an n × n box: V =
{(j, k) : 0 ≤ j, k ≤ n− 1} and edges connect vertices at unit Euclidean distance.

In this section we prove

Theorem 15.12 (Schonmann (1987) and Thomas (1989)). The relaxation time
(1− λ⋆)−1 of the Glauber dynamics for the Ising model in an n× n square in two
dimensions is at least exp (ψ(β)n), where ψ(β) > 0 if β is large enough.

More precisely, let γℓ < 3ℓ be the number of self-avoiding lattice paths starting
from the origin in Z2 that have length ℓ, and let γ < 3 be the “connective constant”
for the planar square lattice, defined by γ := limℓ→∞ ℓ

√
γℓ. If β > (1/2) log(γ), then

ψ(β) > 0.

Much sharper and more general results are known; see the partial history in the
notes. We provide here a proof following closely the method used by Dana Randall
(2006) for the hardcore lattice gas.

The key idea in Randall (2006) is not to use the usual cut determined by the
magnetization (as in the proof of Theorem 15.3), but rather a topological obstruc-
tion. As noted by Fabio Martinelli (personal communication), this idea was already
present in Thomas (1989), where contours were directly used to define a cut and ob-
tain the right order lower bound for the relaxation time. Thus the present discussion
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Figure 15.4. A fault line with one defect. Positive spins are
indicated by shaded squares, while negative spins are indicated by
white squares. The fault line is drawn in bold.

is purely expository with no claim of originality. The argument in Thomas (1989)
works in all dimensions and hence is harder to read.

Remark 15.13. An upper bound on relaxation time of order exp(C(β)nd−1)
in all dimensions follows from the “path method” of Jerrum and Sinclair (1989) for
all β. The constant C(β) obtained that way is not optimal.

In proving Theorem 15.12, it will be convenient to attach the spins to the faces
(lattice squares) of the lattice rather than the nodes.

Definition 15.14. A fault line (with at most k defects) is a self-avoiding
lattice path from the left side to the right side or from the top to the bottom of
[0, n]2, where each edge of the path (with at most k exceptions) is adjacent to
two faces with different spins on them. Thus no edges in the fault line are on the
boundary of [0, n]2. See Figure 15.4 for an illustration.

Lemma 15.15. Denote by Fk the set of Ising configurations in [0, n]2 that have a
fault line with at most k defects. Then π(Fk) ≤

∑
ℓ≥n 2ℓγℓe

2β(2k−ℓ). In particular,

if k is fixed and β > (1/2) log(γ), then π(Fk) decays exponentially in n.

Proof. For a self-avoiding lattice path ϕ of length ℓ from the left side to the
right side (or from top to bottom) of [0, n]2, let Fϕ be the set of Ising configurations
in [0, n]2 that have ϕ as a fault line with at most k defects. Reflecting all the spins
on one side of the fault line (say, the side that contains the upper left corner) defines
a one-to-one mapping from Fϕ to its complement that magnifies probability by a

factor of e2β(ℓ−2k). This yields that π(Fϕ) ≤ e2β(2k−ℓ).
Summing this over all self-avoiding lattice paths ϕ of length ℓ from top to

bottom and from left to right of [0, n]2 and over all ℓ ≥ n completes the proof. �

Lemma 15.16.

(i) If in a configuration σ there is no all-plus crossing from the left side L of
[0, n]2 to the right side R and there is also no all-minus crossing, then there
is a fault line with no defects from the top to the bottom of [0, n]2.
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(ii) Similarly, if Γ+ is a path of lattice squares (all labeled plus in σ) from a square
q in [0, n]2 to the top side of [0, n]2 and Γ− is a path of lattice squares (all
labeled minus) from the same square q to the top of [0, n]2, then there is a
lattice path ξ from the boundary of q to the top of [0, n]2 such that every edge
in ξ is adjacent to two lattice squares with different labels in σ.

Proof.

(i) For the first statement, let A be the collection of lattice squares that can be
reached from L by a path of lattice squares of the same label in σ. Let A⋆

denote the set of squares that are separated from R by A. Then the boundary
of A⋆ consists of part of the boundary of [0, n]2 and a fault line.

(ii) Suppose q itself is labeled minus in σ and Γ+ terminates in a square q+ on
the top of [0, n]2 which is to the left of the square q− where Γ− terminates.
Let A+ be the collection of lattice squares that can be reached from Γ+ by a
path of lattice squares labeled plus in σ and denote by A⋆+ the set of squares
that are separated from the boundary of [0, n]2 by A+. Let ξ1 be a directed
lattice edge with q on its right and a square of Γ+ on its left. Continue ξ1
to a directed lattice path ξ leading to the boundary of [0, n]2, by inductively
choosing the next edge ξj to have a square (labeled plus) of A+ on its left and
a square (labeled minus) not in A⋆+ on its right. It is easy to check that such

a choice is always possible (until ξ reaches the boundary of [0, n]2]), the path
ξ cannot cycle and it must terminate between q+ and q− on the top side of
[0, n]2.

�

Proof of Theorem 15.12. Following Randall (2006), let S+ be the set of
configurations that have a top-to-bottom and a left-to-right crossing of pluses. Sim-
ilarly define S−. On the complement of S+ ∪ S− there is either no monochromatic
crossing left-to-right (whence there is a top-to-bottom fault line by Lemma 15.16)
or there is no monochromatic crossing top-to-bottom (whence there is a left-to-right
fault line). By Lemma 15.15, π(S+)→ 1/2 as n→∞.

Let ∂S+ denote the external vertex boundary of S+, that is, the set of configu-
rations outside S+ that are one flip away from S+. It suffices to show that π(∂S+)
decays exponentially in n for β > 1

2 log(γ). By Lemma 15.15, it is enough to verify
that every configuration σ ∈ ∂S+ has a fault line with at most 3 defects.

The case σ /∈ S− is handled by Lemma 15.16. Fix σ ∈ ∂S+ ∩ S− and let q be
a lattice square such that flipping σ(q) will transform σ to an element of S+. By
Lemma 15.16, there is a lattice path ξ from the boundary of q to the top of [0, n]2

such that every edge in ξ is adjacent to two lattice squares with different labels in
σ; by symmetry, there is also such a path ξ⋆ from the boundary of q to the bottom
of [0, n]2. By adding at most three edges of q, we can concatenate these paths to
obtain a fault line with at most three defects.

Lemma 15.15 completes the proof. �

Exercises

Exercise 15.1. Let (Gn) be a sequence of expander graphs with maximal
degree ∆. Find β(∆) such that for β > β(∆), the relaxation time for Glauber
dynamics for the Ising model grows exponentially in n.
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Exercise 15.2. Consider the Ising model on the b-ary tree of depth k, and let
f(σ) =

∑
v : |v|=k σ(v). Let θ = tanh(β). Show that

Varπ(f) ≍
k∑

j=0

bk+jθ2j ≍





bk if θ < 1/
√
b,

kbk ≍ n logn if θ = 1/
√
b,

(bθ)2k) ≍ n1+α if θ > 1/
√
b,

where α = log(bθ2)/ log(b) > 0. Use this to obtain lower bounds on trel in the three
regimes.

Notes

The upper and lower bounds obtained in Theorem 15.4 for the mixing time
for Glauber dynamics on the cycle are within a factor of two of each other. An
enticing open problem is to show that one of these two bounds is sharp. This chain
is an example where pre-cutoff is known, although cutoff has not been proven. (See
Chapter 18 for the definitions of pre-cutoff and cutoff.)

Kenyon, Mossel, and Peres (2001) showed that the relaxation time of the
Glauber dynamics for the Ising model on the b-ary tree has the following behav-
ior: if θ < 1/

√
b, then trel = O(n), while if θ > 1/

√
b, then trel ≥ c1n

1+α, where

α > 0 depends on β. The case θ > 1/
√
b can be proved by using the function

f(σ) =
∑

leaves σ(v) in the variational principle (Lemma 13.12); see Exercise 15.2.
See Berger, Kenyon, Mossel, and Peres (2005) and Martinelli, Sinclair, and Weitz
(2004) for extensions.

Theorem 15.3 does not say what happens when β = 1. Levin, Luczak, and
Peres (2007) showed that at β = 1, the mixing time is O(n3/2).

Levin, Luczak, and Peres (2007) also showed that if β > 1 and the dynam-
ics are restricted to the part of the state space where

∑
σ(v) > 0, then tmix =

O(n logn). In the case where β < 1, they show that the chain has a cutoff. These
results were further refined by Ding, Lubetzky, and Peres (2008a).

A partial history of Ising on the square lattice. For the ferromagnetic
Ising model with no external field and free boundary, Schonmann (1987) proved

Theorem 15.17. In dimension 2, let m⋆ denote the “spontaneous magnetiza-
tion”, i.e., the expected spin at the origin in the plus measure in the whole lattice.
Denote by p(n; a, b) the probability that the magnetization (average of spins) in an
n× n square is in an interval (a, b). If −m⋆ < a < b < m⋆, then p(n; a, b) decays
exponentially in n.

(The rate function was not obtained, only upper and lower bounds.)
Using the easy direction of the Cheeger inequality (Theorem 13.14), which is

an immediate consequence of the variational formula for eigenvalues, this yields
Theorem 15.12.

Chayes, Chayes and Schonmann (1987) then extended Theorem 15.17 to all

β > βc. (Recall that for the planar square lattice βc = log(1 +
√

2)/2.)
Theorem 15.12 was stated explicitly and proved in Thomas (1989) who ex-

tended it to all dimensions d ≥ 2. He did not use the magnetization to define a cut,
but instead his cut was defined by configurations where there is a contour of length
(or in higher dimensions d ≥ 3, surface area) larger than and−1 for a suitable small
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a > 0. Again the rate function was only obtained up to a constant factor and he
assumed β was large enough for a Peierls argument to work.

In the breakthrough book of Dobrushin, Kotecký and Shlosman (1992) the
correct rate function (involving surface tension) for the large deviations of magne-
tization in 2 dimensions was identified and established for large β.

This was extended by Ioffe (1995) to all β > βc. The consequences for mixing
time (a sharp lower bound) and a corresponding sharp upper bound were established
in Cesi, Guadagni, Martinelli, and Schonmann (1996).

In higher dimensions, a lower bound for mixing time of the right order (ex-
ponential in nd−1) for all β > βc(d, slab) follows from the magnetization large
deviation bounds of Pisztora (1996). That βc(d, slab) coincides with βc was proven
by Bodineau (2005).

The correct rate function has not yet been determined but a related result
under plus boundary conditions is in Cerf and Pisztora (2000).

For more precise results for the Ising model on the lattice and their applica-
tions to Glauber dynamics, see Dobrushin and Shlosman (1987), Stroock and Ze-
garliński (1992), Martinelli and Olivieri (1994), and Martinelli, Olivieri, and Schon-
mann (1994).

Further reading. An excellent source on dynamics for the Ising model is
Martinelli (1999). Simon (1993) contains more on the Ising model. Ising’s thesis
(published as Ising (1925)) concerned the one-dimensional model. For information
on the life of Ising, see Kobe (1997).





CHAPTER 16

From Shuffling Cards to Shuffling Genes

One reasonable restriction of the random transposition shuffle is to only al-
low interchanges of adjacent cards—see Figure 16.1. Restricting the moves in this
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Figure 16.1. An adjacent transposition swaps two neighboring
cards.

manner slows the shuffle down. It also breaks the symmetry of the random trans-
positions walk enough to require different methods of analysis.

In Section 16.1 we examine the mixing of the random adjacent transpositions
walk using several different methods: upper bounds via comparison (way off) and
coupling (quite sharp) and lower bounds via following a single card (off by a log
factor) and Wilson’s method (sharp).

A generalization of the random adjacent transpositions model, in which entire
segments of a permutation are reversed in place, can be interpreted as modeling
large-scale genome changes. Varying the maximum allowed length of the reversed
segments impacts the mixing time significantly. We study these reversal chains in
Section 16.2.

16.1. Random Adjacent Transpositions

As usual we consider a lazy version of the chain to avoid periodicity problems.
The resulting increment distribution assigns probability 1/[2(n− 1)] to each of the
transpositions (1 2), . . . , (n− 1n) and probability 1/2 to id.

16.1.1. Upper bound via comparison. We can bound the convergence of
the random adjacent transposition shuffle by comparing it with the random trans-
position shuffle. While our analysis considers only the spectral gap and thus gives
a poor upper bound on the mixing time, we illustrate the method because it can
be used for many types of shuffle chains.

Note: in the course of this proof, we will introduce several constants C1, C2, . . . .
Since we are deriving such (asymptotically) poor bounds, we will not make any
effort to optimize their values. Each one does not depend on n.

217
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First, we bound the relaxation time of the random transpositions shuffle by its
mixing time. By Theorem 12.4 and Corollary 8.10,

trel = O(n logn). (16.1)

(We are already off by a factor of logn, but we will lose so much more along the
way that it scarcely matters.)

Next we compare. In order to apply Corollary 13.27, we must express an arbi-
trary transposition (a b), where 1 ≤ a < b ≤ n, in terms of adjacent transpositions.
Note that

(a b) = (a a+1) . . . (b− 1 b− 2)(b− 1 b)(b− 1 b− 2) . . . (a+1 a+ 2)(a a+ 1). (16.2)

This path has length at most 2n− 3 and uses any single adjacent transposition at
most twice.

We must estimate the congestion ratio

B = max
s∈S

1

µ(s)

∑

a∈S̃
µ̃(a)N(s, a) |a| ≤ max

s∈S
4(n− 1)

n2

∑

a∈S̃
N(s, a) |a|. (16.3)

Here S is the support of the random adjacent transposition walk, µ is its increment
distribution, S̃ and µ̃ are the corresponding features of the random transpositions
walk, N(s, a) is the number of times s is used in the expansion of a, and |a| is the
total length of the expansion of a. Since an adjacent transposition s = (i i+ 1) lies
on the generator path of (a b) exactly when a ≤ i < i + 1 ≤ b, no generator path
uses any adjacent transposition more than twice, and the length of the generator
paths is bounded by (2n − 3), the summation on the right-hand-side of (16.3) is
bounded by 2i(n− i)(2n− 3) ≤ n3. Hence

B ≤ 4n2,

and Corollary 13.27 tells us that the relaxation time of the random adjacent trans-
positions chain is at most C2n

3 logn.
Finally, we use Theorem 12.3 to bound the mixing time by the relaxation time.

Here the stationary distribution is uniform, π(σ) = 1/n! for all σ ∈ Sn. The mixing
time of the random adjacent transpositions chain thus satisfies

tmix ≤ log(4n!)C2n
3 logn ≤ C3n

4 log2 n.

16.1.2. Upper bound via coupling. The coupling we present here is de-
scribed in Aldous (1983b) and also discussed in Wilson (2004a).

In order to couple two copies (σt) and (σ′
t) (the “left” and “right” decks) of

the lazy version or the random adjacent transpositions chain, proceed as follows.
First, choose a pair (i, i+ 1) of adjacent locations uniformly from the possibilities.
Flip a coin to decide whether to perform the transposition on the left deck. Now,
examine the cards σt(i), σ

′
t(i), σt(i+ 1) and σ′

t(i+ 1) in locations i and i+ 1 in the
two decks.

• If σt(i) = σ′
t(i+1) or if σt(i+1) = σ′

t(i), then do the opposite to the right
deck: transpose if the left deck stayed still, and vice versa.
• Otherwise, perform the same action on the right deck as on the left deck.

We consider first τa, the time required for a particular card a to reach the same
position in the two decks. Let Xt be the (unsigned) distance between the positions
of a in the two decks at time t. Our coupling ensures that |Xt+1 − Xt| ≤ 1 and
that if t ≥ τa, then Xt = 0.
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Let M be the transition matrix of a random walk on the path with vertices
{0, . . . , n−1} that moves up or down, each with probability 1/(n−1), at all interior
vertices; from n− 1 it moves down with probability 1/(n− 1), and, under all other
circumstances, it stays where it is. In particular, it absorbs at state 0.

Note that for 1 ≤ i ≤ n− 1,

P{Xt+1 = i− 1 | Xt = i, σt, σ
′
t} = M(i, i− 1).

However, since one or both of the cards might be at the top or bottom of a deck
and thus block the distance from increasing, we can only say

P{Xt+1 = i+ 1 | Xt = i, σt, σ
′
t} ≤M(i, i+ 1).

Even though the sequence (Xt) is not a Markov chain, the above inequalities
imply that we can couple it to a random walk (Yt) with transition matrix M in
such a way that Y0 = X0 and Xt ≤ Yt for all t ≥ 0. Under this coupling τa is
bounded by the time τY0 it takes (Yt) to absorb at 0.

The chain (Yt) is best viewed as a delayed version of a simple random walk on
the path {0, . . . , n−1}, with a hold probability of 1/2 at n−1 and absorption at 0.
At interior nodes, with probability 1− 2/(n− 1), the chain (Yt) does nothing, and
with probability 2/(n−1), it takes a step in that walk. Exercises 2.3 and 2.2 imply
that E(τY0 ) is bounded by (n− 1)n2/2, regardless of initial state. Hence

E(τa) <
(n− 1)n2

2
.

By Markov’s inequality,

P{τa > n3} < 1/2

for sufficiently large n. If we run 2 log2 n blocks, each consisting of n3 shuffles, we
can see that

P{τa > 2n3 log2 n} <
1

n2
.

Now let’s look at all the cards. After 2n3 log2 n steps, the probability of the decks
having not coupled is bounded by the sum of the probabilities of the individual
cards having not coupled, so

P{τcouple > 2n3 log2 n} <
1

n
, (16.4)

regardless of the initial states of the decks. Theorem 5.2 immediately implies that
tmix(ε) < 2n3 log2 n for sufficiently large n.

16.1.3. Lower bound via following a single card. Consider the set of
permutations

A = {σ : σ(1) ≥ ⌊n/2⌋}.
Under the uniform distribution we have U(A) = (n−(⌊n/2⌋−1))/n ≥ 1/2, because
card 1 is equally likely to be in any of the n possible positions. However, since card
1 can change its location by at most one place in a single shuffle and since card 1
does not get to move very often, it is plausible that a large number of shuffles must
be applied to a sorted deck before the event A has reasonably large probability.
Below we formalize this argument.

How does card 1 move under the action of the random adjacent transposition
shuffle? Let us first make the general observation that when (σt) is a random
walk on Sn with increment distribution Q and k ∈ [n], Lemma 2.5 implies that
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the sequence (σt(k)) is itself a Markov chain, which we will call the single-card

chain . Its transition matrix P ′ does not depend on k.
Returning to the case of (lazy) random adjacent transpositions: each interior

card (neither top nor bottom of the deck) moves with probability 1/(n − 1), and
at each of the moves it is equally likely to jump one position to the right or one
position to the left. If the card is at an endpoint, it is selected with probability
1/2(n− 1) and always moves in the one permitted direction. If (S̃t) is a random
walk on Z which remains in place with probability 1− 1/(n− 1) and increments by
±1 with equal probability when it moves, then

P{σt(1)− 1 ≥ z} ≥ P{|S̃t| ≥ z}.
Thus,

P{σt(1) ≥ n/2 + 1} ≤ 4ES̃2
t

n2
≤ 4t

n2(n− 1)
.

Therefore,

∥∥P t(id, ·)− U
∥∥

TV
≥ U(A)− P t(id, A) ≥ 1

2
− 4t

n2(n− 1)
.

Thus if t ≤ n2(n− 1)/16, then d(t) ≥ 1/4. We conclude that tmix ≥ n2(n− 1)/16.

16.1.4. Lower bound via Wilson’s method. In order to apply Wilson’s
method (Theorem 13.5) to the random adjacent transpositions shuffle, we must
specify an eigenfunction and initial state.

First, some generalities on the relationship between the eigenvalues and eigen-
functions of a shuffle chain and its single-card chain. Lemma 12.8 tells us that when
Φ : [n] → R is an eigenfunction of the single-card chain with eigenvalue λ, then
Φ♭ : Sn → R defined by Φ♭(σ) = Φ(σ(k)) is an eigenfunction of the shuffle chain
with eigenvalue λ.

For the random adjacent transpositions chain, the single-card chain is an ex-
tremely lazy version of a random walk on the path whose eigenfunctions and eigen-
values were determined in Section 12.3.2. Let M be the transition matrix of simple
random walk on the n-path with holding probability 1/2 at the endpoints. Then
we have

P ′ =
1

n− 1
M +

n− 2

n− 1
I.

It follows from (12.18) that

ϕ(k) = cos

(
(2k − 1)π

2n

)

is an eigenfunction of P ′ with eigenvalue

λ =
1

n− 1
cos
(π
n

)
+
n− 2

n− 1
= 1− π2

2n3
+O

(
1

n3

)
.

Hence, for any k ∈ [n] the function σ 7→ ϕ(σ(k)) is an eigenfunction of the random
transposition walk with eigenvalue λ. Since these eigenfunctions all lie in the same
eigenspace, so will any linear combination of them. We set

Φ(σ) =
∑

k∈[n]

ϕ(k)ϕ(σ(k)). (16.5)
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Remark 16.1. See Exercise 8.9 for some motivation of our choice of Φ. By
making sure that Φ(id) is as large as possible, we ensure that when Φ(σt) is small,
then σt is in some sense likely to be far away from the identity.

Now consider the effect of a single adjacent transposition (k− 1 k) on Φ. Only
two terms in (16.5) change, and we compute

|Φ(σ(k − 1 k))− Φ(σ)| = |ϕ(k)ϕ(σ(k − 1)) + ϕ(k − 1)ϕ(σ(k))

− ϕ(k − 1)ϕ(σ(k − 1))− ϕ(k)ϕ(σ(k))|
= |(ϕ(k)− ϕ(k − 1))(ϕ(σ(k)) − ϕ(σ(k − 1)))|.

Since dϕ(x)/dx is bounded in absolute value by π/n and ϕ(x) itself is bounded in
absolute value by 1, we may conclude that

|Φ(σ(k − 1 k))− Φ(σ)| ≤ π

n
(2) =

2π

n
. (16.6)

Combining (16.6) with Theorem 13.5 and the fact that Φ(id) = n/2 (see Exer-
cise 8.10) tells us that when the random adjacent transposition shuffle is started
with a sorted deck, after

t =
n3 logn

π2
+ Cεn

3 (16.7)

steps the variation distance from stationarity is still at least ε. (Here Cε can be
taken to be log

(
1−ε
64ε

)
.)

16.2. Shuffling Genes

Although it is amusing to view permutations as arrangements of a deck of cards,
they occur in many other contexts. For example, there are (rare) mutation events
involving large-scale rearrangements of segments of DNA. Biologists can use the
relative order of homologous genes to estimate the evolutionary distance between
two organisms. Durrett (2003) has studied the mixing behavior of the random
walk on Sn corresponding to one of these large-scale rearrangement mechanisms,
reversals.

Fix n > 0. For 1 ≤ i ≤ j ≤ n, define the reversal ρi,j ∈ Sn to be the
permutation that reverses the order of all elements in places i through j. (The
reversal ρi,i is simply the identity.)

Since not all possible reversals are equally likely in the chromosomal context,
we would like to be able to limit what reversals are allowed as steps in our random
walks. One (simplistic) restrictive assumption is to require that the endpoints of
the reversal are at distance at most L from each other.

Applying ρ4,7:

9 4 2 5 1 8 6 3 7 ⇒ 9 4 2 6 8 1 5 3 7

Applying ρ9,3:

9 4 2 5 1 8 6 3 7 ⇒ 4 9 7 5 1 8 6 3 2

Figure 16.2. Applying reversals to permutations of length 9.
Note that the second reversal wraps around the ends of the per-
mutation.



222 16. FROM SHUFFLING CARDS TO SHUFFLING GENES

1

3

84

9

5

6

7 10

2

Figure 16.3. The permutation 1, 3, 8, 4, 9, 5, 6, 7, 10, 2 has three
conserved edges.

To avoid complications at the ends of segments, we will treat our sequences as
circular arrangements. Reversals will be allowed to span the “join” in the circle,
and all positions will be treated mod n. See Figure 16.2. With these assumptions,
we are now ready to define the L-reversal walk.

Let L = L(n) be a function of n satisfying 1 ≤ L(n) ≤ n. The L-reversal

chain on Sn is the random walk on Sn whose increment distribution is uniform on
the set of all reversals of (circular) segments of length at most L. (Note that this
includes the n segments of length 1; reversing a segment of length 1 results in the
identity permutation.)

Equivalently, to perform a step in the L-reversal chain: choose i ∈ [n] uniformly,
and then choose k ∈ [0, L − 1] uniformly. Perform the reversal ρi,i+k (which will
wrap around the ends of the sequence when i + k > n). Note that the total
probability assigned to id is n/nL = 1/L.

Since each reversal is its own inverse, Proposition 2.14 ensures that the L-
reversal chain is reversible.

In Section 16.2.1 we give a lower bound on the mixing time of the L-reversal
chain that is sharp in some cases. In Section 16.2.2, we will present an upper bound
for their mixing.

16.2.1. Lower bound. Although a single reversal can move many elements,
it can break at most two adjacencies. We use the number of preserved adjacencies
to lower bound the mixing time.

Proposition 16.2. Consider the family of L-reversal chains, where L = L(n)
satisfies 1 ≤ L(n) < n/2. Fix 0 < ε < 1 and let t = t(n) = (1− ε)n2 logn. Then

lim
n→∞

d(t) = 1.

Proof. Superimpose the edges of a cycle onto our permutation, and say an
edge is conserved if its endpoints are consecutive—in either order (see Figure 16.3).

Under the uniform distribution on Sn, each cycle edge has probability 2/n of
being conserved. Hence the expected number of conserved edges is 2.

Now consider running the L-reversal chain. Each reversal breaks the cycle at
2 edges and reverses the segment in between them. Call an edge undisturbed if
it has not been cut by any reversal. There are two reasons that a disturbed edge
might end up conserved: a reversal of a segment of length 1 is simply the identity
permutation and does not change adjacencies, and vertices cut apart by one reversal
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might be moved back together by a later one. However, after t reversals, we may
be sure that the number of conserved edges is at least as large as the number of
undisturbed edges.

Start running the L-reversal chain from the identity permutation, and let U be
the number of undisturbed edges at time t = t(n). We can write U = U1 + · · ·+Un,
where Uk is the indicator of the edge (k, k + 1) being undisturbed. Under the
L-reversal model, each edge has probability 2/n of being disturbed in each step, so

EU = n

(
1− 2

n

)t
∼ nε.

We can also use indicators to estimate the variance of U . At each step of the
chain, there are nL reversals that can be chosen. Each edge is disturbed by exactly
2L legal reversals, since it can be either the right or the left endpoint of reversals
of L different lengths. If the edges are more than L steps apart, no legal reversal
breaks both. If they are closer than that, exactly one reversal breaks both. Hence

P{Ui = 1 and Uj = 1} =





(
nL−(4L−1)

nL

)t
if 1 ≤ j − i ≤ L or 1 ≤ i− j ≤ L,

(
nL−4L
nL

)t
otherwise

(in this computation, the subscripts must be interpreted mod n).
Write p = P(Uk = 1) = (1− 2/n)t ∼ nε−1. We can now estimate

VarU =
n∑

i=1

VarUi +
∑

i6=j
Cov(Ui, Uj)

= np(1− p) + 2nL

((
1− 4− 1/L

n

)t
− p2

)

+ n(n− 2L)

((
1− 4

n

)t
− p2

)
.

Note that the sum of covariances has been split into those terms for which i and j
are at a distance at most L apart and those for which they are further apart. Let’s
examine the resulting pieces individually. For the first one, factoring out p2 and
taking a power series expansion gives

p2 · 2nL
((

1 +
1

nL
+O

(
1

n2

))t
− 1

)
= O

(
p2nLt

nL

)
= o (np) ,

so these terms (which are positive) are negligible compared to EU .
Doing the same to the second piece yields

n(n− k)p2

((
1− 4

n2 − 4n+ 4

)t
− 1

)
= O

(
n2p2 · t

n2

)
= o (np) ,

so that these terms (which are negative) are also negligible compared to EU . Since
p = o(1), we can conclude that

VarU ∼ EU. (16.8)

Let A ⊆ Sn be the set of permutations with at least EU/2 conserved edges.
Under the uniform distribution on Sn, the event A has probability less than or
equal to 4/EU , by Markov’s ineqality.
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a c1 c2 bcdcd-1

L-1 L-1 L-1 r

...

Figure 16.4. To express (a b) in terms of short transpositions,
first carry the marker at position a over to position b; then perform
all but the last transposition in reverse order to take the marker
at position b over to position a.

By Chebyshev’s inequality and (16.8), for sufficiently large n we have

P t(id, Ac) ≤ P{|U −EU | > EU/2} ≤ VarU

(EU/2)2
<

5

EU
.

By the definition (4.1) of total variation distance,

∥∥P t(id, ·)− U
∥∥

TV
≥
(

1− 5

EU

)
− 4

EU
= 1− 9

EU
.

Since EU ∼ nε, we are done. �

16.2.2. Upper bound. We now give an upper bound on the mixing time of
the L-reversal chain via the comparison method, using the same inefficient methods
as we did for random adjacent transpositions in Section 16.1.1. To avoid problems
with negative values, we consider a lazy version of the L-reversal chain: at each step,
with probability 1/2, perform a uniformly chosen L-reversal, and with probability
1/2, do nothing.

Again, our examplar chain for comparison will be the random transposition
chain.

To bound the relaxation time of the L-reversal chain, we must expand each
transposition (a b) ∈ Sn as a product of L-reversals. To show the effect of choice of
paths, we try three different strategies and compare the resulting congestion ratios.

We can normalize our presentation of the transposition (a b) so that the distance
around the cycle from a to b in the positive direction is at most n/2. Call the
transposition (a b) short when b = a + k for some k < L (interpreted mod n if
necessary); call a transposition long if it is not short. When b = a + 1, we have
(a b) = ρa,b. When a+ 2 ≤ b ≤ a+ k, we have (a b) = ρa+1,b−1 ρa,b. We use these
paths of length 1 or 2 for all short transpositions. We will express our other paths
below in terms of short transpositions; to complete the expansion, we replace each
short transposition with two L-reversals.

Paths for long transpositions, first method. Let (a b) be a long transposition.
We build (a b) by taking the marker at position a on maximal length leaps for as
long as we can, then finishing with a correctly-sized jump to get to position b; then
take the marker that was at position b over to position a with maximal length leaps.
More precisely, write

b = a+ d(L − 1) + r,

with 0 ≤ r < L− 1, and set ci = a+ i(L− 1) for 1 ≤ i ≤ d. Then

(a b) = [(a c1)(c1 c2) . . . (cd−1 cd)] (b cd) [(cd cd−1) . . . (c2 c1)(c1 a)] .

See Figure 16.4.
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Consider the congestion ratio

B = max
s∈S

1

µ(s)

∑

s̃∈S̃
µ̃(s̃)N(s, s̃) |s̃| ≤ max

ρi,j∈S
4L

n

∑

(a b)∈S̃
O
(n
L

)

of Corollary 13.27. Here S and µ come from the L-reversal walk, while S̃ and µ̃ come
from the random transpositions walk. The initial estimate goes through because
the length of all generator paths is at most O(n/L), while any single L-reversal can
be used at most twice in a single generator path.

We must still bound the number of different paths in which a particular reversal
might appear. This will clearly be maximized for the reversals of length L−1, which
are used in both the “leaps” of length L− 1 and the final positioning jumps. Given
a reversal ρ = ρi,i+L−1, there are at most (n/2)/(L− 1) possible positions for the
left endpoint a of a long transposition whose path includes ρ. For each possible left
endpoint, there are fewer than n/2 possible positions for the right endpoint b (we
could bound this more sharply, but it would only save us a factor of 2 to do so).
The reversal ρ is also used for short transpositions, but the number of those is only
O(1). Hence for this collection of paths we have

B = O

(
n2

L

)
.

Paths for long transpositions, second method. We now use a similar strategy for
moving markers long distances, but try to balance the usage of short transpositions
of all available sizes. Write

b = a+ c

(
L(L− 1)

2

)
+ r,

with 0 ≤ r < L(L− 1)/2.
To move the marker at position a to position b, do the following c times:

apply the transpositions that move the marker by L − 1 positions, then by L − 2
positions, and so on, down to moving 1 position. To cover the last r steps, apply
transpositions of lengths L − 1, L − 2, . . . until the next in sequence hits exactly
or would overshoot; if necessary, apply one more transposition to complete moving
the marker to position b. Reverse all but the last transposition to move the marker
from position b to position a.

Estimating the congestion ratio works very similarly to the first method. The
main difference arises in estimating the number of transpositions (a b) whose paths
use a particular reversal ρ = ρi,j . Now the left endpoint a can fall at one of at most

2
(

n/2
L(L−1)/2

)
positions (the factor of 2 comes from the possibility that ρ is the final

jump), since there are at most this number of possible positions for a transposition
of the same length as ρ in one of our paths. The right endpoint b again has at most
n/2 possible values (again, an overestimate that only affects the lead constant). We
get

B = O

(
n2

L2

)
. (16.9)

That is, we have asymptotically reduced the congestion ratio by a factor of L by
changing the paths to use reversals of all sizes evenly.

Paths for long transpositions, third method: randomized. We can use the
method described in Remark 13.28 of choosing random, rather than canonical,
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paths to match the bound of (16.9). We again describe the paths in terms of short
transpositions; to complete the expansion, replace each short transposition with
two short reversals.

Fix a transposition (b c). Take b on jumps towards c of size uniformly chosen
between L/2 + 1 and L − 1 until it is within distance L − 1 of c; then make the
last jump the required size. To take c back, use the same sequence of jumps, but
in reverse.

We must estimate the congestion ratio of (13.28):

B = max
s∈S

1

µ(s)

∑

a∈S̃
µ̃(a)

∑

Γ∈Pa

νa(Γ)N(s,Γ) |Γ|.

Since all but the last step of our paths are reversals of length at least L/2, for all Γ
of positive measure we have n/L+O(1) < |Γ| < 2n/L+O(1). Any single reversal
can appear at most twice in a single path. Hence

B ≤ max
s∈S

2nL

n2

(
2n

L
+O(1)

)∑

a∈S̃

∑

Γ∈Pa

νa(Γ).

For any a ∈ S̃, the number of pairs (b, c) for which a can be used is certainly at
most n2. Once we fix b and c, the probability of hitting exactly the span of a while
choosing the random path is at most 2(2/L)2. (Why? The reversal a is used by at
most 2 short transpositions. The probability of choosing the correct left endpoint
for one of those transpositions is at most (2/L) (to make this clearer, consider
conditioning on all possible partial paths long enough that the left endpoint could
possibly be hit). Once the correct left endpoint is hit, the probability of hitting the
correct right endpoint is bounded by 2/L.) Hence for this construction of random
paths, we have B = O(n2/L2).

Remark 16.3. Notice that when L = 2, all three methods reduce to the paths
used in Section 16.1.1 for random adjacent transpositions.

To finish bounding the mixing time, we follow the method of our low-quality
estimate (16.1) of O(n log n) for the relaxation time of the random transposition
chain. By Corollary 13.27 and the laziness of the L-reversal chain, we have

trel = O

(
n3 logn

L2

)

for the L-reversal chain. Finally, as in Section 16.1.1, we use Theorem 12.3 to
bound the mixing time by the relaxation time, obtaining

tmix ≤ log(4n!)trel = O

(
n4 log2 n

L2

)
.

Exercise

Exercise 16.1. Modify the argument of Proposition 16.2 to cover the case
n/2 < L < n− 1. (Hint: there are now pairs of edges both of which can be broken
by two different allowed reversals.)
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Notes

Random adjacent transpositions are among the examples analyzed by Diaconis
and Saloff-Coste (1993b), who introduced the comparison method for groups. While
our presentation uses the same paths and gets the same inequality between the un-
derlying Dirichlet forms, our final bound on the mixing time is much weaker because
we apply this inequality only to the spectral gap. Diaconis and Shahshahani (1981)
derived very precise information on the spectrum and convergence behavior of the
random transpositions walk, and Diaconis and Saloff-Coste (1993b) exploited this
data to obtain an O(n3 logn) upper bound on the mixing time of the random
adjacent transpositions chain.

Diaconis and Saloff-Coste (1993b) proved the first lower bound we present for
this chain and conjectured that the upper bound is of the correct asymptotic order.
That it is was shown in Wilson (2004a).

1�3 2�3 1

1

2

3

Figure 16.5. When L = nα and 0 < α < 1, the mixing of the
L-reversal chain takes at least Ω(n1∨(3−3α) logn) steps. This plot
shows 1 ∨ (3− 3α).

Durrett (2003) introduced the L-reversal chain and proved both bounds we
present. For the upper bound, our presentation has again significantly weakened
the result by considering only the spectral gap; Durrett proved an upper bound of

order O
(
n3 logn
L2

)
.

Durrett (2003) also used Wilson’s method to give another lower bound, of order

Ω
(
n3 logn
L3

)
, when L ∼ nα for some 0 < α < 1. Taking the maximum of the two

lower bounds for L in this range tells us that the mixing of the L-reversal chain
takes at least Ω(n1∨(3−3α) logn) steps—see Figure 16.5. Durrett conjectured that
this lower bound is, in fact, sharp.

Cancrini, Caputo, and Martinelli (2006) showed that the relaxation time of the
L-reversal chain is Θ(n1∨(3−3α)). Morris (2008) has proved an upper bound on the

mixing time that is only O(log2 n) larger than Durrett’s conjecture.
Kandel, Matias, Unger, and Winkler (1996) discuss shuffles relevant to a dif-

ferent problem in genomic sequence analysis.





CHAPTER 17

Martingales and Evolving Sets

17.1. Definition and Examples

Let X1, X2, . . . be i.i.d. Z-valued random variables with E(Xt) = 0 for all t,

and let St =
∑t
r=1Xr. The sequence (St) is a random walk on Z with increments

(Xt). Given any sequence (x1, x2, . . . , xt) of possible values for the increments with

P{X1 = x1, . . . , Xt = xt} > 0, let st =
∑t

r=1 xr, and observe that the conditional
expected position of the walk at time t+ 1 equals st, the position at time t:

E(St+1 | X1 = x1, . . . , Xt = xt) = E(St +Xt+1 | X1 = x1, . . . , Xt = xt)

= E(Xt+1 | X1 = x1, . . . , Xt = xt) +

t∑

r=1

xr

= st. (17.1)

The equality (17.1) is the key property shared by martingales, defined below.
Often a random sequence is defined using a source of randomness richer than

the sequence itself. For example, a step of the lazy random walk on the hypercube
can be generated by selecting a coordinate at random and updating the chosen
coordinate with a random unbiased bit. The first time all coordinates have been
selected at least once is a strong stationary time for the chain (see Example 6.3
and Section 6.5.2). However, this time is a function of the coordinates selected for
updates and is not a function of the chain. This example illustrates the usefulness
of defining a Markov chain on a probability space containing “extra randomness”.

In what follows, the sequence of random variables (Yt)
∞
t=0 serves as a basic

source of randomness. For example, (Yt) could be an i.i.d. sequence of {−1,+1}-
valued random variables, or a Markov chain. We suppose that each Yt is a discrete
random variable, but make no other assumption about the distribution of this
sequence.

A random sequence (Xt) is adapted to another random sequence (Yt) if, for
each t, there exists a function gt such that Xt = gt(Y0, . . . , Yt).

A martingale with respect to (Yt) is a sequence of random variables (Mt)
satisfying the following conditions:

(i) E|Mt| <∞ for all t.
(ii) (Mt) is adapted to (Yt).
(iii) Suppose that Mt = gt(Y0, . . . , Yt). For all possible values y0, . . . , yt satisfying

P{Y0 = y0, . . . , Yt = yt} > 0, if mt = gt(y0, . . . , yt), then

E(Mt+1 | Y0 = y0, . . . , Yt = yt) = mt.

Condition (ii) says that Mt is determined by (Y0, . . . , Yt), and condition (iii) says
that given the data (Y0, . . . , Yt), the best predictor of Mt+1 is Mt.

229
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Example 17.1. The unbiased random walk (St) defined above is a martingale

with respect to the increment sequence (Xt). Since St =
∑t

r=1Xr, clearly condition
(ii) holds. Condition (iii) is verified in (17.1).

A supermartingale (Mt) satisfies conditions (i) and (ii) in the definition of a
martingale, but instead of (iii), it obeys the inequality

E(Mt+1 | Y0, . . . , Yt) ≤Mt. (17.2)

A submartingale (Mt) satisfies (i) and (ii) and

E(Mt+1 | Y0, . . . , Yt) ≥Mt. (17.3)

For a random walk (St), the increments ∆St := St+1−St form an independent
sequence with E(∆St) = 0. For a general martingale, the increments also have
mean zero, and although not necessarily independent, they are uncorrelated: for
s < t,

E(∆Mt∆Ms) = E (E (∆Mt∆Ms | Y0, Y1, . . . , Yt))

= E (∆MsE (∆Mt | Y0, Y1, . . . , Yt))

= 0.

(17.4)

We have used here the fact, immediate from condition (iii) in the definition of a
martingale, that

E(∆Mt | Y0, . . . , Yt) = 0, (17.5)

which is stronger than the statement that E(∆Mt) = 0.
A useful property of martingales is that

E(Mt) = E(M0) for all t ≥ 0.

Example 17.2. Let (Yt) be a random walk on Z which moves up one unit with
probability p and down one unit with probability q := 1 − p, where p 6= 1/2. In
other words, given Y0, . . . , Yt,

∆Yt := Yt+1 − Yt =

{
1 with probability p,

−1 with probability q.

If Mt := (q/p)Yt , then (Mt) is a martingale with respect to (Yt). Condition (ii) is
clearly satisfied, and

E
(
(q/p)Yt+1

∣∣∣Y0 = y0, . . . , Yt = yt

)
= E

(
(q/p)yt(q/p)Yt+1−Yt

∣∣∣Y0 = y0, . . . , Yt = yt

)

= (q/p)yt
[
p(q/p) + q(q/p)−1

]

= (q/p)yt .

Example 17.3. Let (Yt) be as in the previous example, let µ := p − q, and
define Mt := Yt − µt. The sequence (Mt) is a martingale:

E(Mt+1 −Mt | Y0, . . . , Yt) = p− q − µ = 0.
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17.2. Optional Stopping Theorem

A sequence of random variables (At) is called previsible with respect to an-
other sequence of random variables (Yt) if, for each t, there is a function ft such
that At = ft(Y0, . . . , Yt−1). The random variable At is determined by what has
occurred strictly before time t.

Suppose that (Mt) is a martingale with respect to (Yt) and (At) is a previsible
sequence with respect to (Yt). Imagine that a gambler can bet on a sequence of
games so that he receives Mt − Mt−1 for each unit bet on the t-th game. The
interpretation of the martingale property E(Mt −Mt−1 | Y0, . . . , Yt−1) = 0 is that
the games are fair. Let At be the amount bet on the t-th game; the fact that the
player sizes his bet based only on the outcomes of previous games forces (At) to be
a previsible sequence. At time t, the gambler’s fortune is

Ft = M0 +

t∑

s=1

As(Ms −Ms−1). (17.6)

Is it possible, by a suitably clever choice of bets (A1, A2, . . .), to generate an ad-
vantage for the player? By this, we mean is it possible that E(Ft) > 0 for some t?
Many gamblers believe so. Unfortunately, the next theorem proves that they are
wrong.

Define for a martingale (Mt) and a previsible sequence (At), the sequence of
random variables

Nt := M0 +
t∑

s=1

As(Ms −Ms−1), (17.7)

which is adapted to (Yt).

Theorem 17.4. For any previsible sequence (At) such that each At is bounded,
if (Mt) is a martingale (submartingale) with respect to (Yt), then the sequence of
random variables (Nt) defined in (17.7) is also a martingale (submartingale) with
respect to (Yt).

Proof. We consider the case where (Mt) is a martingale; the proof when (Mt)
is a submartingale is similar.

For each t there is a constant Kt such that |At| ≤ Kt, whence

E|Nt| ≤ E|M0|+
t∑

s=1

KtE|Ms −Ms−1| <∞,

and therefore the expectation of Nt is defined. Observe that

E (Nt+1 −Nt | Y0, . . . , Yt) = E(At+1(Mt+1 −Mt) | Y0, . . . , Yt).

Since At+1 is a function of Y0, . . . , Yt, the right-hand side equals

At+1E(Mt+1 −Mt | Y0, . . . , Yt) = 0.

�

Recall from Section 6.2.1 that a stopping time for (Yt) is a random variable τ
with values in {0, 1, . . .} ∪ {∞} such that the event {τ = t} is determined by the
random variables Y0, . . . , Yt. In other words, the sequence of indicator variables
(1{τ=t})t is adapted to the sequence (Yt).
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For a martingale, E(Mt) = E(M0) for all fixed times t. Does this remain
valid if we replace t by a random time? In particular, for stopping times τ , is
E(Mτ ) = E(M0)? Under some additional conditions, the answer is “yes”. However,
as the next example shows, this does not hold in general.

Example 17.5. Let (Xs) be the i.i.d. sequence with

P{X1 = +1} = P{X1 = −1} =
1

2
.

As discussed in Example 17.1, the sequence of partial sums (St) is a martingale.
We suppose that S0 = 0. The first-passage time to 1, defined as τ := min{t ≥ 0 :
St = 1}, is a stopping time, and clearly E(Mτ ) = 1 6= E(M0).

Note that if τ is a stopping time, then so is τ ∧ t for any fixed t.

Theorem 17.6 (Optional Stopping Theorem, Version 1). If (Mt) is a mar-
tingale and τ is a stopping time, then (Mt∧τ ) is a martingale. Consequently,
E(Mt∧τ) = E(M0).

Corollary 17.7 (Optional Stopping Theorem, Version 2). Let (Mt) be a mar-
tingale and τ a stopping time. If P{τ < ∞} = 1 and |Mt∧τ | ≤ K for all t and
some constant K, then E(Mτ ) = E(M0).

Proof of Theorem 17.6. If At := 1{τ≥t}, then

At = 1− 1{τ≤t−1} = 1−
t−1∑

s=1

1{τ=s}.

Since τ is a stopping time, the above equality shows that At can be written as a
function of Y0, . . . , Yt−1, whence (At) is previsible. By Theorem 17.4,

t∑

s=1

As(Ms −Ms−1) = Mt∧τ −M0

defines a martingale. The reader should verify that adding M0 does not destroy
the martingale properties, whence (Mt∧τ ) is also a martingale. �

Proof of Corollary 17.7. Since (Mτ∧t) is a martingale, E (Mτ∧t) = E (M0).
Thus

lim
t→∞

E(Mτ∧t) = E(M0).

By the Bounded Convergence Theorem, the limit and expectation can be ex-
changed. Since P{τ < ∞} = 1, we have limt→∞Mτ∧t = Mτ with probability
one, and consequently E(Mτ ) = E(M0). �

Corollary 17.8 (Optional Stopping Theorem, Version 3). Let (Mt) be a mar-
tingale with bounded increments, that is |Mt+1 −Mt| ≤ B for all t, where B is a
non-random constant. Suppose that τ is a stopping time with E(τ) < ∞. Then
E(Mτ ) = E(M0).

Proof. Note that

|Mτ∧t| =
∣∣∣∣∣
τ∧t∑

s=1

(Ms −Ms−1) +M0

∣∣∣∣∣ ≤
τ∧t∑

s=1

|Ms −Ms−1|+ |M0| ≤ Bτ + |M0|.
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Since E(Bτ + |M0|) < ∞, by the Dominated Convergence Theorem and Theorem
17.6,

E(M0) = lim
t→∞

E(Mτ∧t) = E(Mτ ).

�

Example 17.9. Consider the same set-up as in Example 17.5, so that the
partial sums (St) associated with i.i.d. unbiased ±1’s is a martingale. Consider the
previsible sequence defined by

At =

{
2t if Y1 = Y2 = · · · = Yt−1 = −1,

0 if Ys = 1 for some s < t.

Viewing this sequence as wagers on i.i.d. fair games which pay ±1 per unit bet,
provided the player has not won a single previous game prior to the t-th game, he
bets 2t. At his first win, he stops playing. If τ is the time of the first win, τ is a
stopping time. The amount won at time t is

Mt :=

t∑

s=1

As(Ms −Ms−1) =





0 if t = 0,

−2(t−1) if 1 ≤ t < τ,

1 if t ≥ τ.
Since we are assured that Ys = 1 for some s eventually, τ < ∞ and Mτ = 1.
Thus E(Mτ ) = 1. But E(M0) = 0, and (Mt) is a martingale! By doubling our
bets every time we lose, we have assured ourselves of a profit. This at first glance
seems to contradict Corollary 17.7. But notice that the condition |Mτ∧t| < K is
not satisfied, so we cannot apply the corollary.

17.3. Applications

17.3.1. Gambler’s ruin. Let (St) be a random walk on Z having ±1 incre-
ments. Define for each integer r the stopping time τr = inf{t ≥ 0 : St = r}, the
first time the walk visits r. For k = 0, 1, . . . , N , let

α(k) := Pk{τ0 < τN}
be the probability that the walker started from k visits 0 before hitting N . If a
gambler is betting a unit amount on a sequence of games and starts with k units,
α(k) is the probability that he goes bankrupt before he attains a fortune of N units.

We suppose that P{St+1 − St = +1 | S0, . . . , St} = p, where p 6= 1/2. We use
martingales to derive the gambler’s ruin formula, which was found previously in
Example 9.9 by calculating effective resistance.

In Example 17.2 it was shown that Mt := (q/p)St defines a martingale, where
q = 1−p. Let τ := τ0∧τN be the first time the walk hits either 0 or N ; the random
variable τ is a stopping time. Since Mτ∧t is bounded, we can apply Corollary 17.7
to get

Ek

(
(q/p)Sτ

)
= (q/p)k.

We can break up the expectation above to get

Ek

(
(q/p)Sτ

)
= α(k) + (q/p)N (1− α(k)).

Combining these two equations and solving for α(k) yields

α(k) =
(q/p)k − (q/p)N

1− (q/p)N
.
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In the case where p = q = 1/2, we can apply the same argument to the
martingale (St) to show that α(k) = 1− k/N .

Now consider again the unbiased random walk. The expected time-to-ruin for-
mula (2.3), which was derived in Section 2.1 by solving a system of linear equations,
can also be found using a martingale argument.

Notice that

E(S2
t+1 − S2

t | S0, . . . , St) = (St + 1)2
1

2
+ (St − 1)2

1

2
− S2

t

= 1,

whence Mt := S2
t − t defines a martingale. By the Optional Stopping Theorem

(Theorem 17.6),

k2 = Ek(M0) = Ek(Mτ∧t) = Ek(S
2
τ∧t)−Ek(τ ∧ t). (17.8)

Since (τ ∧ t) ↑ τ as t→∞, the Monotone Convergence Theorem implies that

lim
t→∞

Ek(τ ∧ t) = Ek(τ). (17.9)

Observe that S2
τ∧t is bounded by N2, so together (17.8) and (17.9) show that

Ek(τ) = lim
t→∞

Ek

(
S2
τ∧t
)
− k2 ≤ N2 <∞. (17.10)

In particular, this establishes that Pk{τ < ∞} = 1. Therefore, with probability
one, limt→∞ S2

τ∧t = S2
τ , so by the Dominated Convergence Theorem,

lim
t→∞

Ek

(
S2
τ∧t
)

= Ek

(
S2
τ

)
. (17.11)

Taking limits in (17.8) and using (17.9) and (17.11) shows that

Ekτ = EkS
2
τ − k2.

Breaking up the expectation Ek(S
2
τ ) according to whether τ = τ0 or τ = τN yields

[1− α(k)]N2 − k2 = Ek(τ).

Hence,

Ek(τ) = k(N − k).

17.3.2. Waiting times for patterns in coin tossing. Let X1, X2, . . . be a
sequence of independent fair coin tosses (so that P{Xt = H} = P{Xt = T } = 1/2),
and define

τHTH := inf{t ≥ 3 : Xt−2Xt−1Xt = HTH}.
We wish to determine E(τHTH ).

Gamblers are allowed to place bets on each individual coin toss. On each bet,
the gambler is allowed to pay an entrance fee of k units and is payed in return 2k
units if the outcome is H or 0 units if the outcome is T . The amount k may be
negative, which corresponds to a bet on the outcome T .

We suppose that at each unit of time until the word HTH first appears, a new
gambler enters and employs the following strategy: on his first bet, he wagers 1
unit on the outcome H . If he loses, he stops. If he wins and the sequence HTH still
has not yet appeared, he wagers his payoff of 2 on T . Again, if he loses, he stops
playing. As before, if he wins and the sequence HTH has yet to occur, he takes
his payoff (now 4) and wagers on H . This is the last bet placed by this particular
player.
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We describe the situation a bit more precisely: let (Bt) be an i.i.d. sequence of

{0, 1}-valued random variables, with E(Bt) = 1/2, and define Mt =
∑t

s=1(2Bs−1).
Clearly (Mt) is a martingale. Let τ101 = inf{t ≥ 3 : Bt−2Bt−1Bt = 101}, and
define

Ast =





1 t = s,

−2 t = s+ 1, τ > t,

4 t = s+ 2, τ > t,

0 otherwise.

The random variable Ns
t =

∑t
r=1A

s
r(Mr −Mr−1) is the profit of the s-th gambler

at the t-th game. By Theorem 17.4, the sequence (Ns
t )

∞
t=0 is a martingale, and by

the Optional Stopping Theorem (Corollary 17.8),

E(Ns
τ ) = 0.

Suppose that τ101 = t. The gambler who started at t is paid 2 units, the gambler
who started at time t − 2 is paid 8 units, and every gambler has paid an initial 1
entry fee. Since the game is fair, the expected winnings must total 0, so

10−E(τ101) = 0.

That is, E(τ101) = 10.
It is (sometimes) surprising to the non-expert that the expected time to see

HHH is longer than HTH : modifying the argument above, so that each player
bets on the sequence HHH , doubling his bet until he loses, the gambler entering
at time τ − 2 is paid 8 units, the gambler entering at time τ − 1 is paid 4 units,
and the gambler entering at τHHH is paid 2. Again, the total outlay is τHHH , and
fairness requires that E(τHHH ) = 8 + 4 + 2 = 14.

17.4. Evolving Sets

For a reversible Markov chain, combining Theorem 12.3 with Theorem 13.14
shows that tmix(ε) ≤ − log(επmin)trel. Here we give a direct proof for this bound,
not requiring reversibility, using evolving sets, a process introduced by Morris and
Peres (2005) and defined below.

Theorem 17.10. Let P be a lazy irreducible transition matrix, so that P (x, x) ≥
1/2 for all x ∈ Ω, with stationary distribution π. The mixing time tmix(ε) satisfies

tmix(ε) ≤
2

Φ2
⋆

log

(
1

επmin

)
.

Remark 17.11. Suppose the chain is reversible. Combining the inequality
(17.30), derived in the proof of Theorem 17.10, with the inequality (12.13) yields

|λ|t
2
≤ d(t) ≤ 1

πmin

(
1− Φ2

⋆

2

)t
,

where λ is an eigenvalue of P not equal to 1. Taking the t-th root on the left and
right sides above and letting t→∞ shows that

|λ| ≤ 1− Φ2
⋆

2
,

which yields the lower bound in Theorem 13.14 (but restricted to lazy chains).
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The proof proceeds by a series of lemmas. Recall that Q(x, y) = π(x)P (x, y)
and

Q(A,B) =
∑

x∈A
y∈B

Q(x, y).

Observe that Q(Ω, y) = π(y).
The evolving-set process is a Markov chain on subsets of Ω. Suppose the

current state is S ⊂ Ω. Let U be a random variable which is uniform on [0, 1]. The
next state of the chain is the set

S̃ =

{
y ∈ Ω :

Q(S, y)

π(y)
≥ U

}
. (17.12)

This defines a Markov chain with state space 2Ω, the collection of all subsets of Ω.
Note that the chain is not irreducible, because once it hits either the state ∅ or Ω,
it is absorbed. From (17.12), it follows that

P{y ∈ St+1 | St} =
Q(St, y)

π(y)
. (17.13)

Lemma 17.12. If (St)
∞
t=0 is the evolving-set process associated to the transition

matrix P , then

P t(x, y) =
π(y)

π(x)
P{x} {y ∈ St} . (17.14)

Proof. We prove this by induction on t. When t = 0, both sides of (17.14)
equal 1{y=x}; hence the equality is valid.

Assume that (17.14) holds for t = s. By conditioning on the position of the
chain after s steps and then using the induction hypothesis, we have that

P s+1(x, y) =
∑

z∈Ω

P s(x, z)P (z, y) =
∑

z∈Ω

π(z)

π(x)
P{x}{z ∈ Ss}P (z, y). (17.15)

By switching summation and expectation,

∑

z∈Ω

π(z)P{x}{z ∈ Ss}P (z, y) =
∑

z∈Ω

E{x}
(
1{z∈Ss}π(z)P (z, y)

)

= E{x}

(∑

z∈Ss

Q(z, y)

)
= E{x} (Q(Ss, y)) . (17.16)

From (17.13), (17.15), and (17.16),

P s+1(x, y) =
1

π(x)
E{x} (π(y)P{y ∈ Ss+1 | Ss}) =

π(y)

π(x)
P{x}{y ∈ Ss+1}.

Thus, (17.14) is proved for t = s+ 1, and by induction, it must hold for all t. �

Lemma 17.13. The sequence {π(St)} is a martingale.

Proof. We have

E(π(St+1) | St) = E

(∑

z∈Ω

1{z∈St+1}π(z)
∣∣∣St
)
.
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By (17.13), the right-hand side above equals

∑

z∈Ω

P{z ∈ St+1 | St}π(z) =
∑

z∈Ω

Q(St, z) = Q(St,Ω) = π(St),

which concludes the proof. �

Recall that Φ(S) = Q(S, Sc)/π(S) is the bottleneck ratio of the set S, defined
in Section 7.2.

Lemma 17.14. Let Rt = π(St+1)/π(St), and let (Ut) be a sequence of indepen-
dent random variables, each uniform on [0, 1], such that St+1 is generated from St
using Ut+1. Recall that Φ(S) = Q(S, Sc)/π(S). Then

E(Rt | Ut+1 ≤ 1/2, St = S) = 1 + 2Φ(S), (17.17)

E(Rt | Ut+1 > 1/2, St = S) = 1− 2Φ(S). (17.18)

Proof. Since the chain is lazy, Q(y, y) ≥ π(y)/2, so if y 6∈ S,

Q(S, y)

π(y)
=
∑

x∈S

Q(x, y)

π(y)
≤
∑

x∈Ω
x 6=y

Q(x, y)

π(y)

=
∑

x∈Ω

Q(x, y)

π(y)
− Q(y, y)

π(y)
= 1− Q(y, y)

π(y)
≤ 1

2
. (17.19)

Given Ut+1 ≤ 1/2, the distribution of Ut+1 is uniform on [0, 1/2]. By (17.19), for
y 6∈ S,

P

{
Q(S, y)

π(y)
≥ Ut+1

∣∣∣∣Ut+1 ≤ 1/2, St = S

}
= 2

Q(S, y)

π(y)
.

Since y ∈ St+1 if and only if Ut+1 ≤ Q(St, y)/π(y),

P{y ∈ St+1 | Ut+1 ≤ 1/2, St = S} =
2Q(S, y)

π(y)
for y 6∈ S. (17.20)

Also, since Q(S, y)/π(y) ≥ Q(y, y)/π(y) ≥ 1/2 for y ∈ S, it follows that

P{y ∈ St+1 | Ut+1 ≤ 1/2, St = S} = 1 for y ∈ S. (17.21)

We have

E (π(St+1) | Ut+1 ≤ 1/2, St = S) = E


∑

y∈Ω

1{y∈St+1}π(y)
∣∣∣Ut+1 ≤ 1/2, St = S




=
∑

y∈S
π(y)P{y ∈ St+1 | Ut+1 ≤ 1/2, St = S}

+
∑

y 6∈S
π(y)P{y ∈ St+1 | Ut+1 ≤ 1/2, St = S}.

By the above, (17.20), and (17.21),

E (π(St+1) | Ut+1 ≤ 1/2, St = S) = π(S) + 2Q(S, Sc). (17.22)
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By Lemma 17.13 and (17.22),

π(S) = E(π(St+1) | St = S)

=
1

2
E(π(St+1) | Ut+1 ≤ 1/2, St = S) +

1

2
E(π(St+1) | Ut+1 > 1/2, St = S)

=
π(S)

2
+Q(S, Sc) +

1

2
E(π(St+1) | Ut+1 > 1/2, St = S).

Rearranging shows that

E(π(St+1) | Ut+1 > 1/2, St = S) = π(S)− 2Q(S, Sc). (17.23)

Dividing both sides of (17.22) and (17.23) by π(S) yields (17.17) and (17.18),
respectively. �

Lemma 17.15. For α ≥ 0,
√

1 + 2α+
√

1− 2α

2
≤
√

1− α2 ≤ 1− α2

2
.

This is seen by squaring each side of both inequalities.

Lemma 17.16. Let (St) be the evolving-set process. If

S♯t =

{
St if π(St) ≤ 1/2,

Sct otherwise,
(17.24)

then

E

(√
π(S♯t+1)/π(S♯t )

∣∣∣∣St
)
≤ 1− Φ2

⋆

2
. (17.25)

Proof. First, letting Rt := π(St+1)/π(St), applying Jensen’s inequality shows
that

E
(√

Rt | St = S
)

=
E
(√
Rt
∣∣Ut+1 ≤ 1/2, St = S

)
+ E

(√
Rt
∣∣Ut+1 > 1/2, St = S

)

2

≤
√

E (Rt | Ut+1 ≤ 1/2, St = S) +
√

E (Rt | Ut+1 > 1/2, St = S)

2
.

Applying Lemma 17.14 and Lemma 17.15 shows that, for π(S) ≤ 1/2,

E
(√

Rt
∣∣St = S

)
≤
√

1 + 2Φ(S) +
√

1− 2Φ(S)

2
≤ 1− Φ(S)2

2
≤ 1− Φ2

⋆

2
. (17.26)

Now assume that π(St) ≤ 1/2. Then
√
π(S♯t+1)/π(S♯t ) =

√
π(S♯t+1)/π(St) ≤

√
π(St+1)/π(St),

and (17.25) follows from (17.26). If π(St) > 1/2, then replace St by Sct in the
previous argument. (If (St) is an evolving-set process started from S, then (Sct ) is
also an evolving-set process started from Sc.) �

Proof of Theorem 17.10. From Lemma 17.16,

E

(√
π(S♯t+1)

)
≤ E

(√
π(S♯t )

)(
1− Φ2

⋆

2

)
.

Iterating,

ES

(√
π(S♯t )

)
≤
(

1− Φ2
⋆

2

)t√
π(S).
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Since
√
πmin PS{S♯t 6= ∅} ≤ ES

(√
π(S♯t )

)
, we have

PS{S♯t 6= ∅} ≤
√
π(S)

πmin

(
1− Φ2

⋆

2

)t
. (17.27)

Since {S♯t 6= ∅} ⊃ {S♯t+1 6= ∅}, by (17.27),

PS{S♯t 6= ∅ for all t ≥ 0} = PS

( ∞⋂

t=1

{S♯t 6= ∅}
)

= lim
t→∞

PS{S♯t 6= ∅} = 0.

That is, (S♯t ) is eventually absorbed in the state ∅. Let

τ = min{t ≥ 0 : S♯t = ∅}.
We have Sτ ∈ {∅,Ω} and π(Sτ ) = 1{Sτ =Ω}. Note that by Lemma 17.13 and the
Optional Stopping Theorem (Corollary 17.7),

π(x) = E{x}(π(S0)) = E{x}(π(Sτ )) = P{x}{Sτ = Ω}. (17.28)

By (17.28) and Lemma 17.12,

|P t(x, y)− π(y)| = π(y)

π(x)

∣∣P{x}{y ∈ St} − π(x)
∣∣

=
π(y)

π(x)

∣∣P{x}{y ∈ St} −P{x}{Sτ = Ω}
∣∣ . (17.29)

Using the identity

P{x}{y ∈ St} = P{x}{y ∈ St, τ > t}+ P{x}{y ∈ St, τ ≤ t}
= P{x}{y ∈ St, τ > t}+ P{x}{Sτ = Ω, τ ≤ t}

in (17.29) shows that

|P t(x, y)− π(y)| = π(y)

π(x)

∣∣P{x}{y ∈ St, τ > t} −P{x}{Sτ = Ω, τ > t}
∣∣

≤ π(y)

π(x)
P{x}{τ > t}.

Combining with (17.27),

d(t) ≤ s(t) ≤ max
x,y

|P t(x, y)− π(y)|
π(y)

≤ 1

πmin

(
1− Φ2

⋆

2

)t
. (17.30)

It follows that if t ≥ 2
Φ2

⋆
log
(

1
επmin

)
, then d(t) ≤ ε. �

17.5. A General Bound on Return Probabilities

The goal in this section is to prove the following:

Theorem 17.17. Let P be the transition matrix for a lazy random walk on a
graph of maximal degree ∆. Then

|P t(x, x) − π(x)| ≤
√

2∆5/2

√
t

. (17.31)

Remark 17.18. The dependence on ∆ in (17.31) is not the best possible. It

can be shown that an upper bound of c1∆/
√
t holds.
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We will need the following result about martingales, which is itself of indepen-
dent interest:

Proposition 17.19. Let Mt be a non-negative martingale with respect to (Yt),
and define

Th := min{t ≥ 0 : Mt = 0 or Mt ≥ h}.
Assume that

(i) Var(Mt+1 | Y0, . . . , Yt) ≥ σ2, and
(ii) MTh

≤ Dh.
Let T := T1. If M0 is a constant, then

P{T > t} ≤ 2M0

σ

√
D

t
. (17.32)

Proof. We have that {T ≥ t} ⊆ {Th ≥ t} ∪ {MTh
≥ h}, whence

P{T ≥ t} ≤ P{Th ≥ t}+ P{MTh
≥ h}. (17.33)

We first bound P{MTh
≥ h}. Since (Mt∧Th

) is bounded, by the Optional Stopping
Theorem,

M0 ≥ EMTh
≥ hP{MTh

≥ h},
whence

P{MTh
≥ h} ≤ M0

h
. (17.34)

We now bound P{Th > t}. Let Gt := M2
t − hMt − σ2t. The sequence (Gt) is

a submartingale. Note that for t ≤ Th,
M2
t − hMt = (Mt − h)Mt ≤ (D − 1)hMt;

therefore,

E(M2
t∧Th

− hMt∧Th
) ≤ (D − 1)hM0.

Since (Gt∧Th
) is a submartingale,

−hM0 ≤ G0 ≤ EGt∧Th
= E(M2

t∧Th
− hMt∧Th

)− σ2E(t ∧ Th)
≤ (D − 1)hM0 − σ2E(t ∧ Th).

We conclude that E(t∧Th) ≤ DhM0

σ2 . Letting t→∞, by the Monotone Convergence

Theorem, ETh ≤ DhM0

σ2 . By Markov’s inequality,

P{Th ≥ t} ≤
DhM0

σ2t
.

Combining the above bound with with (17.33) and (17.34) shows that

P{T > t} ≤ M0

h
+
DhM0

σ2t
.

We take h =
√
tσ2/D to optimize the above bound. This proves the inequality

(17.32). �

Many variants of the above proposition are useful in applications. We state one
here.

Proposition 17.20. Let (Zt)t≥0 be a non-negative supermartingale, adapted
to the sequence (Yt), and let τ be a stopping time for the sequence (Yt). Define the
random vector Y t := (Y0, . . . , Yt). Suppose that
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(i) Z0 = k,
(ii) E(Zt+1 − Zt | Y t) ≤ B,
(iii) there exists a constant σ2 > 0 such that Var(Zt+1 | Y0, Y1, . . . , Yt) > σ2 on the

event {τ > t}.
If u > 4B2/(3σ2), then

Pk{τ > u} ≤ 4k

σ
√
u
.

The proof follows the same outline as the proof of Proposition 17.19 and is left
to the reader in Exercise 17.3

We now prove the principal result of this section.

Proof of Theorem 17.17. Let (St) be the evolving-set process associated
to the Markov chain with transition matrix P . Define

τ := min{t ≥ 0 : St ∈ {∅,Ω}}.
Observe that, since π(St) is a martingale,

π(x) = E{x}π(S0) = E{x}π(Sτ ) = E{x}π(Sτ )1{Sτ=Ω} = P{x}{x ∈ Sτ}.
By Lemma 17.12, P t(x, x) = P{x}{x ∈ St}. Therefore,

|P t(x, x) − π(x)| = |P{x}{x ∈ St} −P{x}{x ∈ Sτ}| ≤ P{x}{τ > t}.
Since conditioning always reduces variance,

VarS(π(S1)) ≥ VarS
(
E(π(S1) | 1{U1≤1/2})

)
.

Note that (see Lemma 17.14)

ES(π(S1) | 1{U1≤1/2}) =

{
π(S) + 2Q(S, Sc) with probability 1/2,

π(S)− 2Q(S, Sc) with probability 1/2.

Therefore, provided S 6∈ {∅,Ω},

VarS
(
E(π(S1) | 1{U1≤1/2})

)
= 4Q(S, Sc)2 ≥ 1

n2∆2
.

The last inequality follows since π(x) = deg(x)/(2E), where E is the number of
edges in the graph, and if S 6∈ {∅,Ω}, then there exists x, y such that x ∈ S, y 6∈ S
and P (x, y) > 0, whence

Q(S, Sc) ≥ π(x)P (x, y) ≥ deg(x)

2E

1

2 deg(x)
≥ 1

4E
≥ 1

2n∆
.

Note that π(St+1) ≤ (∆ + 1)π(St). Therefore, we can apply Proposition 17.19
with D = ∆ + 1 and M0 ≤ ∆/n to obtain the inequality (17.31). �

17.6. Harmonic Functions and the Doob h-Transform

Recall that a function h : Ω→ R is harmonic for P if Ph = h. The connection
between harmonic functions, Markov chains, and martingales is that if (Xt) is
a Markov chain with transition matrix P and h is a P -harmonic function, then
Mt = h(Xt) defines a martingale with respect to (Xt):

E (Mt+1 | X0, X1, . . . , Xt) = E (Mt+1 | Xt)

=
∑

y∈Ω

P (Xt, y)h(y) = Ph(Xt) = h(Xt) = Mt.
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17.6.1. Conditioned Markov chains and the Doob transform. Let P
be a Markov chain such that the set B is absorbing: P (x, x) = 1 for x ∈ B. We
allow B = ∅. Let h be a positive harmonic function on Ω \B, and define

P̌ (x, y) :=
P (x, y)h(y)

h(x)
.

Note that for x 6∈ B,

∑

y∈Ω

P̌ (x, y) =
1

h(x)

∑

y∈Ω

h(y)P (x, y) =
Ph(x)

h(x)
= 1.

If x ∈ B, then P̌ (x, x) = 1. Therefore, P̌ is a transition matrix, called the Doob

h-transform of P .
Let P be a transition matrix, and assume that the states a and b are absorbing.

Let h(x) := Px{τb < τa}, and assume that h(x) > 0 for x 6= a. Since h(x) =
Ex1{Xτa∧τb

=b}, Proposition 9.1 shows that h is harmonic on Ω \ {a, b}, whence we

can define the Doob h-transform P̌ of P . Observe that for x 6= a,

P̌ (x, y) =
P (x, y)Py{τb < τa}

Px{τb < τa}

=
Px{X1 = y, τb < τa}

Px{τb < τa}
= Px{X1 = y | τb < τa},

so the chain with matrix P̌ is the original chain conditioned to hit b before a.

Example 17.21 (Conditioning the evolving-set process). Given a transition
matrix P on Ω, consider the corresponding evolving-set process (St). Let τ :=
min{t : St ∈ {∅,Ω}}. Since {π(St)} is a martingale, the Optional Stopping
Theorem implies that

π(A) = EAπ(Sτ ) = PA{Sτ = Ω}.

If K is the transition matrix of (St), then the Doob transform of (St) condi-
tioned to be absorbed in Ω has transition matrix

Ǩ(A,B) =
π(B)

π(A)
K(A,B). (17.35)

Example 17.22 (Simple random walk on {0, 1, . . . , n}). Consider the simple
random walk on {0, 1, . . . , n} with loops on the endpoints:

P (0, 0) = P (0, 1) =
1

2
and P (n, n) = P (n, n− 1) =

1

2
.

Consider the process conditioned to absorb at n before 0. Since Pk{τn < τ0} = k/n,
we have

P̌ (x, y) =
y

x
P (x, y) for 0 < x < n.

Note that transition probabilities from 0 and n are irrelevant.
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17.7. Strong Stationary Times from Evolving Sets

The goal of this section is to construct a strong stationary time by coupling a
Markov chain with the conditioned evolving-set process of Example 17.21.

This construction is due to Diaconis and Fill (1990) and preceded the definition
of evolving sets, and thus our notation differs.

The idea is to start with X0 = x and S0 = {x} and run the Markov chain (Xt)
and the evolving-set process (St) together, at each stage conditioning on Xt ∈ St.

Let P be an irreducible transition matrix, and let K be the transition matrix
for the associated evolving-set process. The matrix Ǩ denotes the evolving-set
process conditioned to be absorbed in Ω. (See Example 17.21.)

For y ∈ Ω, define the transition matrix on 2Ω by

Jy(A,B) := PA{S1 = B | y ∈ S1}1{y∈B}.

From (17.13) it follows that Jy(A,B) = K(A,B)π(y)1{y∈B}/Q(A, y). Define the

transition matrix P ⋆ on Ω× 2Ω by

P ⋆((x,A), (y,B)) := P (x, y)Jy(A,B)

=
P (x, y)K(A,B)π(y)1{y∈B}

Q(A, y)
.

Let (Xt, St) be a Markov chain with transition matrix P ⋆, and let P⋆ denote
the probability measure on the space where (Xt, St) is defined.

Observe that

∑

B : y∈B
P ⋆ ((x,A), (y,B)) = P (x, y)

π(y)

Q(A, y)

∑

B : y∈B
K(A,B). (17.36)

The sum
∑

B : y∈BK(A,B) is the probability that the evolving-set process started

from A contains y at the next step. By (17.13) this equals Q(A, y)/π(y), whence
(17.36) says that

∑

B : y∈B
P ⋆ ((x,A), (y,B)) = P (x, y). (17.37)

It follows that (Xt) is a Markov chain with transition matrix P .

Theorem 17.23 (Diaconis and Fill (1990)). We abbreviate P⋆
x,{x} by P⋆

x.

(i) If (Xt, St) is a Markov chain with transition matrix P ⋆ started from (x, {x}),
then the sequence (St) is a Markov chain started from {x} with transition
matrix Ǩ.

(ii) For w ∈ St,

P⋆
x{Xt = w | S0, . . . , St} =

π(w)

π(St)
.

Proof. We use induction on t. When t = 0, both (i) and (ii) are obvious.
For the induction step, we assume that for some t ≥ 0, the sequence (Sj)

t
j=0 is a

Markov chain with transition matrix Ǩ and that (ii) holds. Our goal is to verify
(i) and (ii) with t+ 1 in place of t.
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We write St for the vector (S0, . . . , St). For v ∈ B,

P⋆
x{Xt+1 = v, St+1 = B | St}

=
∑

w∈St

P⋆{Xt+1 = v, St+1 = B | Xt = w, St}P⋆
x{Xt = w | St}. (17.38)

Because the process (Xt, St) is a Markov chain with transition matrix P ⋆,

P⋆{Xt+1 = v, St+1 = B | Xt = w, St} = P ⋆ ((w, St), (v,B))

=
P (w, v)K(St, B)π(v)

Q(St, v)
. (17.39)

Substituting the identity (17.39) in the right-hand side of (17.38) and using the
induction hypothesis shows that, for v ∈ B,

P⋆
x{Xt+1 = v, St+1 = B | St} =

∑

w∈St

P (w, v)K(St, B)π(v)

Q(St, v)

π(w)

π(St)

=
π(v)

π(St)

∑
w∈St

π(w)P (w, v)

Q(St, v)
K(St, B)

=
π(v)

π(St)
K(St, B). (17.40)

Summing over v ∈ B gives

P⋆
x{St+1 = B | S0, . . . , St} =

π(B)K(St, B)

π(St)
(17.41)

= Ǩ(St, B), (17.42)

where (17.42) follows from (17.35). Therefore, (Sj)
t+1
j=0 is a Markov chain with

transition matrix Ǩ, which verifies (ii) with t+ 1 replacing t.
Taking the ratio of (17.40) and (17.41) shows that

P⋆
x{Xt+1 = v | St, St+1 = B} =

π(v)

π(B)
,

which completes the induction step. �

Corollary 17.24. For the coupled process (Xt, St), consider the absorption
time

τ⋆ := min{t ≥ 0 : St = Ω}.
Then τ⋆ is a strong stationary time for (Xt).

Proof. This follows from Theorem 17.23(ii): summing over all sequences of
sets (A1, . . . , At) with Ai 6= Ω for i < t and At = Ω,

P⋆
x{τ⋆ = t, Xt = w} =

∑
P⋆
x{(S1, . . . , St) = (A1, . . . , At), Xt = w}

=
∑

P⋆
x{(S1, . . . , St) = (A1, . . . , At)}π(w)

= P⋆{τ⋆ = t}π(w).

�
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Example 17.25. Suppose the base Markov chain is simple random walk on
{0, 1, . . . , n} with loops at 0 and n; the stationary distribution π is uniform. In this
case we have St = [0, Yt), where (Yt) satisfies

P{Yt+1 = Yt + 1 | Yt} = P{Yt ∈ St+1 | St = [0, Yt)}

=
1

2
= P{Yt+1 = Yt − 1 | Yt}.

Therefore, (Yt) is a simple random walk on {0, . . . , n+ 1} with absorption at end-
points.

We deduce that the absorption time τ⋆ when started from S0 = {0} is the
absorption time of the simple random walk (Yt) conditioned to hit n + 1 before 0
when started at Y0 = 1. Thus

E⋆τ⋆ =
(n+ 1)2 − 1

3
=
n2 + 2n

3
.

Since, by Corollary 17.24, τ⋆ is a strong stationary time for (Xt), we conclude that
tmix = O(n2).

Exercises

Exercise 17.1. Let (Xt) be the simple random walk on Z.

(a) Show that Mt = X3
t − 3tXt is a martingale.

(b) Let τ be the time when the walker first visits either 0 or n. Show that for
0 ≤ k ≤ n,

Ek(τ | Xτ = n) =
n2 − k2

3
.

Exercise 17.2. Let (Xt) be a supermartingale. Show that there is a martingale
(Mt) and a non-decreasing and previsible sequence (At) so that Xt = Mt−At. This
is called the Doob decomposition of (Xt).

Exercise 17.3. Prove Proposition 17.20.
Hint: Use the Doob decomposition Zt = Mt − At (see Exercise 17.2), and

modify the proof of Proposition 17.19 applied to Mt.

Exercise 17.4. For lazy birth-and-death chains, the evolving-set process started
with S0 = {0} always has St = [0, Yt) or St = ∅.

Notes

Doob was the first to call processes that satisfy the conditional expectation
property

E(Mt+1 |M1, . . . ,Mt) = Mt

“martingales”. The term was used previously by gamblers to describe certain bet-
ting schemes.

See Williams (1991) for a friendly introduction to martingales and Doob (1953)
for a detailed history.

For much more on the waiting time for patterns in coin tossing, see Li (1980).
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Evolving sets. Define Φ(r) for r ∈ [πmin, 1/2] by

Φ(r) := inf {Φ(S) : π(S) ≤ r} . (17.43)

For reversible, irreducible, and lazy chains, Lovász and Kannan (1999) proved
that

tmix ≤ 2000

∫ 3/4

πmin

du

uΦ2(u)
. (17.44)

Morris and Peres (2005) sharpened this, using evolving sets, to obtain the fol-
lowing:

Theorem (Morris and Peres (2005)). For lazy irreducible Markov chains, if

t ≥ 1 +

∫ 4/ε

4(π(x)∧π(y))

4du

uΦ2(u)
,

then ∣∣∣∣
P t(x, y) − π(y)

π(y)

∣∣∣∣ ≤ ε.

Note that this theorem does not require reversibility.



CHAPTER 18

The Cutoff Phenomenon

18.1. Definition

For the top-to-random shuffle on n cards, we obtained in Section 6.5.3 the
bound

dn(n logn+ αn) ≤ e−α, (18.1)

while in Section 7.4.2 we showed that

lim inf
n→∞

dn(n logn− αn) ≥ 1− 2e2−α. (18.2)

In particular, the upper bound in (18.1) tends to 0 as α→∞, and the lower bound
in (18.2) tends to 1 as α→∞. It follows that tmix(ε) = n logn [1 + h(n, ε)], where
limn→∞ h(n, ε) = 0 for all ε. This is a much more precise statement than the fact
that the mixing time is of the order n logn.

The previous example motivates the following definition. Suppose, for a se-
quence of Markov chains indexed by n = 1, 2, . . ., the mixing time for the n-th

chain is denoted by t
(n)
mix(ε). This sequence of chains has a cutoff if, for all ε > 0,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1. (18.3)

The bounds (18.1) and (18.2) for the top-to-random chain show that the total

variation distance dn for the n-card chain “falls off a cliff” at t
(n)
mix. More precisely,

when time is rescaled by n logn, as n → ∞ the function dn approaches a step
function:

lim
n→∞

dn(cn logn) =

{
1 if c < 1,

0 if c > 1.
(18.4)

In fact, this property characterizes when a sequence of chains has a cutoff.

Lemma 18.1. Let t
(n)
mix and dn be the mixing time and distance to stationarity,

respectively, for the n-th chain in a sequence of Markov chains. The sequence has
a cutoff if and only if

lim
n→∞

dn(ct
(n)
mix) =

{
1 if c < 1,

0 if c > 1.

The proof is left to the reader as Exercise 18.1.
Returning again to the example of the top-to-random shuffle on n cards, the

bounds (18.1) and (18.2) show that in an interval of length αn centered at n logn,
the total variation distance decreased from near 1 to near 0. The next definition
formalizes this property.

247
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tmix
n t

1

dnHtL

Figure 18.1. For a chain with a cutoff, the graph of dn(t) against

t, when viewed on the time-scale of t
(n)
mix, approaches a step function

as n→∞.

A sequence of Markov chains has a cutoff with a window of size {wn} if

wn = o
(
t
(n)
mix

)
and

lim
α→−∞

lim inf
n→∞

dn
(
t
(n)
mix + αwn

)
= 1,

lim
α→∞

lim sup
n→∞

dn
(
t
(n)
mix + αwn

)
= 0.

We say a family of chains has a pre-cutoff if it satisfies the weaker condition

sup
0<ε<1/2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞.

Theorem 15.4 proved that the Glauber dynamics for the Ising model on the
n-cycle has a pre-cutoff; it is an open problem to show that in fact this family of
chains has a cutoff.

18.2. Examples of Cutoff

18.2.1. Biased random walk on a line segment. Let p ∈ (1/2, 1) and
q = 1 − p, so β := (p − q)/2 = p − 1/2 > 0. Consider the lazy nearest-neighbor
random walk with bias β on the interval Ω = {0, 1, . . . , n}, which is the Markov
chain with transition probabilities

P (k, k + 1) =





p
2 if k 6∈ {0, n},
1
2 if k = 0,

0 if k = n,

P (k, k) =
1

2
,

P (k, k − 1) =





q
2 if k 6∈ {0, n},
0 if k = 0,
1
2 if k = n.

That is, when at an interior vertex, the walk remains in its current position with
probability 1/2, moves to the right with probability p/2, and moves to the left with
probability q/2. When at an end-vertex, the walk remains in place with probability
1/2 and moves to the adjacent interior vertex with probability 1/2.
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Theorem 18.2. The lazy random walk with bias β = p−1/2 on {0, 1, 2, . . . , n}
has a cutoff at β−1n with a window of order

√
n.

Proof. We write tn(α) := β−1n+ α
√
n.

Upper bound, Step 1. We first prove that if τn := min{t ≥ 0 : Xt = n}, then

lim sup
n→∞

P0{τn > tn(α)} ≤ Φ(−c(β)α), (18.5)

where c(β) depends on β only and Φ is the standard normal distribution function.
Let (St) be a lazy β-biased nearest-neighbor random walk on all of Z, so EkSt =

k + βt. We couple (Xt) to (St) until time τn := min{t ≥ 0 : Xt = n}, as follows:
let X0 = S0, and set

Xt+1 =

{
1 if Xt = 0 and St+1 − St = −1,

Xt + (St+1 − St) otherwise.
(18.6)

This coupling satisfies Xt ≥ St for all t ≤ τn.
We have E0Stn(α) = tn(α)β = n+ αβ

√
n, and

P0{Stn(α) < n} = P0

{
Stn(α) −EStn(α)√

tn(α)v
<
−αβ√n√
tn(α)v

}
,

where v = 1/2 − β2. By the Central Limit Theorem, the right-hand side above
converges as n→∞ to Φ(−c(β)α). Thus

lim sup
n→∞

P0{Stn(α) < n} = Φ(−c(β)α). (18.7)

Since Xt ≥ St for t ≤ τn,

P0{τn > tn(α)} ≤ P0

{
max

0≤s≤tn(α)
Ss < n

}
≤ P0

{
Stn(α) ≤ n

}
,

which with (18.7) implies (18.5).
Upper bound, Step 2. We now show that we can couple two biased random

walks so that the meeting time of the two walks is bounded by τn.
We couple as follows: toss a coin to decide which particle to move. Move the

chosen particle up one unit with probability p and down one unit with probability
q, unless it is at an end-vertex, in which case move it with probability one to the
neighboring interior vertex. The time τcouple until the particles meet is bounded by
the time it takes the left-most particle to hit n, whence

dn(tn(α)) ≤ Px,y{τcouple > tn(α)} ≤ P0{τn > tn(α)}.
This bound and (18.5) show that

lim
α→∞

lim sup
n→∞

d(tn(α)) ≤ lim
α→∞

Φ(−c(β)α) = 0.

Lower bound, Step 1. Let θ := (q/p). We first prove that

lim sup
n→∞

P0{Xtn(α) > n− h} ≤ 1− Φ(−c(β)α) + θh−1. (18.8)

Let (X̃t) be the lazy biased random walk on {0, 1, . . .}, with reflection at 0. By

coupling with (Xt) so that Xt ≤ X̃t, for x ≥ 0 we have

P0{Xt > x} ≤ P0{X̃t > x}. (18.9)
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Recall that (St) is the biased lazy walk on all of Z. Couple (X̃t) with (St) so that

St ≤ X̃t. Observe that X̃t − St increases (by a unit amount) only when X̃t is at 0,
which implies that, for any t,

P0{X̃t − St ≥ h} ≤ P0{at least h− 1 returns of (X̃t) to 0}.
By (9.21), the chance that the biased random walk on Z, when starting from

1, hits 0 before n equals 1− (1− θ)/(1− θn). Letting n→∞, the chance that the
biased random walk on Z, when starting from 1, ever visits 0 equals θ. Therefore,

P0{at least h− 1 returns of (X̃t) to 0} = θh−1,

and consequently,

P0{X̃t − St ≥ h} ≤ θh−1. (18.10)

By (18.9) and (18.10),

P0{Xtn(α) > n− h} ≤ P0{Stn(α) > n− 2h}+ P0{X̃tn(α) − Stn(α) ≥ h}
≤ P0{Stn(α) > n− 2h}+ θh−1. (18.11)

By the Central Limit Theorem,

lim
n→∞

P0{Stn(α) > n− 2h} = 1− Φ(−c(β)α),

which together with (18.11) establishes (18.8).
Lower bound, Step 2. The stationary distribution equals

π(n)(k) =

[
(p/q)− 1

(p/q)n+1 − 1

]
(p/q)k.

If Ah = {n− h+ 1, . . . , n}, then

π(n)(Ah) =
1− (q/p)h+2

1− (q/p)n+1
.

Therefore,

lim inf
n→∞

dn(tn(α)) ≥ lim inf
n→∞

[
π(n)(Ah)−P0{Xtn(α) > n− h}

]

≥ 1− θh+2 −
[
1− Φ(−c(β)α) + θh−1

]
,

and so

lim
α→−∞

lim inf
n→∞

dn(tn(α)) ≥ 1− θh+2 − θh−1.

Letting h→∞ shows that

lim
α→−∞

lim inf
n→∞

dn(tn(α)) = 1.

�

18.2.2. Random walk on the hypercube. We return to the lazy random
walk on the n-dimensional hypercube. In Section 5.3.3, it was shown that

tmix(ε) ≤ n logn+ cu(ε)n,

while Proposition 7.13 proved that

tmix(1− ε) ≥
1

2
n logn− cℓ(ε)n. (18.12)

In fact, there is a cutoff, and the lower bound gives the correct constant:
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Theorem 18.3. The lazy random walk on the n-dimensional hypercube has a
cutoff at (1/2)n logn with a window of size n.

Proof. Let Xt = (X1
t , . . . , X

n
t ) be the position of the random walk at time t,

and let Wt = W (Xt) =
∑n
i=1X

i
t be the Hamming weight of Xt. As follows from

the discussion in Section 2.3, (Wt) is a lazy version of the Ehrenfest urn chain whose
transition matrix is given in (2.8). We write πW for the stationary distribution of
(Wt), which is binomial with parameters n and 1/2.

The study of (Xt) can be reduced to the study of (Wt) because of the following
identity:

‖P1{Xt ∈ ·} − π‖TV = ‖Pn{Wt ∈ ·} − πW ‖TV . (18.13)

Proof of (18.13). Let Ωw := {x : W (x) = w}. Note that by symmetry, the
functions x 7→ P1{Xt = x} and π are constant over Ωw. Therefore,

∑

x :W (x)=w

|P1{Xt = x} − π(x)| =

∣∣∣∣∣∣
∑

x :W (x)=w

P1{Xt = x} − π(x)

∣∣∣∣∣∣
= |P1{Wt = w} − πW (w)| .

(The absolute values can be moved outside the sum in the first equality because all
of the terms in the sum are equal.) Summing over w ∈ {0, 1, . . . , n} and dividing
by 2 yields (18.13).

Since (Xt) is a transitive chain,

d(t) = ‖P1{Xt ∈ ·} − π‖TV ,
and it is enough to bound the right-hand side of (18.13).

We construct now a coupling (Wt, Zt) of the lazy Ehrenfest chain started from
w with the lazy Ehrenfest chain started from z. Provided that the two chains have
not yet collided, at each move, a fair coin is tossed to determine which of the two
chains moves; the chosen chain makes a transition according to the matrix (2.8),
while the other chain remains in its current position. The chains move together
once they have met for the first time.

Suppose, without loss of generality, that z ≥ w. Since the chains never cross
each other, Zt ≥Wt for all t. Consequently, if Dt = |Zt−Wt|, then Dt = Zt−Wt ≥
0. Let τ := min{t ≥ 0 : Zt = Wt}. Supposing that (Zt,Wt) = (zt, wt) and τ > t,

Dt+1 −Dt =

{
1 with probability (1/2)(1− zt/n) + (1/2)wt/n,

−1 with probability (1/2)zt/n+ (1/2)(1− wt/n).
(18.14)

From (18.14) we see that on the event {τ > t},

Ez,w[Dt+1 −Dt | Zt = zt,Wt = wt] = − (zt − wt)
n

. (18.15)

Let Zt = (Z1, . . . , Zt) and W t = (W1, . . . ,Wt). By the Markov property and
because 1{τ > t} is a function of (Zt,W t),

1{τ > t}Ez,w[Dt+1 −Dt | Zt,Wt]

= 1{τ > t}Ez,w[Dt+1 −Dt | Zt,W t]

= Ez,w[1{τ > t}(Dt+1 −Dt) | Zt,W t].

(18.16)
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Combining (18.15) and (18.16) shows that

Ez,w[1{τ > t}Dt+1 | Zt,W t] ≤
(

1− 1

n

)
Dt1{τ > t}.

Taking expectation, we have

Ez,w[Dt+11{τ > t}] =

(
1− 1

n

)
Ez,w[Dt1{τ > t}].

Since 1{τ > t+ 1} ≤ 1{τ > t}, we have

Ez,w[Dt+11{τ > t+ 1}] ≤
(

1− 1

n

)
Ez,w[Dt1{τ > t}].

By induction,

Ez,w[Dt1{τ > t}] ≤
(

1− 1

n

)t
(z − w) ≤ ne−t/n. (18.17)

Also, from (18.14), provided τ > t, the process (Dt) is at least as likely to move
downwards as it is to move upwards. Thus, until time τ , the process (Dt) can be
coupled with a simple random walk (St) so that S0 = D0 and Dt ≤ St.

If τ̃ := min{t ≥ 0 : St = 0}, then τ ≤ τ̃ . By Theorem 2.26, there is a constant
c1 such that for k ≥ 0,

Pk{τ > u} ≤ Pk{τ̃ > u} ≤ c1k√
u
. (18.18)

By (18.18),

Pz,w{τ > s+ u | D0, D1, . . . Ds} = 1{τ > s}PDs{τ > u} ≤ c1Ds1{τ > s}√
u

.

Taking expectation above and applying (18.17) shows that

Pz,w{τ > s+ u} ≤ c1ne
−s/n
√
u

. (18.19)

Letting u = αn and s = (1/2)n logn above, by Corollary 5.3 we have

d((1/2)n logn+ αn) ≤ c1√
α
.

We conclude that

lim
α→∞

lim sup
n→∞

d((1/2)n logn+ αn) = 0.

The lower bound (7.26) completes the proof. �

18.3. A Necessary Condition for Cutoff

When does a family of chains have a cutoff? The following proposition gives a
necessary condition.

Proposition 18.4. For a sequence of irreducible aperiodic Markov chains with

relaxation times {t(n)
rel } and mixing times {t(n)

mix}, if t
(n)
mix/t

(n)
rel is bounded above, then

there is no pre-cutoff.
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Proof. The proof follows from Theorem 12.4: dividing both sides of (12.12)

by t
(n)
mix, we have

t
(n)
mix(ε)

t
(n)
mix

≥ t
(n)
rel − 1

t
(n)
mix

log

(
1

2ε

)
≥ c1 log

(
1

2ε

)
.

As ε→ 0, the right-hand side increases to infinity. �

Recall that we write an ≍ bn to mean that there exist positive and finite
constants c1 and c2, not depending on n, such that c1 ≤ an/bn ≤ c2 for all n.

Example 18.5. Consider the lazy random walk on the cycle Zn. In Section

5.3.1 we showed that t
(n)
mix ≤ n2. In fact, this is the correct order, as shown in

Section 7.4.1. In Section 12.3.1, we computed the eigenvalues of the transition

matrix, finding that t
(n)
rel ≍ n2 also. By Proposition 18.4, there is no pre-cutoff.

Example 18.6. Let Tn be the rooted binary tree with n vertices. In Example
7.7, we showed that the lazy simple random walk has tmix ≍ n. Together with
Theorem 12.4, this implies that there exists a constant c1 such that trel ≤ c1n. In
Example 7.7, we actually showed that Φ⋆ ≤ 1/(n − 2). Thus, by Theorem 13.14,
we have γ ≤ 2/(n− 2), whence trel ≥ c2n for some constant c2. An application of
Proposition 18.4 shows that there is no pre-cutoff for this family of chains.

The question remains if there are conditions which ensure that the converse
of Proposition 18.4 holds. Below we give a variant of an example due to Igor Pak
(personal communication) which shows the converse is not true in general.

Example 18.7. Let {Pn} be a family of transition matrices with t
(n)
rel = o(t

(n)
mix)

and with a cutoff (e.g., the lazy random walk on the hypercube.) Let Ln :=√
t
(n)
rel t

(n)
mix, and define the matrix

P̃n = (1− 1/Ln)Pn + (1/L)Πn,

where Πn(x, y) := πn(y) for all x.
We first prove that

∥∥∥P̃ tn(x, ·) − π
∥∥∥

TV
=

(
1− 1

Ln

)t ∥∥P tn(x, ·) − π
∥∥

TV
. (18.20)

Proof of (18.20). One step of the chain can be generated by first tossing a coin
with probability 1/Ln of heads; if heads, a sample from πn is produced, and if tails,
a transition from Pn is used. If τ is the first time that the coin lands heads, then
τ has a geometric distribution with success probability 1/Ln. Accordingly,

Px{X(n)
t = y} − π(y) = Px{X(n)

t = y, τ ≤ t}+ Px{X(n)
t = y, τ > t} − π(y)

= −π(y)[1−Px{τ ≤ t}] + P tn(x, y)Px{τ > t}
=
[
P tn(x, y)− πn(y)

]
Px{τ > t}.

Taking absolute value and summing over y gives (18.20). We conclude that

d̃n(t) = (1− L−1
n )tdn(t).

Therefore,

d̃n(βLn) ≤ e−βdn(βLn) ≤ e−β ,
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and t̃
(n)
mix ≤ c1Ln for some constant c1. On the other hand

d̃n(βLn) = e−β[1+o(1)]dn(βLn). (18.21)

Since Ln = o(t
(n)
mix) and the Pn-chains have a cutoff, we have that dn(βLn)→ 1 for

all β, whence from the above,

lim
n→∞

d̃n(βLn) = e−β.

This shows both that t̃
(n)
mix ≍ Ln and that there is no pre-cutoff for the P̃ -chains.

Let {λ(n)
j }nj=1 be the eigenvalues of Pn. As can be directly verified, λ

(n)
1 is an

eigenvalue of P̃n, and λ̃
(n)
j := (1−1/Ln)λ

(n)
j is an eigenvalue of P̃n for j > 1. Thus,

γ̃n = 1−
(

1− 1

Ln

)
(1− γn) = γn [1 + o(1)] .

We conclude that t̃
(n)
rel ≍ t

(n)
rel . However, t̃

(n)
rel = o(t̃mix), since t̃mix ≍ Ln.

18.4. Separation Cutoff

The mixing time can be defined for other distances. The separation distance,
defined in Section 6.4, is s(t) = maxx∈Ω sx(t), where

sx(t) := max
y∈Ω

[
1− P t(x, y)

π(y)

]
.

We define
tsep(ε) := inf{t ≥ 0 : s(t) ≤ ε}.

A family of Markov chains with separation mixing times {t(n)
sep} has a separation

cutoff if

lim
n→∞

t
(n)
sep(ε)

t
(n)
sep(1 − ε)

= 1 for all ε > 0.

Theorem 18.8. The lazy random walk on the n-dimensional hypercube has a
separation cutoff at n logn with a window of order n.

Proof. We already have proven a sufficient upper bound in Section 6.5.2:

s(n logn+ αn) ≤ e−α. (18.22)

We are left with the task of proving a lower bound. Recall that τrefresh is the strong
stationary time equal to the first time all the coordinates have been selected for
updating. Since, when starting from 1, the state 0 is a halting state for τrefresh, it
follows that

s1(t) = P1{τrefresh > t}.
(See Remark 6.12.)

Let Rt be the number of coordinates not updated by time t. Let tn := n logn−
αn. By Lemma 7.12, we have

ERtn = n(1− n−1)tn → eα and Var(Rtn) ≤ eα.
Therefore,

P1{τrefresh ≤ tn} = P1{Rtn = 0} ≤ c1e−α,
for some constant c1. Thus,

s1(n logn− αn) ≥ 1− c1e−α. (18.23)
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The bounds (18.22) and (18.23) together imply a separation cutoff at n logn with
a window of size n. �

Exercise

Exercise 18.1. Let tnmix and dn denote the mixing time and distance to sta-
tionarity, respectively, for the n-th chain in a sequence of Markov chains. Show
that the sequence has a cutoff if and only if

lim
n→∞

dn(ctnmix) =

{
1 if c < 1,

0 if c > 0.
(18.24)

Notes

The biased random walk on the interval is studied in Diaconis and Fill (1990);
see also the discussion in Diaconis and Saloff-Coste (2006), which contains many
examples. More on cutoff is discussed in Chen and Saloff-Coste (2008).

A chain with pre-cutoff, but no cutoff. David Aldous (2004) created the
chain whose transition probabilities are shown in Figure 18.2. The shape of the
graph of d(t) as a function of t is shown on the bottom of the figure. Since the
stationary distribution grows geometrically from left-to-right, the chain mixes once
it reaches near the right-most point. It takes about 15n steps for a particle started
at the left-most endpoint to reach the fork. With probability about 3/4, it first
reaches the right endpoint via the bottom path. (This can be calculated using
effective resistances; cf. Section 9.4.) When the walker takes the bottom path, it
takes about (5/3)n additional steps to reach the right. In fact, the time will be
within order

√
n of (5/3)n with high probability. In the event that the walker takes

the top path, it takes about 6n steps (again ±O(
√
n)) to reach the right endpoint.

Thus the total variation distance will drop by 3/4 at time [15+ (5/3)]n, and it will
drop by the remaining 1/4 at around time (15+6)n. Both of these drops will occur
within windows of order

√
n. Thus, the ratio tmix(ε)/tmix(1− ε) will stay bounded

as n→∞, but it does not tend to 1.
Recently, Lubetzky and Sly (2008) have announced a proof of cutoff for random

regular graphs:

Theorem (Lubetzky and Sly (2008)). Let G be a random d-regular graph for
d ≥ 3 fixed. Then with high probability, the simple random walk on G exhibits cutoff
at time d

d−2 logd−1 n with a window of order
√

logn.

Ding, Lubetzky, and Peres (2008b) analyzed the cutoff phenomena for birth-
and-death chains. They proved

Theorem (Ding et al. (2008b)). For any 0 < ε < 1
2 there exists an explicit

cε > 0 such that every lazy irreducible birth-and-death chain (Xt) satisfies

tmix(ε)− tmix(1 − ε) ≤ cε
√
trel · tmix(

1
4 ). (18.25)

Corollary (Ding et al. (2008b)). Let (X
(n)
t ) be a sequence of lazy irreducible

birth-and-death chains. Then it exhibits cutoff in total-variation distance if and

only if t
(n)
mix · γ(n) tends to infinity with n. Furthermore, the cutoff window size is

at most the geometric mean between the mixing time and relaxation time.
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2n

2/31/3

2/31/3
5n

1/5 4/5

n

(15+5/3) t

d(t)

21n15 n n

Figure 18.2. Random walk on the network shown on the top has
a pre-cutoff, but no cutoff. The shape of the graph of d(t) is shown
on the bottom.

Earlier, Diaconis and Saloff-Coste (2006) obtained a similar result for separa-
tion cutoff.



CHAPTER 19

Lamplighter Walks

19.1. Introduction

Imagine placing a lamp at each vertex of a finite graph G = (V,E). Now allow
a (possibly intoxicated?) lamplighter to perform a random walk on G, switching
lights randomly on and off as he visits them.

This process can be modeled as a random walk on the wreath product G∗ =
{0, 1}V × V , whose vertices are ordered pairs (f, v) with v ∈ V and f ∈ {0, 1}V .
There is an edge between (f, v) and (h,w) in the graph G∗ if v, w are adjacent or
identical in G and f(u) = h(u) for u /∈ {v, w}. We call f the configuration of the

lamps and v the position of the lamplighter . In the configuration function f ,
zeroes correspond to lamps that are off, and ones correspond to lamps that are on.

We now construct a Markov chain on G∗. Let Υ denote the transition matrix
for the lamplighter walk, and let P be the transition matrix of the lazy simple
random walk on G.

• For v 6= w, Υ[(f, v), (h,w)] = P (v, w)/4 if f and h agree outside of {v, w}.
• When v = w, Υ[(f, v), (h, v)] = P (v, v)/2 if f and h agree off of {v}.

That is, at each time step, the current lamp is randomized, the lamplighter moves,
and then the new lamp is also randomized. (The lamp at w is randomized in order
to make the chain reversible. We have used the lazy walk on G as the basis for the
construction to avoid periodicity problems later.) We will assume throughout this
chapter that G is connected, which implies that both P and Υ are irreducible. We
write π for the stationary distribution of P , and π⋆ for the stationary distribution
of Υ.

Since the configuration of lamps on visited states is uniformly distributed, al-
lowing the lamplighter to walk for the cover time of the underlying walk suffices to

Figure 19.1. A lamplighter on an 8-cycle.

257
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randomize the lamp configuration—although perhaps not the position of the lamp-
lighter himself! Does the lamplighter need to walk further to mix? In this chapter
we study several connections between the underlying chain G and the lamplighter
chain G∗.

We have by now defined several time parameters associated with a finite Markov
chain. Some measure mixing directly; others, such as the cover time and the hitting
time, attempt to measure the geometry of the chain. Below, in (19.1), we summarize
some inequalities we have proved relating these parameters. Define t1 . t2 if there
exists a constant c > 0 such that t1 . ct2. We have shown

trel . tmix . thit . tcov, (19.1)

where the first inequality hold for reversible chains (Theorem 12.4), the second
inequality holds for reversible and lazy chains (Remark 10.16), and the last holds
generally (see Equation (11.2)).

In the next section, we prove that the relaxation time trel of the lamplighter walk
is comparable to the maximal hitting time thit of the underlying walk (Theorem
19.1). In Section 19.3, we show (Theorem 19.2) that the cover time tcov of the walk
on G is comparable to the mixing time for the lamplighter walk on G∗. The proofs
of these results use many of the techniques we have studied in previous chapters.

19.2. Relaxation Time Bounds

Theorem 19.1. For each n, let Gn be a graph with vertex set Vn, and suppose
that |Vn| → ∞. Then there exist constants c1 < c2 such that for sufficiently large
n,

c1thit(Gn) ≤ trel(G∗
n) ≤ c2thit(Gn). (19.2)

Proof of Theorem 19.1. To prove the lower bound, we use the variational
formula of Lemma 13.12 to show that the spectral gap for the transition matrix
Υt is bounded away from 1 when t = thit(Gn)/4. For the upper bound, we use
the coupling contraction method of Chen (1998), which we have already discussed
(Theorem 13.1). The geometry of lamplighter graphs allows us to refine this cou-
pling argument and restrict our attention to pairs of states such that the position
of the lamplighter is the same in both states.

Lower bound. Fix a vertex w ∈ G that maximizes Eπ(τw), and define ϕ : V ∗ →
{0, 1} by ϕ(f, v) = f(w). Then Varπ⋆(ϕ) = 1/4. Let (Yt) be the Markov chain
on G∗ with initial distribution π⋆, so that Yt has distribution π⋆ for all t ≥ 0.
We write Yt = (Ft, Xt), where Xt is the position of the walk at time t, and Ft
is the configuration of lamps at time t. Applying Lemma 13.11 to Υt and then
conditioning on the walk’s path up to time t shows that

Et(ϕ) =
1

2
Eπ⋆ [ϕ(Yt)− ϕ(Y0)]

2

=
1

2
Eπ⋆

(
Eπ⋆ [(ϕ(Yt)− ϕ(Y0))

2 | X0, . . . , Xt]
)
. (19.3)

Observe that

Eπ⋆ [(ϕ(Yt)− ϕ(Y0))
2 | X0, . . .Xt] = Eπ⋆ [Ft(w) − F0(w) | X0, . . . , Xt]

=
1

2
1{τw≤t},
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as Ft(w) − F0(w) = 1 if and only if the walk visits w by time t, and, at the walk’s
last visit to w before or at time t, the lamp at w is refreshed to a state different
from its initial state. Combining the above equality with (19.3) shows that

Et(ϕ) =
1

4
Pπ{τw ≤ t}. (19.4)

For any t,

Evτw ≤ t+ thitPv{τw > t}. (19.5)

This follows because if a walk on G started at v has not hit w by time t, the
expected additional time to arrive at w is bounded by thit, regardless of the value
of the state at time t. Averaging (19.5) over π shows that

Eπτw ≤ t+ thitPπ{τw > t}. (19.6)

By Lemma 10.2 and our choice of w, we have thit ≤ 2Eπτw, whence (19.6) implies
that

thit ≤ 2t+ 2thitPπ{τw > t}.
Substituting t = thit/4 and rearranging yields

Pπ{τw ≤ thit/4} ≤
3

4
.

By Remark 13.13 and (19.4), we thus have

1− λthit/4
2 ≤ 3

4
.

Therefore

log 4 ≥ thit

4
(1− λ2),

which gives the claimed lower bound on trel(G
∗), with c1 = 1

log 4 . (Note that since

the walk is lazy, |λ2| = λ2.)
Upper bound. We use a coupling argument related to that of Theorem 13.1.

Suppose that ϕ is an eigenfunction for Υ with eigenvalue λ2. To conclude that

trel(G
∗) ≤ (2+o(1))thit

log 2 , it suffices to show that λ
2thit+o(1)
2 ≤ 1/2. Note that for lamp

configurations f and g on G, the ℓ1 norm ‖f − g‖1 is equal to the number of bits
in which f and g differ. Let

M = max
f,g,x

|ϕ(f, x) − ϕ(g, x)|
‖f − g‖1

.

(Note that M is a restricted version of a Lipschitz constant: the maximum is taken
only over states with the same lamplighter position.)

IfM = 0, then ϕ(f, x) depends only on x and ψ(x) = ϕ(f, x) is an eigenfunction
for the transition matrix P . Theorem 12.4 and (10.24) together imply that

(log 2)trel ≤ [2 + o(1)]thit.

Hence ∣∣∣λ(2+o(1))thit

2

∣∣∣ ≤
∣∣∣λ(log 2)(1/(1−λ2))

2

∣∣∣ ≤ 1

2
,

since supx∈[0,1) x
(log 2)/(1−x) = 1/2. We may thus assume that M > 0.

Couple two lamplighter walks, one started at (f, x) and one at (g, x), by using
the same lamplighter steps and updating the configurations so that they agree at
each site visited by the lamplighter. Let (f ′, x′) and (g′, x′) denote the positions
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of the coupled walks after 2thit steps, and let K denote the combined transition
matrix of this coupling. Because ϕ is an eigenfunction for Υ,

λ2thit
2 M = sup

f,g,x

|Υ2thitϕ(f, x) −Υ2thitϕ(g, x)|
‖f − g‖1

≤ sup
f,g,x

∑

f ′,g′,x′

K2thit [(f, g, x), (f ′, g′, x′)]
|ϕ(f ′, x′)− ϕ(g′, x′)|

‖f ′ − g′‖1
‖f ′ − g′‖1
‖f − g‖1

≤M sup
f,g,x

E ‖f ′ − g′‖1
‖f − g‖1

.

But at time 2thit, each lamp that contributes to ‖f − g‖1 has probability of at
least 1/2 of having been visited, and so E ‖f ′ − g′‖1 ≤ ‖f − g‖1 /2. Dividing by M

gives the required bound of λ2thit
2 ≤ 1/2. �

19.3. Mixing Time Bounds

Theorem 19.2. Let (Gn) be a sequence of graphs with |Vn| → ∞, and let t
(n)
cov

be the cover time for lazy simple random walk on Gn. There exist constants c1 and
c2 such that for sufficiently large n, the mixing times of the lamplighter family (G∗

n)
satisfy

c1t
(n)
cov ≤ tmix(G

∗
n) ≤ c2t(n)

cov. (19.7)

We first prove three lemmas needed in the proof of the lower bound.
Aldous and Diaconis (1987) proved the following inequality. Recall the defini-

tions (6.7) and (4.23) of s and d̄, respectively.

Lemma 19.3. For a reversible chain, the separation and total variation dis-
tances satisfy

s(2t) ≤ 1− (1− d̄(t))2. (19.8)

Proof of (19.8). By reversibility, P t(z, y)/π(y) = P t(y, z)/π(z), whence

P 2t(x, y)

π(y)
=
∑

z∈Ω

P t(x, z)P t(z, y)

π(y)
=
∑

z∈Ω

π(z)
P t(x, z)P t(y, z)

π(z)2
.

Applying Cauchy-Schwarz to the right-hand side above, we have

P 2t(x, y)

π(y)
≥
(∑

z∈Ω

√
P t(x, z)P t(y, z)

)2

≥
(∑

z∈Ω

P t(x, z) ∧ P t(y, z)
)2

.

From equation (4.13),

P 2t(x, y)

π(y)
≥
(
1−

∥∥P t(x, ·)− P t(y, ·)
∥∥

TV

)2 ≥
(
1− d̄(t)

)2
.

Subtracting both sides of the inequality from 1 and maximizing over x and y
yields (19.8).
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Lemma 19.4. For the lamplighter chain G∗ on a finite graph G with vertex set
V having |V | = n, the separation distance s∗(t) satisfies

s∗(t) ≥ Pw{τcov > t} (19.9)

for every w ∈ V and t > 0.

Proof. Let wt be the vertex minimizing Pw{Xt = wt | τcov ≤ t}/π(wt). Since
Pw{Xt = · | τcov ≤ t} and π are both probability distributions on V , we have
Pw{Xt = wt | τcov ≤ t} ≤ π(wt). Since the only way to go from all lamps off to all
lamps on is to visit every vertex, we have

Υt((0, w), (1, wt))

π∗(1, wt)
=

Pw{τcov ≤ t}2−nPw{Xt = wt | τcov ≤ t}
2−nπ(wt)

≤ Pw{τcov ≤ t}. (19.10)

Subtracting from 1 yields s∗(t) ≥ Pw{τcov > t}. �

Lemma 19.5. Consider an irreducible finite Markov chain on state space Ω
with transition matrix P , and let τcov be its cover time. Let tm have the following
property: for any x ∈ Ω,

Px{τcov ≤ tm} ≥ 1/2.

Then tcov ≤ 2tm.

Proof. Consider starting at a state x ∈ Ω and running in successive intervals
of tm steps. The probability of states being missed in the first interval is at most
1/2. If some states are missed in the first interval, then the probability that all are
covered by the end of the second interval is at least 1/2, by the definition of tm.
Hence the probability of not covering by time 2tm is at most 1/4. In general,

Px{τcov > ktm} ≤
1

2k
.

We may conclude that τcov is dominated by tm times a geometric random variable
with success probability 1/2, and thus tcov is at most 2tm. �

Proof of Theorem 19.2. Note: throughout the proof, asterisks indicate pa-
rameters for the lamplighter chain.

Upper bound. Let (Ft, Xt) denote the state of the lamplighter chain at time t.
We will run the lamplighter chain long enough that, with high probability, every
lamp has been visited and enough additional steps have been taken to randomize
the position of the lamplighter.

Set un = 8t
(n)
cov + tmix(Gn, 1/8) and fix an initial state (0, v). Define the proba-

bility distribution µun
s on G∗

n by

µun
s = P(0,v){(Fun , Xun) ∈ · | τ (n)

cov = s}.
Then

Υun((0, v), ·) =
∑

s

P(0,v){τ (n)
cov = s}µun

s .

By the triangle inequality,

‖Υun((0, v), ·) − π∗‖TV ≤
∑

s

P(0,v){τ (n)
cov = s} ‖µun

s − π∗‖TV . (19.11)
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Since P{τ (n)
cov > 8t

(n)
cov} < 1/8 and the total variation distance between distributions

is bounded by 1, we can bound

‖Υun((0, v), ·)− π∗‖TV ≤ 1/8 +
∑

s≤8t
(n)
cov

P(0,v){τ (n)
cov = s} ‖µun

s − π∗‖TV . (19.12)

Let νn denote the uniform distribution on {0, 1}n. For s ≤ un, conditional on

τ
(n)
cov = s and Xs = x, the distribution of Fun equals νn, the distribution of Xun is
Pun−s(x, ·), and Fun and Xun are independent. Thus,

µun
s =

∑

x∈V
P(0,v){(Fun , Xun) ∈ · | τ (n)

cov = s, Xs = x}P(0,v){Xs = x | τ (n)
cov = s}

=
∑

x∈V
[νn × Pun−s(x, ·)]P(0,v){Xs = x | τ (n)

cov = s}.

By the triangle inequality and Exercise 4.5, since π⋆ = νn × π,

‖µun
s − π⋆‖TV ≤

∑

x∈V

∥∥νn × Pun−s(x, ·) − π⋆
∥∥

TV
P(0,v){Xs = x | τ (n)

cov = s}

≤ max
x∈V

∥∥Pun−s(x, ·) − π
∥∥

TV
. (19.13)

For s ≤ 8t
(n)
cov, we have un − s ≥ tmix(Gn, 1/8), by definition of un. Consequently,

by (19.13), for s ≤ 8t
(n)
cov,

‖µun
s − π⋆‖TV ≤

1

8
. (19.14)

Using (19.14) in (19.12) shows that

‖Υun((0, v), ·)− π∗‖TV ≤ 1/8 + (1)(1/8) = 1/4. (19.15)

To complete the upper bound, we need only recall from (19.1) that tmix(Gn, 1/8)

is bounded by a constant times t
(n)
cov.

Lower bound. Lemmas 4.11 and 4.12 imply that

d̄∗(2t∗mix) ≤ 1/4,

and Lemma 19.3 yields

s∗(4t∗mix) ≤ 1− (1− d̄∗(2t∗mix))
2 ≤ 1− (3/4)2 < 1/2.

By Lemma 19.4 applied to Gn with t = 4t∗mix, we have

Pw{τ (n)
cov > t∗mix} < 1/2.

Lemma 19.5 now immediately implies t
(n)
cov ≤ 8t∗mix. �

19.4. Examples

19.4.1. The complete graph. When Gn is the complete graph on n vertices,
with self-loops, then the chain we study on G∗

n is a random walk on the hypercube—
although not quite the standard one, since two bits can change in a single step. This
example was analyzed by Häggström and Jonasson (1997). The maximal hitting
time is n and the expected cover time is an example of the coupon collector problem.
Hence the relaxation time and the mixing time for G∗

n are Θ(n) and Θ(n logn),
respectively, just as for the standard walk on the hypercube.
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19.4.2. Hypercube. Let Gn = Zn2 , the n-dimensional hypercube. We showed
in Exercise 10.5 that the maximal hitting time is on the order of 2n and in Exer-
cise 11.3 that the cover time is on the order of n2n. In Example 12.15, we saw that
for lazy random walk on Gn, we have trel(Gn) = n. Finally, in Section 12.5, we
showed that tmix(ε,Gn) ∼ (n logn)/2. By Theorem 19.1, trel(G

∗
n) is on the order

of 2n, and Theorem 19.2 shows that the convergence time in total variation on G∗
n

is on the order of n2n.

19.4.3. Tori. For the one-dimensional case, we note that Häggström and
Jonasson (1997) examined lamplighter walks on cycles. Here both the maximal
hitting time and the expected cover time of the base graph are Θ(n2)—see Sec-
tion 2.1 and Example 11.1. Hence the lamplighter chain on the cycle has both its
relaxation time and its mixing time of order Θ(n2).

For higher-dimensional tori, we have proved enough about hitting and cover
times to see that the relaxation time and the mixing time grow at different rates
in every dimension d ≥ 2.

Theorem 19.6. For the random walk (Xt) on (Z2
n)∗ in which the lamplighter

performs simple random walk with holding probability 1/2 on Z2
n, there exist con-

stants c2 and C2 such that the relaxation time satisfies

c2n
2 logn ≤ trel((Z2

n)∗) ≤ C2n
2 logn. (19.16)

There also exist constants c′2 and C′
2 such that the total variation mixing time

satisfies

c′2n
2(log n)2 ≤ tmix((Z

2
n)∗) ≤ C′

2n
2(log n)2. (19.17)

More generally, for any dimension d ≥ 3, there are constants cd, Cd, c
′
d and C′

d such
that on (Zdn)∗, the relaxation time satisfies

cdn
d ≤ trel((Zdn)∗) ≤ Cdnd (19.18)

and the total variation mixing time satisfies

c′dn
d logn ≤ tmix(ε, (Z

d
n)∗) ≤ C′

dn
d logn. (19.19)

Proof. These follow immediately from combining the bounds on the hitting
time and the cover time for tori from Proposition 10.13 and Section 11.3.2, respec-
tively, with Theorems 19.1 and 19.2. �

Notes

The results of this chapter are primarily taken from Peres and Revelle (2004),
which derives sharper versions of the bounds we discuss, especially in the case of the
two-dimensional torus, and also considers the time required for convergence in the
uniform metric. The extension of the lower bound on mixing time in Theorem 19.2
to general (rather than vertex-transitive) graphs is new.

Random walks on (infinite) lamplighter groups were analyzed by Kăımanovich
and Vershik (1983). Their ideas motivate some of the analysis in this chapter.

Scarabotti and Tolli (2008) study the eigenvalues of lamplighter walks. They
compute the spectra for the complete graph and the cycle, and use representations
of wreath products to give more general results.

Peres and Revelle (2004) also bound the ℓ∞ mixing time. These bounds were
sharpened by Ganapathy and Tetali (2006).
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Aldous and Fill (1999, Chapter 4) and Lovász and Winkler (1998) both survey
inequalities between Markov chain parameters.

Complements. Recall the discussion in Section 18.4 of cutoff in separation
distance.

Theorem 19.7. Let (Gn) be a sequence of graphs with |Vn| = n. If t
(n)
hit =

o
(
t
(n)
cov

)
as n→∞, then (G∗

n) has a separation cutoff at time t
(n)
cov.

Note that by Theorems 19.1 and 19.2, the hypothesis above implies that trel(G
∗
n) =

o(tmix(G
∗
n)).

To prove Theorem 19.7, we will need the following result of Aldous (1991b) on
the concentration of the cover time.

Theorem 19.8 (Aldous). Let (Gn) be a family of graphs with |Vn| → ∞. If

t
(n)
hit = o

(
t
(n)
cov

)
as n→∞, then

τ
(n)
cov

t
(n)
cov

→ 1 in probablity.

Proof of Theorem 19.7. Lower bound. Fix ε > 0 and a starting vertex w.

Take t < (1− ε)t(n)
cov(Gn). Applying Lemma 19.4 to Gn gives

s∗(t) ≥ Pw{τ (n)
cov > t} = 1−Pw{τ (n)

cov ≤ t}.
However, Theorem 19.8 implies that Pw{τ (n)

cov ≤ t} goes to 0, so we are done.

Upper bound. Again fix ε > 0, and take t > (1 + 2ε)t
(n)
cov. Then for any vertices

v, w and any lamp configuration f we have

Υt((0, w), (f, v)) ≥ Pw{τ (n)
cov < (1 + ε)t(n)

cov}2−n min
u∈Vn

P εt
(n)
cov(u, v), (19.20)

by conditioning on the location of the lamplighter at time t − εt(n)
cov and recalling

that once all vertices have been visited, the lamp configuration is uniform.
Theorem 19.8 implies

Pw{τ (n)
cov < (1 + ε)t(n)

cov} = 1− o(1). (19.21)

Theorem 10.14 implies that tmix < 3thit for sufficiently large n, so our initial hy-

pothesis implies that tmix = o(εt
(n)
cov). Applying Lemma 19.3 now tells us that

min
u∈Vn

P εt
(n)
cov(u, v) = π(v)(1 − o(1)). (19.22)

Taken together (19.20), (19.21), and (19.22) guarantee that the separation distance
for the lamplighter chain at time t is o(1). �



CHAPTER 20

Continuous-Time Chains*

20.1. Definitions

We now construct, given a transition matrix P , a process (Xt)t∈[0,∞) which
we call the continuous-time chain with transition matrix P . The random times
between transitions for this process are i.i.d. exponential random variables of unit
rate, and at these transition times moves are made according to P . Continuous-
time chains are often natural models in applications, since they do not require
transitions to occur at regularly specified intervals.

More precisely, let T1, T2, . . . be independent and identically distributed expo-
nential random variables of unit rate. That is, each Ti takes values in [0,∞) and
has distribution function

P{Ti ≤ t} =

{
1− e−t if t ≥ 0,

0 if t < 0.

Let (Φk)
∞
k=0 be a Markov chain with transition matrix P , independent of the ran-

dom variables (Tk)
∞
k=1. Let S0 = 0 and Sk :=

∑k
i=1 Ti for k ≥ 1. Define

Xt := Φk for Sk ≤ t < Sk+1. (20.1)

Change-of-states occur only at the transition times S1, S2, . . .. (Note, however,
that if P (x, x) ≥ 0 for at least one state x ∈ Ω, then it is possible that the chain
does not change state at a transition time.)

Define Nt := max{k : Sk ≤ t} to be the number of transition times up to and
including time t. Observe that Nt = k if and only if Sk ≤ t < Sk+1. From the
definition (20.1),

Px{Xt = y | Nt = k} = Px{Φk = y} = P k(x, y). (20.2)

Also, the distribution of Nt is Poisson with mean t (Exercise 20.1):

P{Nt = k} =
e−ttk

k!
. (20.3)

The heat kernel Ht is defined by Ht(x, y) := Px{Xt = y}. From (20.2) and
(20.3), it follows that

Ht(x, y) =

∞∑

k=0

Px{Xt = y | Nt = k}Px{Nt = k} (20.4)

=
∞∑

k=0

e−ttk

k!
P k(x, y). (20.5)

265
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For an m × m matrix M , define the m × m matrix eM :=
∑∞

i=0
Mi

i! . In matrix
representation,

Ht = et(P−I). (20.6)

20.2. Continuous-Time Mixing

The heat kernel for a continuous-time chains like powers of a transition matrix
(Theorem 4.9), converges to an equilibrium distribution as t→∞.

Theorem 20.1. Let P be an irreducible transition matrix, and let Ht be the
corresponding heat kernel. Then there exists a unique probability distribution π such
that πHt = π for all t ≥ 0 and

max
x∈Ω
‖Ht(x, ·)− π‖TV → 0 as t→∞.

Remark 20.2. Note that the above theorem does not require that P is aperi-
odic, unlike Theorem 4.9. This is one advantage of working with continuous-time
chains.

In view of Theorem 20.1, we define

tcont
mix (ε) := inf

{
t ≥ 0 : max

x∈Ω
‖Ht(x, ·)− π‖TV ≤ ε

}
. (20.7)

The next theorem, which will imply Theorem 20.1, relates the mixing time of
lazy Markov chains with the mixing time of the related continuous-time Markov
chain.

Theorem 20.3. Let P be an irreducible transition matrix, not necessarily ape-
riodic or reversible. Let P̃ = (1/2)(I + P ) be the lazy version of P , and let Ht be
the heat kernel associated to P . Fix ε > 0.

(i) For sufficiently large k, ‖P̃ k(x, ·) − π‖TV < ε implies ‖Hk(x, ·)− π‖TV < 2ε.

(ii) For sufficiently large m, ‖Hm(x, ·)−π‖TV < ε implies ‖P̃ 4m(x, ·)−π‖TV < 2ε.

The proof of (ii) in the above theorem requires the following lemma:

Lemma 20.4. Let Y be a binomial(4m, 1
2 ) random variable, and let Ψ = Ψm be

a Poisson variable with mean m. Then

ηm := ‖P{Y ∈ ·} −P{Ψ +m ∈ ·}‖TV → 0

as m→∞.
Proof of Lemma 20.4. Note that Y and Ψ + m both have mean 2m and

variance m. Given ε > 0, let A = 2ε−1/2. By Chebyshev’s inequality

P
{
|Y − 2m| ≥ A√m

}
≤ ε/4 and P

{
|Ψ−m| ≥ A√m

}
≤ ε/4. (20.8)

Now, using Stirling’s formula and computing directly, we can show that uni-
formly for |j| ≤ A√m,

P{Y = 2m+ j} ∼ 1√
2πm

e−j
2/2m,

P{Ψ +m = 2m+ j} ∼ 1√
2πm

e−j
2/2m.

Here we write am ∼ bm to mean that the ratio am/bm tends to 1 as m → ∞,
uniformly for all j such that |j| ≤ A√m. This follows from the local Central Limit



20.2. CONTINUOUS-TIME MIXING 267

Theorem (see, for example, Durrett (2005)); or just use Stirling’s formula (A.9) —
Exercise 20.4 asks for the details.

Thus for large m we have
∑

|j|≤A√
m

[P{Y = 2m+ j} −P{Ψ +m = 2m+ j}]

≤
∑

|j|≤A√
m

εP{Y = 2m+ j} ≤ ε.

Dividing this by 2 and using (20.8) establishes the lemma. �

Proof of Theorem 20.3. (i), Step 1. First we show that shortly after the
original chain is close to equilibrium, so is the continuous-time chain. Suppose that
k satisfies ‖P k(x, ·)− π‖TV < ε. Then for arbitrarily small δ > 0 and t ≥ k(1 + δ),
conditioning on the value of Nt and applying the triangle inequality give

‖Ht(x, ·) − π‖TV ≤
∑

j≥0

P{Nt = j} ‖P j(x, ·) − π‖TV ≤ P{Nt < k}+ ε,

where the right-hand inequality used monotonicity of ‖P j(x, ·)−π‖TV in j. By the
Law of large Numbers, P{Nt(k) < k} → 0 as k →∞ for t(k) ≥ k(1 + δ). Thus if k
is sufficiently large, then ‖Ht(k)(x, ·) − π‖TV < 2ε for such t(k).

Step 2. Let H̃t be the continuous-time version of the lazy chain P̃ . We claim

that H̃t = Ht/2. There are several ways to see this. One is to observe that Ht

involves Ψt steps of the lazy chain P̃ . Each of these steps is a step of P with
probability 1/2 and a delay with probability 1/2; thinning a Poisson process of rate
1 this way yields a Poisson process of rate 1/2.

Alternatively, the matrix exponentiation of (20.6) yields a very short proof of
the claim:

H̃t = et(
eP−I) = et(

P+I
2 −I) = e

t
2 (P−I).

Step 3. Now suppose that the lazy chain is close to equilibrium after k steps,

that is, ‖P̃ k(x, ·) − π‖TV < ε. We then claim that the continuous-time chain is
close to equilibrium shortly after time k/2. This is an easy corollary of Steps 1 and
2. If k is large enough, then for t = k

2 (1 + δ), we have

‖Ht(x, ·) − π‖TV = ‖H̃2t − π‖TV < 2ε.

(ii). Suppose that ‖Hm(x, ·)− π‖TV < ε; we claim that for sufficiently large m

we have ‖P̃ 4m(x, ·)− π‖TV < 2ε.
After the discrete-time chain has been run for Nm steps, running it for another

m steps will not increase the distance to π, so ‖HmP
m(x, ·)− π‖TV < ε. (Observe

that the matrices Hm and Pm commute.) Now

HmP
m =

∑

k≥0

P{Ψ +m = k}P k,

P̃ 4m =
∑

k≥0

P{Y = k}P k,

where Ψ is Poisson(m) and Y is binomial(4m, 1
2 ). Hence Lemma 20.4 and the

coupling description of total variation (Proposition 4.7) give

‖HmP
m(x, ·)− P̃ 4m(x, ·)‖TV ≤ ηm,
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whence

‖P̃ 4m(x, ·)− π‖TV ≤ ‖HmP
m(x, ·) − π‖TV + ηm

≤ ε+ ηm,

as needed. �

20.3. Spectral Gap

Given f ∈ RΩ, the function Htf : Ω→ R is defined by

(Htf)(x) :=
∑

y

Ht(x, y)f(y).

The following is a continuous-time version of the inequality (12.8).

Lemma 20.5. Let P be a reversible and irreducible transition matrix with spec-
tral gap γ = 1− λ2. For f ∈ R

Ω,

‖Htf − Eπ(f)‖22 ≤ e−2γtVarπ(f).

Proof. First, assume that Eπ(f) = 0. One can check directly from (20.5)
that

d

dt
Ht(x, y) =

∑

z∈Ω

P (x, z)Ht(z, y)−Ht(x, y),

from which it follows that

d

dt
Htf(x) = (P − I)(Htf)(x), (20.9)

as anticipated by the identity (20.6). Letting u(t) := ‖Htf‖22, from (20.9) it follows
that

u′(t) = −2
∑

x∈Ω

Htf(x) · (P − I)(Htf)(x) · π(x)

= −2〈Htf, (P − I)(Htf)〉π
= −2E(Htf).

Lemma 13.12 implies that −2E(Htf) ≤ −2γ‖Htf‖22 = −2u(t), whence u′(t) ≤
−2u(t). Since u(0) = ‖f‖22, we conclude that

‖Htf‖22 = u(t) ≤ ‖f‖22e−2γt.

If Eπ(f) 6= 0, apply the above result to the function f − Eπ(f). �

The following is the continuous-time version of Theorem 12.3.

Theorem 20.6. Let P be an irreducible transition matrix with spectral gap γ.
Then

|Ht(x, y)− π(y)| ≤
√
π(y)

π(x)
e−γt, (20.10)

and so

tcont
mix (ε) ≤ log

(
1

επmin

)
1

γ
. (20.11)
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Proof. If fx(y) = 1{y=x}/π(x), then Htfx(y) = Ht(y, x)/π(x). The reader
should check that π(x)Ht(x, y) = π(y)Ht(y, x), and so Htfx(y) = Htfy(x). From
Lemma 20.5, since Eπ(fx) = 1 and Varπ(fx) = (1− π(x))/π(x), we have

‖Htfx − 1‖22 ≤ e−2γt Varπ(f) = e−2γt

(
1− π(x)

π(x)

)
≤ e−2γt

π(x)
. (20.12)

Note that

Htfx(y) =
Ht(x, y)

π(y)
=

∑
z∈ΩHt/2(x, z)Ht/2(z, y)

π(y)

=
∑

z∈Ω

Ht/2fx(z) ·Ht/2fz(y) · π(z) =
∑

z∈Ω

Ht/2fx(z) ·Ht/2fy(z) · π(z).

Therefore, by Cauchy-Schwarz,

|Htfx(y)− 1| =
∣∣∣∣∣
∑

z∈Ω

[
Ht/2fx(z)− 1

][
Ht/2fy(z)− 1

]
π(z)

∣∣∣∣∣
≤ ‖Ht/2fx − 1‖2 ‖Ht/2fy − 1‖2.

The above with (20.12) shows that
∣∣∣∣
Ht(x, y)

π(y)
− 1

∣∣∣∣ ≤
e−γt√
π(x)π(y)

.

Multiplying by π(y) gives (20.10)
Summing over y gives

2 ‖Ht(x, ·)− π‖TV ≤ e−γt
∑

y∈Ω

π(y)√
π(y)π(x)

≤ e−γt

πmin
, (20.13)

from which follows (20.11) �

20.4. Product Chains

For each i = 1, . . . , n, let Pi be a reversible transition matrix on Ωi with
stationary distribution π(i). Define P̃i to be the lift of Pi to Ω =

∏n
i=1 Ωi: for

x = (x(1), . . . , x(n)) ∈ Ω and y = (y(1), . . . , y(n)) ∈ Ω,

P̃i(x,y) :=

{
Pi(x

(i), y(i)) if x(j) = y(j) for j 6= i,

0 otherwise.
(20.14)

We consider the continuous-time chain with transition matrix P := n−1
∑n

i=1 P̃i.
The following gives good upper and lower bounds on tmix(ε) for this product

chain.

Theorem 20.7. Suppose, for i = 1, . . . , n, the spectral gap γi for the chain with
reversible transition matrix Pi is bounded below by γ and the stationary distribution

π(i) satisfies

√
π

(i)
min ≥ c0, for some constant c0 > 0. If P := n−1

∑n
i=1 P̃i, where

P̃i is the matrix defined in (20.14), then the Markov chain with matrix P satisfies

tcont
mix (ε) ≤ 1

2γ
n logn+

1

γ
n log(1/[c0ε]). (20.15)
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If the spectral gap γi = γ for all i, then

tcont
mix (ε) ≥ n

2γ

{
log n− log

[
8 log

(
1/(1− ε)

)]}
. (20.16)

Corollary 20.8. For a reversible transition matrix P with spectral gap γ, let
P(n) := 1

n

∑n
i=1 P̃i, where P̃i is the transition matrix on Ωn defined by

P̃i(x,y) = P (x(i), y(i))1{x(j)=y(j), j 6=i}.

The family of Markov chains with transition matrices P(n) has a cutoff at 1
2γn logn.

To obtain a good upper bound on d(t) for product chains, we need to use a
distance which is better suited for product distribution than is the total variation
distance. For two distributions µ and ν on Ω, define the Hellinger affinity as

I(µ, ν) :=
∑

x∈Ω

√
ν(x)µ(x). (20.17)

The Hellinger distance is defined as

dH(µ, ν) :=
√

2− 2I(µ, ν). (20.18)

Note also that

dH(µ, ν) =

√∑

x∈Ω

(√
µ(x)−

√
ν(x)

)2

. (20.19)

The measure ν dominates µ if ν(x) = 0 implies µ(x) = 0, in which case we write

µ ≪ ν. If µ ≪ ν, then we can define g(x) := µ(x)
ν(x)1{ν(x)>0}, and we also have the

identity

dH(µ, ν) = ‖√g − 1‖ℓ2(ν). (20.20)

The following lemma shows why the Hellinger distance is useful for product
measure.

Lemma 20.9. For measures µ(i) and ν(i) on Ωi, let µ :=
∏n
i=1 µ

(i) and ν :=∏n
i=1 ν

(i). The Hellinger affinity satisfies

I(µ, ν) =
n∏

i=1

I(µ(i), ν(i)),

and therefore

d2
H(µ, ν) ≤

n∑

i=1

d2
H(µ(i), ν(i)). (20.21)

The proof is left as Exercise 20.5.
We will also need to compare Hellinger with other distances.

Lemma 20.10. Let µ and ν be probability distributions on Ω. The total variation
distance and Hellinger distance satisfy

‖µ− ν‖TV ≤ dH(µ, ν). (20.22)

If µ≪ ν, then

dH(µ, ν) ≤ ‖g − 1‖ℓ2(ν) , (20.23)

where g(x) = µ(x)
ν(x)1{µ(x)>0}.
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Proof. First, observe that

‖µ− µ‖TV =
1

2

∑

x∈Ω

|µ(x)− ν(x)|

=
1

2

∑

x∈Ω

|
√
µ(x)−

√
ν(x)|

(√
µ(x) +

√
ν(x)

)
. (20.24)

By the Cauchy-Schwarz inequality,
∑

x∈Ω

(√
µ(x) +

√
ν(x)

)2

= 2 + 2
∑

x∈Ω

√
µ(x)ν(x) ≤ 4. (20.25)

Applying Cauchy-Schwarz on the right-hand side of (20.24) and using the bound
(20.25) shows that

‖µ− ν‖2TV ≤
1

4

[∑

x∈Ω

(√
µ(x)−

√
ν(x)

)2
]

4 = d2
H(µ, ν).

To prove (20.23), use (20.20) and the inequality (1−√x)2 ≤ (1− x)2, valid for
all x:

dH(µ, ν) = ‖√g − 1‖2 ≤ ‖g − 1‖2.
�

We will also make use of the following lemma, useful for obtaining lower bounds.
This is the continuous-time version of the bound (12.13) in the proof of Theorem
12.3.

Lemma 20.11. Let P be an irreducible reversible transition matrix, and let
Ht be the heat kernel of the associated continuous-time Markov chain. If λ is an
eigenvalue of P , then

max
x∈Ω
‖Ht(x, ·) − π‖TV ≥

1

2
e−(1−λ)t. (20.26)

Proof. Let f be an eigenfunction of P with eigenvalue λ. We have that

Htf(x) =

∞∑

k=0

e−t
tk

k!
P kf(x) = e−t

∞∑

k=0

(tλ)k

k!
f(x) = e−t(1−λ)f(x).

Since f is orthogonal to 1, we have
∑

y∈Ω f(y)π(y) = 0, whence

e−t(1−λ)|f(x)| = |Htf(x)|

=

∣∣∣∣∣∣
∑

y∈Ω

[Ht(x, y)f(y)− π(y)f(y)]

∣∣∣∣∣∣
≤ ‖f‖∞2 ‖Ht(x, ·) − π‖TV .

Taking x with f(x) = ‖f‖∞ yields (20.26). �

Proof of Theorem 20.7. Proof of (20.15). Let Xt = (X
(1)
t , . . . , X

(n)
t ) be

the Markov chain with transition matrix P and heat kernel Ht. Note that

Ht =

n∏

i=1

e(t/n)(P̃i−I),
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which follows from Exercise 20.3 since P̃i and P̃j commute. Therefore, for x,y ∈ Ω,

Px{Xt = y} = Ht(x,y) =

n∏

i=1

e(t/n)(P̃i−I)(x,y) =

n∏

i=1

Px{X(i)
t/n = y(i)}. (20.27)

Since (20.27) implies that Ht(x, ·) =
∏n
i=1H

(i)
t/n(x

(i), ·), by (20.21),

d2
H(Ht(x, ·),π) ≤

n∑

i=1

d2
H

(
H

(i)
t/n(x

(i), ·), π(i)
)
.

Using (20.22) and (20.23) together with the above inequality shows that

‖Ht(x, ·)− π‖2TV ≤
n∑

i=1

∥∥∥∥∥
H

(i)
t (x(i), ·)
π(i)

− 1

∥∥∥∥∥

2

2

.

Combining the above with (20.12) and using the hypotheses of the theorem yields

‖Ht(x, ·)− π‖2TV ≤
n∑

i=1

e−2γit

π(i)(x(i))
≤ ne−2γt

c20
.

In particular,

‖Ht(x, ·)− π‖TV ≤
√
ne−γt

c0
,

from which follows (20.15).

Proof of (20.16). Pick x
(i)
0 which maximizes

∥∥∥H(i)
t (x, ·)− π(i)

∥∥∥
TV

. From

(20.22), it follows that

I
(
H

(i)
t/n

(
x

(i)
0 , ·

)
, π(i)

)
≤ 1− 1

2

∥∥∥H(i)
t/n(x

(i)
0 , ·)− π(i)

∥∥∥
2

TV
.

Applying Lemma 20.11 and using the above inequality shows that

I
(
H

(i)
t/n

(
x

(i)
0 , ·

)
, π(i)

)
≤ 1− e−2γt/n

8
.

Let x0 :=
(
x

(1)
0 , . . . , x

(n)
0

)
. By Lemma 20.9,

I (Ht(x0, ·),π) ≤
(

1− e−2γt/n

8

)n
. (20.28)

Note that by (4.13), for any two distributions µ and ν,

I(µ, ν) =
∑

x∈Ω

√
µ(x)ν(x) ≥

∑

x∈Ω

µ(x) ∧ ν(x) = 1− ‖µ− ν‖TV ,

and consequently,
‖µ− ν‖TV ≥ 1− I(µ, ν). (20.29)

Using (20.29) in (20.28) shows that

‖Ht(x0, ·)− π‖TV ≥ 1−
(

1− e−2γt/n

8

)n
.

Therefore, if

t <
n

2γ

{
logn− log

[
8 log

(
1/(1− ε)

)]}
,

then
‖Ht(x0, ·)− π‖TV > ε.
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That is, (20.16) holds. �

Exercises

Exercise 20.1. Let T1, T2, . . . be an i.i.d. sequence of exponential random

variables of rate µ, let Sk =
∑k

i=1 Ti, and let Nt = max{k : Sk ≤ t}.
(a) Show that Sk has a gamma distribution with shape parameter k and rate

parameter µ, i.e. its density function is

fk(s) =
µksk−1e−µs

(k − 1)!
.

(b) Show by computing P{Sk ≤ t < Sk+1} that Nt is a Poisson random variable
with mean µt.

Exercise 20.2. We outline below an alternative proof that Nt has a Poisson
distribution with mean t; fill in the details.

Divide the interval [0, t] into t/∆ subintervals of length ∆. The chance of at
least one transition in each subinterval is

1− e−t/∆ = t/∆ +O((t/∆)2),

and the chance of more than one transition is O((t/∆)2). The number of transitions
recorded in subintervals are independent of one another. Therefore, as ∆→ 0, the
total number of arrivals tends to a Poisson distribution with parameter t.

Exercise 20.3. Show that if A and B are m × m matrices which commute,
then eA+B = eAeB.

Exercise 20.4. Let Y be a binomial random variable with parameters 4m and
1/2. Show that

P{Y = 2m+ j} =
1√
2πm

e−j
2/2n [1 + εm] ,

where εm → 0 uniformly for j/
√
m ≤ A.

Exercise 20.5. Show that if µ =
∏n
i=1 µi and ν =

∏n
i=1 νi, then

I(µ, ν) =

n∏

i=1

I(µi, νi),

and therefore

d2
H(µ, ν) ≤

n∑

i=1

d2
H(µi, νi).

Notes

To make the estimates in Section 20.2 more quantitative, one needs an estimate
of the convergence rate for ηm in Lemma 20.4. This can be done in at least three
ways:

(1) We could apply a version of Stirling’s formula with error bounds (see
(A.10)) in conjunction with large deviation estimates for Y and Ψ.

(2) We could replace Stirling’s formula with a precise version of the local
Central Limit Theorem; see e.g. Spitzer (1976).
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(3) One can also use Stein’s method; see Chyakanavichyus and Văıtkus (2001)
or Röllin (2007).

These methods all show that ηm is of order m−1/2.
Mixing of product chains is studied in detail in Barrera, Lachaud, and Ycart

(2006). The Hellinger distance was used by Kakutani (1948) to characterize when
two product measures on an infinite product space are singular.



CHAPTER 21

Countable State Space Chains*

In this chapter we treat the case where Ω is not necessarily finite, although we
assume it is a countable set. A classical example is the simple random walk on
Zd, which we have already met in the case d = 1 in Section 2.7. This walk moves
on Zd by choosing uniformly at random among her 2d nearest neighbors. There
is a striking dependence on the dimension d: when d ≥ 3, the walk may wander
off “to infinity”, never returning to its starting place, while this is impossible in
dimensions d ≤ 2. We will return to this example later.

As before, P is a function from Ω× Ω to [0, 1] satisfying
∑
y∈Ω P (x, y) = 1 for

all x ∈ Ω. We still think of P as a matrix, except now it has countably many rows
and columns. The matrix arithmetic in the finite case extends to the countable
case without any problem, as do the concepts of irreducibility and aperiodicity.
The joint distribution of the infinite sequence (Xt) is still specified by P along with
a starting distribution µ on Ω.

21.1. Recurrence and Transience

Example 21.1 (Simple random walk on Z). Let (Xt) have transition matrix

P (j, k) =

{
1/2 if k = j ± 1,

0 otherwise.

Let Ak be the event that the walk started from zero reaches absolute value 2k before
it returns to zero. By symmetry, P0(A1) = 1/2 and P0(Ak+1 | Ak) = 1/2. Thus
P0(Ak) = 2−k, and in particular

P0{τ+
0 =∞} = P0

( ∞⋂

k=1

Ak

)
= lim
k→∞

P0(Ak) = 0.

The penultimate equality follows since the events {Ak} are decreasing.

Example 21.2 (Biased random walk on Z). Suppose now that a particle on Z

makes biased moves, so that

P (j, k) =

{
q for k = j − 1,

p for k = j + 1,

where q < p and q + p = 1. Recall the gambler’s ruin formula (9.21) for biased
random walk,

Pk{τn < τ0} =
1− (q/p)k

1− (q/p)n
.

275
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Thus,

P1{τ0 =∞} ≥ P1

( ∞⋂

n=2

{τn < τ0}
)

= lim
n

1− (q/p)

1− (q/p)n
=
p− q
p

> 0.

Since P0{τ0 = ∞} = P1{τ0 = ∞}, there is a positive probability that the biased
random walk never returns to its starting position.

This is also a consequence of the Strong Law of Large Numbers; see Exercise
21.1.

We have seen that on Z the unbiased random walk (Example 21.1) and the
biased random walk (Example 21.2) have quite different behavior. We make the
following definition to describe this difference.

We define a state x ∈ Ω to be recurrent if Px{τ+
x <∞} = 1. Otherwise, x is

called transient .

Proposition 21.3. Suppose that P is the transition matrix of an irreducible
Markov chain (Xt). Define G(x, y) := Ex

(∑∞
t=0 1{Xt=y}

)
=
∑∞

t=0 P
t(x, y) to be

the expected number of visits to y starting from x. The following are equivalent:

(i) G(x, x) =∞ for some x ∈ Ω.
(ii) G(x, y) =∞ for all x, y ∈ Ω.
(iii) Px{τ+

x <∞} = 1 for some x ∈ Ω.
(iv) Px{τ+

y <∞} = 1 for all x, y ∈ Ω.

Proof. Every time the chain visits x, it has the same probability of eventually
returning to x, independent of the past. Thus the number of visits to x is a
geometric random variable with success probability 1 − Px{τ+

x < ∞}. It follows
that (i) and (iii) are equivalent.

Suppose G(x0, x0) =∞, and let x, y ∈ Ω. By irreducibility, there exist r and s
such that P r(x, x0) > 0 and P s(x0, y) > 0. Then

P r(x, x0)P
t(x0, x0)P

s(x0, y) = Px{Xr = x0, Xr+t = x0, Xr+t+s = y}
≤ Px{Xr+t+s = y} = P r+t+s(x, y).

Thus,

G(x, y) ≥
∞∑

t=0

P r+t+s(x, y) = P r(x, x0)P
s(x0, y)

∞∑

t=0

P t(x0, x0). (21.1)

Since P r(x, x0)P
s(x0, y) > 0, (21.1) shows that conditions (i) and (ii) are equiva-

lent.
Suppose that Px0{τ+

x0
<∞} = 1 for some x0 ∈ Ω, and let x, y ∈ Ω.

If Px0{τx < τ+
x0
} = 0, then x is never hit when starting from x0, contradicting

the irreducibility of the chain. We have

0 = Px0{τ+
x0

=∞} ≥ Px0{τx < τ+
x0
}Px{τ+

x0
=∞}.

Since Px0{τx < τ+
x0
} > 0, it must be true that Px{τ+

x0
= ∞} = 0. Each time the

chain visits x0, it has positive probability of visiting y, independent of the past.
Since the chain visits x0 infinitely often, it will eventually visit y. To summarize:
starting from x, the chain is certain to visit x0, and starting from x0, the chain is
certain to visit y. Consequently, Px{τy <∞} = 1. We conclude that (iii) and (iv)
are equivalent. �
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By Proposition 21.3, for an irreducible chain, a single state is recurrent if and
only if all states are recurrent. For this reason, an irreducible chain can be classified
as either recurrent or transient.

Example 21.4 (Simple random walk on Z revisited). Another proof that the
simple random walker on Z discussed in Example 21.1 is recurrent uses Proposi-
tion 21.3.

When started at 0, the walk can return to 0 only at even times, with the prob-
ability of returning after 2t steps equal to P0{X2t = 0} =

(
2t
t

)
2−2t. By application

of Stirling’s formula (A.9), P0{X2t = 0} ∼ ct−1/2. Then

G(0, 0) =

∞∑

t=0

P0{X2t = 0} =∞,

so by Proposition 21.3 the chain is recurrent.

Example 21.5. The simple random walk on Z2 moves at each step by selecting
each of the four neighboring locations with equal probability. Instead, consider at
first the “corner” walk, which at each move adds with equal probability one of
{(1, 1), (1,−1), (−1, 1), (−1,−1)} to the current location. The advantage of this
walk is that its coordinates are independent simple random walks on Z. So

P(0,0){X2t = (0, 0)} = P(0,0)

{
X1

2t = 0
}
P(0,0)

{
X2

2t = 0
}
∼ c

n
.

Again by Proposition 21.3, the chain is recurrent. Now notice that the usual nearest-
neighbor simple random walk is a rotation of the corner walk by π/4, so it is
recurrent.

For random walks on infinite graphs, the electrical network theory of Chapter
9 is very useful for deciding if a chain is recurrent.

21.2. Infinite Networks

For an infinite connected graph G = (V,E) with edge conductances {c(e)}e∈E,
let a ∈ V , and let {Gn = (Vn, En)} be a sequence of finite connected subgraphs
containing a such that

(i) En contains all edges in E with both endpoints in Vn,
(ii) Vn ⊂ Vn+1 for all n, and
(iii)

⋃∞
n=1 Vn = V .

For each n, construct a modified network G⋆n in which all the vertices in V \Vn are
replaced by a single vertex zn (adjacent to all vertices in Vn which are adjacent to
vertices in V \ Vn), and define

R(a↔∞) := lim
n→∞

R (a↔ zn in G⋆n) .

The limit above exists and does not depend on the sequence {Gn} by Rayleigh’s
Monotonicity Principle. Define C(a↔∞) := [R(a↔∞)]−1. By (9.13),

Pa{τ+
a =∞} = lim

n→∞
Pa{τzn < τ+

a } = lim
n→∞

C(a↔ zn)

π(a)
=
C(a↔∞)

π(a)
.

The first and fourth expressions above refer to the network G, while the second and
third refer to the networks G⋆n.
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A flow on G from a to infinity is an antisymmetric edge function obeying the
node law at all vertices except a. Thomson’s Principle (Theorem 9.10) remains
valid for infinite networks:

R(a↔∞) = inf {E(θ) : θ a unit flow from a to ∞} . (21.2)

As a consequence, Rayleigh’s Monotonicity Law (Theorem 9.12) also holds for in-
finite networks.

The following summarizes the connections between resistance and recurrence.

Proposition 21.6. Let 〈G, {c(e)}〉 be a network. The following are equivalent:

(i) The weighted random walk on the network is transient.
(ii) There is some node a with C(a↔∞) > 0. (Equivalently, R(a↔∞) <∞.)
(iii) There is a flow θ from some node a to infinity with ‖θ‖ > 0 and E(θ) <∞.

In an infinite network 〈G, {ce}〉, a version of Proposition 9.15 (the Nash-Williams
inequality) is valid.

Proposition 21.7 (Nash-Williams). If there exist disjoint edge-cutsets {Πn}
that separate a from ∞ and satisfy

∑

n

(∑

e∈Πn

c(e)

)−1

=∞, (21.3)

then the weighted random walk on 〈G, {ce}〉 is recurrent.

Proof. Recall the definition of zn given in the beginning of this section. The
assumption (21.3) implies that R(a ↔ zn) → ∞. Consequently, by Proposition
9.5, Pa{τzn < τ+

a } → 0, and the chain is recurrent. �

Example 21.8 (Z2 is recurrent). Take c(e) = 1 for each edge of G = Z2 and
consider the cutsets consisting of edges joining vertices in ∂�n to vertices in ∂�n+1,
where �n := [−n, n]2. Then by the Nash-Williams inequality,

R(a↔∞) ≥
∑

n

1

4(2n+ 1)
=∞.

Thus, simple random walk on Z2 is recurrent. Moreover, we obtain a lower bound
for the resistance from the center of a square �n = [−n, n]2 to its boundary:

R(0↔ ∂�n) ≥ c logn.

Example 21.9 (Z3 is transient). To each directed edge ~e in the lattice Z3,
attach an orthogonal unit square �e intersecting ~e at its midpoint me. Define θ(~e)
to be the area of the radial projection of �e onto the sphere of radius 1/4 centered
at the origin, taken with a positive sign if ~e points in the same direction as the
radial vector from 0 to me and with a negative sign otherwise (see Figure 21.1). By
considering the projections of all faces of the unit cube centered at a lattice point,
we can easily verify that θ satisfies the node law at all vertices except the origin.
Hence θ is a flow from 0 to ∞ in Z3. It is easy to bound its energy:

E(θ) ≤
∑

n

C1n
2

(
C2

n2

)2

<∞.

By Proposition 21.6, Z3 is transient. This works for any Zd, d ≥ 3. An analytic
description of the same flow was given by T. Lyons (1983).
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Figure 21.1. Projecting a unit square orthogonal to the directed
edge ((0, 0, 2), (1, 0, 2)) onto the sphere of radius 1/4 centered at
the origin.

21.3. Positive Recurrence and Convergence

The Convergence Theorem as stated in Theorem 4.9 does not hold for all irre-
ducible and aperiodic chains on infinite state spaces. If the chain is transient, then
by Proposition 21.3,

∑∞
t=0 Px{Xt = y} <∞ for all x, y ∈ X . This implies that for

all x, y ∈ Ω,

lim
t→∞

Px{Xt = y} = 0. (21.4)

That is, if there is a probability π on Ω such that (µP t)(x) → π(x) for all x ∈ Ω,
then the chain must be recurrent.

However, recurrence is not sufficient. For example, the simple random walker
of Example 21.4, a recurrent chain, also satisfies (21.4). A condition stronger than
recurrence is required.

Example 21.10. We have already seen that the simple random walker on Z is
recurrent. Let α = E1(τ0). By conditioning on the first move of the walk,

α =
1

2
[1] +

1

2
[1 + E2(τ0)] = 1 + α.

The last equality follows since the time to go from 2 to 0 equals the time to go
from 2 to 1 plus the time to go from 1 to 0, and the time to go from 2 to 1 has
the same distribution as the time to go from 1 to 0. There is no finite number α
which satisfies this equation, so we must have α = ∞. From this it follows that
E0(τ

+
0 ) = ∞. Thus, although τ0 is a finite random variable with probability one,

it has infinite expectation.

A state x is called positive recurrent if Ex(τ
+
x ) < ∞. As Example 21.10

shows, this property is strictly stronger than recurrence.
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Proposition 21.11. If (Xt) is a Markov chain with irreducible transition ma-
trix P , then the following are equivalent:

(i) Ex(τ
+
x ) <∞ for some x ∈ Ω.

(ii) Ex(τ
+
y ) <∞ for all x, y ∈ Ω.

Proof. Suppose that Ey(τ
+
y ) <∞. On the event {τx < τ+

y }, the return time

to y satisfies τ+
y = τx + τ̃+

y , where τ̃+
y is the amount of time after τ+

x until the

chain first hits y. The chain from τ+
x onwards is just like a chain started from x at

time 0. Therefore, given that τ+
x < τ+

y , the distribution of τ̃+
y is the same as the

distribution of τ+
y when the chain is started at x. We conclude that

∞ > Eyτ
+
y ≥ Ey(τ

+
y | τx < τ+

y )Py{τx < τ+
y } ≥ Ex(τ

+
y )Py{τx < τ+

y }.
By irreducibility, Py{τx < τ+

y } > 0, whence Ex(τ
+
y ) <∞.

Now let x and y be any two states in Ω. Define

τa→b = inf{t > τ+
a : Xt = b},

the first time after first visiting a that the chain visits b. Observe that

∞ > Ex0(τx→x0) = Ex0(τ
+
x ) + Ex(τ

+
x0

).

Consequently, both Ex0(τ
+
x ) and Ex(τ

+
x0

) are finite for any x. It follows that

Ex(τ
+
y ) ≤ Ex(τ

+
x0

) + Ex0(τ
+
y ) <∞.

�

Thus if a single state of the chain is positive recurrent, all states are positive
recurrent. We can therefore classify an irreducible chain as positive recurrent if one
state and hence all states are positive recurrent. A chain which is recurrent but not
positive recurrent is called null recurrent .

The following relates positive recurrence to the existence of a stationary distri-
bution:

Theorem 21.12. An irreducible Markov chain with transition matrix P is pos-
itive recurrent if and only if there exists a probability distribution π on Ω such that
π = πP .

Lemma 21.13 (Kac). Let (Xt) be an irreducible Markov chain with transition
matrix P . Suppose that there is a stationary distribution π solving π = πP . Then
for any set S ⊂ Ω, ∑

x∈S
π(x)Ex(τ

+
S ) = 1. (21.5)

In other words, the expected return time to S when starting at the stationary dis-
tribution conditioned on S is π(S)−1.

Proof. Let (Yt) be the reversed chain with transition matrix P̂ , defined in
(1.33).

First we show that both (Xt) and (Yt) are recurrent. Fix a state x and define

α(t) := Pπ{Xt = x, Xs 6= x for s > t}.
By stationarity,

α(t) = Pπ{Xt = x}Px{τ+
x =∞} = π(x)Px{τ+

x =∞}. (21.6)
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Since the events {Xt = x, Xs 6= x for s > t} are disjoint for distinct t,
∞∑

t=0

α(t) ≤ 1.

Since it is clear from (21.6) that α(t) does not depend on t, it must be that α(t) = 0
for all t. From the identity (21.6) and Exercise 21.2, it follows that Px{τ+

x <∞} =
1. The same argument works for the reversed chain as well, so (Yt) is also recurrent.

For x ∈ S, y ∈ Ω and t ≥ 0, sum the identity

π(z0)P (z0, z1)P (z1, z2) · · ·P (zt−1, zt) = π(zt)P̂ (zt, zt−1) · · · P̂ (z1, z0)

over all sequences where z0 = x, the states z1, . . . , zt−1 are not in S, and zt = y to
obtain

π(x)Px{τ+
S ≥ t, Xt = y} = π(y)P̂y{τ+

S = t, Yt = x}. (21.7)

(We write P̂ for the probability measure corresponding to the reversed chain.)
Summing over all x ∈ S, y ∈ Ω, and t ≥ 0 shows that

∑

x∈S
π(x)

∞∑

t=1

Px{τ+
S ≥ t} = P̂π{τ+

S <∞} = 1.

(The last equality follows from recurrence of (Yt).) Since τ+
S takes only positive

integer values, this simplifies to
∑

x∈S
π(x)Ex{τ+

S } = 1. (21.8)

�

Proof of Theorem 21.12. That the chain is positive recurrent when a sta-
tionary distribution exists follows from Lemma 21.13 and Exercise 21.2.

The key fact needed to show that π̃ defined in (1.19) can be normalized to
yield a stationary distribution is that Ez(τ

+
z ) < ∞, which holds now by positive

recurrence. Thus the proof that a stationary distribution exists goes through as in
the finite case (Proposition 1.14). �

Theorem 21.14. Let P be an irreducible and aperiodic transition matrix for
a Markov chain (Xt). If the chain is positive recurrent, then there is a unique
probability distribution π on Ω such that π = πP and for all x ∈ Ω,

lim
t→∞

‖P t(x, ·) − π‖TV = 0. (21.9)

Proof. The existence of π solving π = πP is one direction of Theorem 21.12.
We now show that for any two states x and y we can couple together the chain

started from x with the chain started from y so that the two chains eventually meet
with probability one.

Consider the chain on Ω× Ω with transition matrix

P̃ ((x, y), (z, w)) = P (x, z)P (y, w), for all (x, y) ∈ Ω×Ω, (z, w) ∈ Ω×Ω. (21.10)

This chain makes independent moves in the two coordinates, each according to the
matrix P . Aperiodicity implies that this chain is irreducible (see Exercise 21.5).
If (Xt, Yt) is a chain started with product distribution µ × ν and run with transi-

tion matrix P̃ , then (Xt) is a Markov chain with transition matrix P and initial
distribution µ, and (Yt) is a Markov chain with transition matrix P and initial
distribution ν.



282 21. COUNTABLE STATE SPACE CHAINS*

Note that

(π × π)P̃ (z, w) =
∑

(x,y)∈Ω×Ω

(π × π)(x, y)P (x, z)P (y, w)

=
∑

x∈Ω

π(x)P (x, z)
∑

y∈Ω

π(y)P (y, w).

Since π = πP , the right-hand side equals π(z)π(w) = (π × π)(z, w). Thus π × π
is a stationary distribution for P̃ . By Theorem 21.12, the chain (Xt, Yt) is positive
recurrent. In particular, for any fixed x0, if

τ := min{t > 0 : (Xt, Yt) = (x0, x0)},
then

Px,y{τ <∞} = 1 for all x, y ∈ Ω. (21.11)

To construct the coupling, run the pair of chains with transitions (21.10) until
they meet. Afterwards, keep them together. To obtain (21.9), note that if the chain
(Xt, Yt) is started with the distribution δx × π, then for fixed t the pair of random
variables Xt and Yt is a coupling of P t(x, ·) with π. Thus by Proposition 4.7 we
have ∥∥P t(x, ·)− π

∥∥
TV
≤ Pδx×π{Xt 6= Yt} ≤ Pδx×π{τ > t}. (21.12)

From (21.11),

lim
t→∞

Pδx×π{τ > t} =
∑

y∈Ω

π(y) lim
t→∞

Px,y{τ > t} = 0.

This and (21.12) imply (21.9). �

Example 21.15. Consider a nearest-neighbor random walk on Z+ which moves
up with probability p and down with probability q. If the walk is at 0, it remains
at 0 with probability q. Assume that q > p.

The equation π = πP reads as

π(0) = qπ(1) + qπ(0),

π(k) = pπ(k − 1) + qπ(k + 1).

Solving, π(1) = π(0)(p/q) and working up the ladder,

π(k) = (p/q)kπ(0).

Here π can be normalized to be a probability distribution, in which case

π(k) = (p/q)k(1− p/q).
Since there is a solution to πP = π which is a probability distribution, the chain is
positive recurrent.

By Proposition 1.19, if a solution can be found to the detailed balance equations

π(x)P (x, y) = π(y)P (y, x), x, y ∈ Ω,

then provided π is a probability distribution, the chain is positive recurrent.

Example 21.16 (Birth-and-death chains). A birth-and-death chain on
{0, 1, . . . , } is a nearest-neighbor chain which moves up when at k with probability
pk and down with probability qk = 1− pk. The detailed balance equations are, for
j ≥ 1,

π(j)pj = π(j + 1)qj+1.
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Thus π(j + 1)/π(j) = pj/qj+1 and so

π(k) = π(0)

k−1∏

j=0

π(j + 1)

π(j)
= π(0)

k−1∏

j=0

pj
qj+1

.

This can be made into a probability distribution provided that

∞∑

k=1

k−1∏

j=0

pj
qj+1

<∞, (21.13)

in which case we take π(0)−1 to equal this sum.
If the sum in (21.13) is finite, the chain is positive recurrent.

21.4. Null Recurrence and Convergence

We now discuss the asymptotic behavior of P t(x, y) in the null recurrent case.

Theorem 21.17. If P is the transition matrix on Ω of a null-recurrent irre-
ducible chain, then

lim
t→∞

P t(x, y) = 0 for all x, y ∈ Ω. (21.14)

Proof. Step 1. It is sufficient to prove P t(x, x)→ 0 for a fixed state x: why?
Given x, y ∈ Ω, by irreducibility, there exists k such that P k(y, x) > 0. Since

P t+k(x, x) ≥ P t(x, y)P k(y, x),
P t(x, x)→ 0 implies P t(x, y)→ 0.

Step 2. It is sufficient to prove (21.14) for aperiodic P : why? Fix x ∈ Ω, let
ℓ := gcd{t : P t(x, x) > 0}, and let

X̃ := {y : there exists k with P ℓk(x, y) > 0}.
Then P ℓ is an irreducible aperiodic transition matrix on X̃. Thus we may and shall
assume that the original matrix P is irreducible and aperiodic.

Step 3. The measure π̃ defined by

π̃(y) = Ex



τ+

x −1∑

t=0

1{Xt=y}


 (21.15)

is a stationary measure. This was shown in the proof of Proposition 1.14 for finite
state spaces, and the proof works nearly the same way for countable state spaces.
We note that π̃(y) < ∞ for all y ∈ Ω. Why? If the walk visits y before returning
to x, the number of additional visits to y before hitting x is a geometric random
variable with parameter Py{τy < τx} < 1. Note also that π̃(x) = 1. By null
recurrence, π̃(Ω) =∞.

Step 4. Given M , find a finite set F ⊂ Ω with π̃(F ) ≥ M and consider the
conditional distribution µF defined by

µF (A) =
π̃(A ∩ F )

π̃(F )
.

We have

µFP
t(x) =

∑

y∈Ω

µF (y)P t(y, x) ≤ 1

π̃(F )

∑

y∈Ω

π̃(y)P t(y, x) =
π̃P t(x)

π̃(F )
=
π̃(x)

π̃(F )
≤ 1

M
.
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By irreducibility and aperiodicity, for all y ∈ F there exists my such that for all t ≥
my we have P t(x, y) > 0. Letm := maxy∈F my and ε := miny∈F Pm(x, y)/µF (y) >
0.

Step 5. Define a probability measure ν on Ω by

Pm(x, ·) = εµF + (1 − ε)ν. (21.16)

By recurrence,
lim
N→∞

Pν{τ+
x > N} = 0.

Choose N with Pν{τ+
x > N} ≤ ε/M . Observe that

Pν{Xt = x} = νP t(x) ≤
N∑

k=1

Pν{τ+
x = k}P t−k(x, x) + Pν{τ+

x > N}.

Thus
lim sup
t→∞

Pν{Xt = x} ≤ lim sup
t→∞

P t(x, x) +
ε

M
.

Since, by (21.16), for all t ≥ m
P t(x, x) ≤ εµFP t−m(x) + (1 − ε)νP t−m(x),

we conclude that

lim sup
t→∞

P t(x, x) ≤ ε

M
+ (1− ε)

(
lim sup
t→∞

P t(x, x) +
ε

M

)
.

Therefore,

lim sup
t→∞

P t(x, x) ≤ 2

M
.

Since M is arbitrary, the proof is complete. �

21.5. Bounds on Return Probabilities

The following is from Barlow, Coulhon, and Kumagai (2005) (cf. Proposition
3.3 there), although the proof given here is different.

Theorem 21.18. Let G be an infinite graph with maximum degree at most ∆,
and consider the lazy simple random walk on G. For an integer r > 0 let B(x, r)
denote the ball of radius r (using the graph distance) centered at x. Then for
T = r · |B(x, r)| we have

PT (x, x) ≤ 3∆2

|B(x, r)| .

Proof. It is clear that in order to prove the statement we may assume we are
performing a random walk on the finite graph B(x, T ) instead of G. Let (Xt)

∞
t=0 de-

note the lazy simple random walk on B(x, T ) and denote its stationary distribution
by π. Define

τ(x) := min {t ≥ T : Xt = x} .
We also consider the induced chain on B = B(x, r) and denote this by (X̃t)

∞
t=1.

To define it formally, let τ1 < τ2 < · · · be all the times such that Xτt ∈ B and write

X̃t = Xτt . We write π̃ for the corresponding stationary distribution on B = B(x, r)

and τ̃ (x) for the smallest t such that τt ≥ T and X̃t = x. For any x ∈ B we have
that π(x) = π̃(x)π(B). Also, Lemma 10.5 gives that

Ex (number of visits of Xt to y before time τ(x)) = π(y)Exτ(x).
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We sum this over y ∈ B to get

Ex (number of visits of Xt to B before time τ(x)) = π(B)Exτ(x).

Observe that the number of visits of Xt to B before τ(x) equals τ̃(x) and hence

Exτ(x) =
Exτ̃ (x)

π(B)
. (21.17)

We now use Lemma 10.5 again to get

T−1∑

t=0

P t(x, x) = Ex (number of visits to x before time τ(x))

= π(x)Exτ(x) = π̃(x)Exτ̃ (x),

(21.18)

where the last equality is due to (21.17). Denote by σ the minimal t ≥ T such that
Xt ∈ B and let ν be the distribution of Xσ. Observe that Exτ̃ (x) ≤ T + Eν τ̃0(x)
where τ̃0(x) is the first hitting time of x in the induced chain. Since P t(x, x) is
weakly decreasing in t (Proposition 10.18), we infer that

TPT (x, x) ≤ π̃(x)[T + Eν τ̃0(x)].

We use the Commute Time Identity (Proposition 10.6) and bound the effective
resistance from above by the distance to get

Eν τ̃0(x) ≤ 2∆r|(B(x, r))|.
Since π̃(x) ≤ ∆/|B(x, r)|, we conclude that

TPT (x, x) ≤ ∆T

|B(x, r)| + 2∆2r.

This immediately gives that

PT (x, x) ≤ ∆

|B(x, r)| +
2∆2r

T
.

Recalling that T = r|B(x, r)| finishes the proof. �

Exercises

Exercise 21.1. Use the Strong Law of Large Numbers to give a proof that the
biased random walk in Example 21.2 is transient.

Exercise 21.2. Suppose that P is irreducible. Show that if π = πP for a
probability distribution π, then π(x) > 0 for all x ∈ Ω.

Exercise 21.3. Fix k > 1. Define the k-fuzz of an undirected graph G =
(V,E) as the graph Gk = (V,Ek) where for any two distinct vertices v, w ∈ V , the
edge {v, w} is in Ek if and only if there is a path of at most k edges in E connecting
v to w. Show that for G with bounded degrees, G is transient if and only if Gk is
transient.

A solution can be found in Doyle and Snell (1984, Section 8.4).

Exercise 21.4. Show that any subgraph of a recurrent graph must be recur-
rent.
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Exercise 21.5. Let P be an irreducible and aperiodic transition matrix on Ω.
Let P̃ be the matrix on Ω× Ω defined by

P̃ ((x, y), (z, w)) = P (x, z)P (y, z), (x, y) ∈ Ω× Ω, (z, w) ∈ Ω× Ω.

Show that P̃ is irreducible.

Exercise 21.6. Consider the discrete-time single server FIFO (first in, first
out) queue: at every step, if there is a customer waiting, exactly one of the following
happens:

(1) a new customer arrives (with probability α) or
(2) an existing customer is served (with probability β = 1− α).

If there are no customers waiting, then (1) still has probability α, but (2) is replaced
by “nothing happens”. Let Xt be the number of customers in the queue at time t.

Show that (Xt) is

(a) positive recurrent if α < β,
(b) null recurrent if α = β,
(c) transient if α > β.

Exercise 21.7. Consider the same set-up as Exercise 21.6. In the positive
recurrent case, determine the stationary distribution π and the π-expectation of
the time T from the arrival of a customer until he is served.

Remark 21.19. In communication theory one talks of packets instead of cus-
tomers.

Exercise 21.8. Let P be the transition matrix for simple random walk on Z.
Show that the walk is not positive recurrent by showing there are no probability
distributions π on Z satisfying πP = π.

Notes

Further reading. Many texts, including Feller (1968) and Doyle and Snell
(1984), also give proofs of the recurrence of random walk in one and two dimensions
and of the transience in three or more.

Lyons (1983) used flows for analyzing chains with infinite state spaces.
For much more on infinite networks, see Soardi (1994), Woess (2000), and

Lyons and Peres (2008).
For more on Markov chains with infinite state spaces, see, e.g., Feller (1968),

Norris (1998), or Kemeny, Snell, and Knapp (1976). See also Thorisson (2000).



CHAPTER 22

Coupling from the Past
by James G. Propp and David B. Wilson

22.1. Introduction

In Markov chain Monte Carlo studies, one attempts to sample from a probabil-
ity distribution π by running a Markov chain whose unique stationary distribution
is π. Ideally, one has proved a theorem that guarantees that the time for which one
plans to run the chain is substantially greater than the mixing time of the chain, so
that the distribution π̃ that one’s procedure actually samples from is known to be
close to the desired π in variation distance. More often, one merely hopes that this
is the case, and the possibility that one’s samples are contaminated with substantial
initialization bias cannot be ruled out with complete confidence.

The “coupling from the past” (CFTP) procedure introduced by Propp and Wil-
son (1996) provides one way of getting around this problem. Where it is applicable,
this method determines on its own how long to run and delivers samples that are
governed by π itself, rather than π̃. Many researchers have found ways to apply
the basic idea in a wide variety of settings (see http://dbwilson.com/exact/ for
pointers to this research). Our aim here is to explain the basic method and to give
a few of its applications.

It is worth stressing at the outset that CFTP is especially valuable as an alter-
native to standard Markov chain Monte Carlo when one is working with Markov
chains for which one suspects, but has not proved, that rapid mixing occurs. In
such cases, the availability of CFTP makes it less urgent that theoreticians ob-
tain bounds on the mixing time, since CFTP (unlike Markov chain Monte Carlo)
cleanly separates the issue of efficiency from the issue of quality of output. That is

Copyright 2008 by James G. Propp and David B. Wilson.
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to say, one’s samples are guaranteed to be uncontaminated by initialization bias,
regardless of how quickly or slowly they are generated.

Before proceeding, we mention that there are other algorithms that may be
used for generating perfect samples from the stationary distribution of a Markov
chain, including Fill’s algorithm (Fill, 1998; Fill, Machida, Murdoch, and Rosen-
thal, 2000), “dominated CFTP” (Kendall and Møller, 2000), “read-once CFTP”
(Wilson, 2000b), and the “randomness recycler” (Fill and Huber, 2000). Each of
these has its merits, but since CFTP is conceptually the simplest of these, it is the
one that we shall focus our attention on here.

As a historical aside, we mention that the conceptual ingredients of CFTP were
in the air even before the versatility of the method was made clear in Propp and
Wilson (1996). Precursors include Letac (1986), Thorisson (1988), and Borovkov
and Foss (1992). Even back in the 1970’s, one can find foreshadowings in the work
of Ted Harris (on the contact process, the exclusion model, random stirrings, and
coalescing and annihilating random walks), David Griffeath (on additive and can-
cellative interacting particle systems), and Richard Arratia (on coalescing Brownian
motion). One can even see traces of the idea in the work of Loynes (1962) forty-five
years ago. See also the survey by Diaconis and Freedman (1999).

22.2. Monotone CFTP

The basic idea of coupling from the past is quite simple. Suppose that there
is an ergodic Markov chain that has been running either forever or for a very long
time, long enough for the Markov chain to have reached (or very nearly reached)
its stationary distribution. Then the state that the Markov chain is currently in
is a sample from the stationary distribution. If we can figure out what that state
is, by looking at the recent randomizing operations of the Markov chain, then we
have a sample from its stationary distribution. To illustrate these ideas, we show
how to apply them to the Ising model of magnetism (introduced in Section 3.3.5
and studied further in Chapter 15).

Recall that an Ising system consists of a collection of n interacting spins, pos-
sibly in the presence of an external field. Each spin may be aligned up or down.
Spins that are close to each other prefer to be aligned in the same direction, and all
spins prefer to be aligned with the external magnetic field (which sometimes varies
from site to site). These preferences are quantified in the total energy H of the
system

H(σ) = −
∑

i<j

αi,jσiσj −
∑

i

Biσi,

where Bi is the strength of the external field as measured at site i, σi is 1 if spin i
is aligned up and −1 if it is aligned down, and αi,j ≥ 0 represents the interaction
strength between spins i and j. The probability of a given spin configuration is given
by Z−1 exp[−βH(σ)] where β is the “inverse temperature” and Z is the “partition
function,” i.e., the normalizing constant that makes the probabilities add up to 1.
Often the n spins are arranged in a two-dimensional or three-dimensional lattice,
and αi,j = 1 if spins i and j are adjacent in the lattice, and αi,j = 0 otherwise. The
Ising model has been used to model certain substances such as crystals of FeCl2 and
FeCO3 and certain phases of carbon dioxide, xenon, and brass — see Baxter (1982)
for further background.
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Figure 22.1. The Ising model at three different temperatures
(below, at, and above the “critical” temperature). Here the spins
lie at the vertices of the triangular lattice and are shown as black or
white hexagons. The spins along the upper boundaries were forced
to be black and the spins along lower boundaries were forced to be
white (using an infinite magnetic field on these boundary spins).

We may use the single-site heat bath algorithm, also known as Glauber dy-
namics, to sample Ising spin configurations. (Glauber dynamics was introduced
in Section 3.3.) A single move of the heat-bath algorithm may be summarized by
a pair of numbers (i, u), where i represents a spin site (say that i is a uniformly
random site), and u is a uniformly random real number between 0 and 1. The
heat-bath algorithm randomizes the alignment of spin i, holding all of the remain-
ing magnets fixed, and uses the number u when deciding whether the new spin
should be up or down. There are two possible choices for the next state, denoted
by σ↑ and σ↓. We have Pr[σ↑]/Pr[σ↓] = e−β(H(σ↑)−H(σ↓)) = e−β(∆H). The update
rule is that the new spin at site i is up if u < Pr[σ↑]/(Pr[σ↑]+Pr[σ↓]), and otherwise
the new spin is down. It is easy to check that this defines an ergodic Markov chain
with the desired stationary distribution.

Recall our supposition that the randomizing process, in this case the single-
site heat bath, has been running for all time. Suppose that someone has recorded
all the randomizing operations of the heat bath up until the present time. They
have not recorded what the actual spin configurations or Markov chain transitions
are, but merely which sites were updated and which random number was used to
update the spin at the given site. Given this recorded information, our goal is to
determine the state of the Markov chain at the present time (time 0), since, as we
have already determined, this state is a sample from the stationary distribution of
the Markov chain.

To determine the state at time 0, we make use of a natural partial order with
which the Ising model is equipped: we say that two spin-configurations σ and τ
satisfy σ � τ when each spin-up site in σ is also spin-up in τ . Notice that if σ � τ
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and we update both σ and τ with the same heat-bath update operation (i, u), then
because site i has at least as many spin-up neighbors in τ as it does in σ and
because of our assumption that the αi,j ’s are nonnegative, we have Pr[τ↑]/Pr[τ↓] ≥
Pr[σ↑]/Pr[σ↓], and so the updated states σ′ and τ ′ also satisfy σ′ � τ ′. (We say
that the randomizing operation respects the partial order �.) Notice also that

the partial order � has a maximum state 1̂, which is spin-up at every site, and a
minimum state 0̂, which is spin-down at every site.

This partial order enables us to obtain upper and lower bounds on the state
at the present time. We can look at the last T randomizing operations, figure out
what would happen if the Markov chain were in state 1̂ at time −T , and determine
where it would be at time 0. Since the Markov chain is guaranteed to be in a state
which is � 1̂ at time −T and since the randomizing operations respect the partial
order, we obtain an upper bound on the state at time 0. Similarly we can obtain a
lower bound on the state at time 0 by applying the last T randomizing operations
to the state 0̂. It could be that we are lucky and the upper and lower bounds are
equal, in which case we have determined the state at time 0. If we are not so lucky,
we could look further back in time, say at the last 2T randomizing operations, and
obtain better upper and lower bounds on the state at the present time. So long
as the upper and lower bounds do not coincide, we can keep looking further and
further back in time (see Figure 22.2). Because the Markov chain is ergodic, when

it is started in 1̂ and T is large enough, there is some positive chance that it will
reach 0̂, after which the upper and lower bounds are guaranteed to coincide. In
the limit as T → ∞, the probability that the upper and lower bounds agree at
time 0 tends to 1, so almost surely we eventually succeed in determining the state
at time 0.

The randomizing operation (the heat-bath in the above Ising model example)
defines a (grand) coupling of the Markov chain, also sometimes called a stochastic
flow, since it couples Markov chains started from all the states in the state space.
(Grand couplings were discussed in Section 5.4.) For CFTP, the choice of the
coupling is as important as the choice of the Markov chain. To illustrate this,
we consider another example, tilings of a regular hexagon by lozenges, which are

Figure 22.2. Illustration of CFTP in the monotone setting.
Shown are the heights of the upper and lower trajectories started at
various starting times in the past. When a given epoch is revisited
later by the algorithm, it uses the same randomizing operation.
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60◦/120◦ rhombuses (see Figure 22.3). The set of lozenge tilings comes equipped

Figure 22.3. Tilings of a regular hexagon by lozenges. Alterna-
tively, these tilings may be viewed three-dimensionally, as a collec-
tion of little three-dimensional boxes sitting within a larger box.

with a natural partial order �: we say that one tiling lies below another tiling if,
when we view the tilings as collections of little three-dimensional boxes contained
within a large box, the first collection of boxes is a subset of the other collection
of boxes. The minimum configuration 0̂ is just the empty collection of little boxes,
and the maximum configuration 1̂ is the full collection of little boxes.

A site in the tiling is just a vertex of one of the rhombuses that is contained
within the interior of the hexagon. For each possible tiling, these sites form a
triangular lattice. If a site is surrounded by exactly three lozenges, then the three
lozenges will have three different orientations, one of which is horizontal if the
regular hexagon is oriented as shown in Figure 22.3. There are two different ways
for a site to be surrounded by three lozenges — the horizontal lozenge will lie
either above the site or below it. One possible randomizing operation would with
probability 1/2 do nothing and with probability 1/2 pick a uniformly random site
in the tiling, and if that site is surrounded by three lozenges, rearrange those three
lozenges. Another possible randomizing operation would pick a site uniformly at
random and then if the site is surrounded by three lozenges, with probability 1/2
arrange the three lozenges so that the horizontal one is below the site and with
probability 1/2 arrange them so that the horizontal lozenge is above the site. When
the tiling is viewed as a collection of boxes, this second randomizing operation either
tries to remove or add (with probability 1/2 each) a little box whose projection into
the plane of the tiling is at the site. These attempts to add or remove a little box
only succeed when the resulting configuration of little boxes would be stable under
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gravity; otherwise the randomizing operation leaves the configuration alone. It is
straightforward to check that both of these randomizing operations give rise to
the same Markov chain, i.e., a given tiling can be updated according to the first
randomizing operation or the second randomizing operation, and either way, the
distribution of the resulting tiling will be precisely the same. However, for purposes
of CFTP the second randomizing operation is much better, because it respects the
partial order �, whereas the first randomizing operation does not.

With the Ising model and tiling examples in mind, we give pseudocode for
“monotone CFTP,” which is CFTP when applied to state spaces with a partial
order� (with a top state 1̂ and bottom state 0̂) that is preserved by the randomizing
operation:

T ← 1
repeat

upper← 1̂
lower← 0̂
for t = −T to −1

upper← ϕ(upper, Ut)
lower← ϕ(lower, Ut)

T ← 2T
until upper = lower
return upper

Here the variables Ut represent the intrinsic randomness used in the randomizing
operations. In the Ising model heat-bath example above, Ut consists of a random
number representing a site together with a random real number between 0 and 1.
In the tiling example, Ut consists of the random site together with the outcome of
a coin toss. The procedure ϕ deterministically updates a state according to the
random variable Ut.

Recall that we are imagining that the randomizing operation has been going
on for all time, that someone has recorded the random variables Ut that drive the
randomizing operations, and that our goal is to determine the state at time 0.
Clearly if we read the random variable Ut more than one time, it would have the
same value both times. Therefore, when the random mapping ϕ(·, Ut) is used in one
iteration of the repeat loop, for any particular value of t, it is essential that the same
mapping be used in all subsequent iterations of the loop. We may accomplish this
by storing the Ut’s; alternatively, if (as is typically the case) our Ut’s are given by
some pseudo-random number generator, we may simply suitably reset the random
number generator to some specified seed seed(i) each time t equals −2i.

Remark 22.1. Many people ask about different variations of the above pro-
cedure, such as what happens if we couple into the future or what happens if we
use fresh randomness each time we need to refer to the random variable Ut. There
is a simple example that rules out the correctness of all such variations that have
been suggested. Consider the state space {1, 2, 3}, where the randomizing operation
with probability 1/2 increments the current state by 1 (unless the state is 3) and
with probability 1/2 decrements the current state by 1 (unless the state is 1). We
leave it as an exercise to verify that this example rules out the correctness of the
above two variants. There are in fact other ways to obtain samples from the sta-
tionary distribution of a monotone Markov chain, such as by using Fill’s algorithm
(Fill, 1998) or “read-once CFTP” (Wilson, 2000b), but these are not the sort of
procedures that one will discover by randomly mutating the above procedure.
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It is worth noting that monotone CFTP is efficient whenever the underlying
Markov chain is rapidly mixing. Propp and Wilson (1996) proved that the number
of randomizing operations that monotone CFTP performs before returning a sample
is at least tmix and at most O(tmix logH), where tmix is the mixing time of the
Markov chain when measured with the total variation distance and H denotes the
length of the longest totally ordered chain of states between 0̂ and 1̂.

There are a surprisingly large number of Markov chains for which monotone
CFTP may be used (see Propp and Wilson (1996) and other articles listed in
http://dbwilson.com/exact/). In the remainder of this chapter we describe a
variety of scenarios in which CFTP has been used even when monotone CFTP
cannot be used.

22.3. Perfect Sampling via Coupling from the Past

Computationally, one needs three things in order to be able to implement the
CFTP strategy: a way of generating (and representing) certain maps from the
state space Ω to itself; a way of composing these maps; and a way of ascertaining
whether total coalescence has occurred, i.e., a way of ascertaining whether a certain
composite map (obtained by composing many random maps) collapses all of Ω to
a single element.

The first component is what we call the random map procedure; we model it
as an oracle that on successive calls returns independent, identically distributed
functions f from Ω to Ω, governed by some selected probability distribution P
(typically supported on a very small subset of the set of all maps from Ω to itself).
We use the oracle to choose independent, identically distributed maps f−1, f−2,
f−3, . . . , f−T , where how far into the past we have to go (T steps) is determined
during run-time itself. (In the notation of the previous section, ft(x) = ϕ(x, Ut).
These random maps are also known as grand couplings, which were discussed in
Section 5.4.) The defining property that T must have is that the composite map

F 0
−T

def
= f−1 ◦ f−2 ◦ f−3 ◦ · · · ◦ f−T

must be collapsing. Finding such a T thus requires that we have both a way of
composing f ’s and a way of testing when such a composition is collapsing. (Having
the test enables one to find such a T , since one can iteratively test ever-larger values
of T , say by successive doubling, until one finds a T that works. Such a T will be
a random variable that is measurable with respect to f−T , f−T+1, . . . , f−1.)

Once a suitable T has been found, the algorithm outputs F 0
−T (x) for any x ∈ Ω

(the result will not depend on x, since F 0
−T is collapsing). We call this output

the CFTP sample. It must be stressed that when one is attempting to determine
a usable T by guessing successively larger values and testing them in turn, one
must use the same respective maps fi during each test. That is, if we have just
tried starting the chain from time −T1 and failed to achieve coalescence, then, as we
proceed to try starting the chain from time −T2 < −T1, we must use the same maps
f−T1 , f−T1+1, . . . , f−1 as in the preceding attempt. This procedure is summarized
below:

T ← 1
while f−1 ◦ · · · ◦ f−T is not totally coalescent

increase T
return the value to which f−1 ◦ · · · ◦ f−T collapses Ω

http://dbwilson.com/exact/
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Note that the details of how one increases T affect the computational efficiency
of the procedure but not the distribution of the output; in most applications it
is most natural to double T when increasing it (as in Sections 22.2 and 22.4), but
sometimes it is more natural to increment T when increasing it (as in Section 22.5).

As long as the nature of P guarantees (almost sure) eventual coalescence, and
as long as P bears a suitable relationship to the distribution π, the CFTP sample
will be distributed according to π. Specifically, it is required that P preserve π in
the sense that if a random state x is chosen in accordance with π and a random
map f is chosen in accordance with P , then the state f(x) will be distributed in
accordance with π. In the next several sections we give examples.

22.4. The Hardcore Model

Recall from Section 3.3.4 that the states of the hardcore model are given by
subsets of the vertex set of a finite graph G, or equivalently, by 0, 1-valued functions
on the vertex set. We think of 1 and 0 as respectively denoting the presence or
absence of a particle. In a legal state, no two adjacent vertices may both be occupied
by particles. The probability of a particular legal state is proportional to λm, where
m is the number of particles (which depends on the choice of state) and λ is some
fixed parameter value. We denote this probability distribution by π. That is,
π(σ) = λ|σ|/Z where σ is a state, |σ| is the number of particles in that state, and
Z =

∑
σ λ

|σ|. Figure 22.4 shows some hardcore states for different values of λ when
the graph G is the toroidal grid.

The natural single-site heat-bath Markov chain for hardcore states would pick
a site at random, forget whether or not there is a particle at that site, and then
place a particle at the site with probability λ/(λ + 1) if there are no neighboring
particles or with probability 0 if there is a neighboring particle.

For general (non-bipartite) graphs G there is no monotone structure which
would allow one to use monotone CFTP. But Häggström and Nelander (1999) and
Huber (1998) proposed the following scheme for using CFTP with the single-site
heat-bath Markov chain. One can associate with each set of hardcore states a three-
valued function on the vertex set, where the value “1” means that all states in the
set are known to have a particle at that vertex, the value “0” means that all states
in the set are known to have a vacancy at that vertex, and the value “?” means that
it is possible that some of the states in the set have a particle there while others
have a vacancy. Initially we place a “?” at every site since the Markov chain could
be in any state. We can operate directly on this three-valued state-model by means
of simple rules that mimic the single-site heat-bath. The randomizing operation
picks a random site and proposes to place a particle there with probability λ/(λ+1)
or proposes to place a vacancy there with probability 1/(λ + 1). Any proposal to
place a vacancy always succeeds for any state in the current set, so in this case a “0”
is placed at the site. A proposal to place a particle at the site succeeds only if no
neighboring site has a particle, so in this case we place a “1” if all neighboring sites
have a “0”, and otherwise we place a “?” at the site since the proposal to place a
particle there may succeed for some states in the set and fail for other states. After
the update, the “0, 1, ?” configuration describes any possible state that the Markov
chain may be in after the single-site heat-bath operation. It is immediate that if
the “0, 1, ?” Markov chain, starting from the all-?’s state, ever reaches a state in
which there are no ?’s, then the single-site heat-bath chain, using the same random
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λ = 5λ = 4λ = 3

λ = 2λ = 1λ = 0.5

Figure 22.4. Hardcore model on the 40 × 40 square grid with
periodic boundary conditions, for different values of λ. Particles
are shown as diamonds, and the constraint that no two particles
are adjacent is equivalent to the constraint that no two diamonds
overlap. Particles on the even sublattice (where the x-coordinate
and y-coordinate have the same parity) are shown in dark gray,
and particles on the odd sublattice are shown in light gray. There
is a critical value of λ above which the hardcore model typically
has a majority of particles on one of these two sublattices. CFTP
generates random samples for values of λ beyond those for which
Glauber dynamics is currently known to be rapidly mixing.

proposals, maps all initial states into the same final state. Hence we might want
to call the “0, 1, ?” Markov chain the “certification chain,” for it tells us when the
stochastic flow of primary interest has achieved coalescence.

One might fear that it would take a long time for the certification chain to
certify coalescence, but Häggström and Nelander (1999) show that the number of
?’s tends to shrink to zero exponentially fast provided λ < 1/∆, where ∆ is the
maximum degree of the graph. Recall from Theorem 5.8 that the Glauber dynamics
Markov chain is rapidly mixing when λ < 1/(∆ − 1) — having the number of
?’s shrink to zero rapidly is a stronger condition than rapid mixing. The best
current bounds for general graphs is that Glauber dynamics is rapidly mixing if
λ ≤ 2/(∆ − 2) (Vigoda, 2001; Dyer and Greenhill, 2000). For particular graphs
of interest, such as the square lattice, in practice the number of ?’s shrinks to
zero rapidly for values of λ much larger than what these bounds guarantee. Such
observations constitute empirical evidence in favor of rapid mixing for larger λ’s.
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22.5. Random State of an Unknown Markov Chain

Now we come to a problem that in a sense encompasses all the cases we have
discussed so far: the problem of sampling from the stationary distribution π of a
general Markov chain. Of course, in the absence of further strictures this problem
admits a trivial “solution”: just solve for the stationary distribution analytically!
In the case of the systems studied in Sections 22.2 and 22.4, this is not practical,
since the state spaces are large. We now consider what happens if the state space
is small but the analytic method of simulation is barred by imposing the constraint
that the transition probabilities of the Markov chain are unknown: one merely has
access to a black box that simulates the transitions.

It might seem that, under this stipulation, no solution to the problem is pos-
sible, but in fact a solution was found by Asmussen, Glynn, and Thorisson (1992).
However, their algorithm was not very efficient. Subsequently Aldous (1995) and
Lovász and Winkler (1995a) found faster procedures (although the algorithm of Al-
dous involves controlled but non-zero error). The CFTP-based solution given below
is even faster than that of Lovász and Winkler.

For pictorial concreteness, we envision the Markov chain as a biased random
walk on some directed graph G whose arcs are labeled with weights, where the
transition probabilities from a given vertex are proportional to the weights of the
associated arcs (as in the preceding section). We denote the vertex set of G by Ω,
and denote the stationary distribution on Ω by π. Propp and Wilson (1998) give a
CFTP-based algorithm that lets one sample from this distribution π.

Our goal is to define suitable random maps from Ω to Ω in which many states
are mapped into a single state. We might therefore define a random map from Ω to
itself by starting at some fixed vertex r, walking randomly for some large number T
of steps, and mapping all states in Ω to the particular state v that one has arrived
at after T steps. However, v is subject to initialization bias, so this random map
procedure typically does not preserve π in the sense defined in Section 22.3.

What actually works is a multi-phase scheme of the following sort: start at
some vertex r and take a random walk for a random amount of time T1, ending
at some state v; then map every state that has been visited during that walk to v.
In the second phase, continue walking from v for a further random amount of time
T2, ending at some new state v′; then map every state that was visited during the
second phase but not the first to v′. In the third phase, walk from v′ for a random
time to a new state v′′, and map every hitherto-unvisited state that was visited
during that phase to the state v′′, and so on. Eventually, every state gets visited,
and every state gets mapped to some state. Such maps are easy to compose, and
it is easy to recognize when such a composition is coalescent (it maps every state
to one particular state).

There are two constraints that our random durations T1, T2, . . . must satisfy
if we are planning to use this scheme for CFTP. (For convenience we will assume
henceforth that the Ti’s are i.i.d.) First, the distribution of each Ti should have the
property that, at any point during the walk, the (conditional) expected time until
the walk terminates does not depend on where one is or how one got there. This
ensures that the stochastic flow determined by these random maps preserves π.
Second, the time for the walk should be neither so short that only a few states get
visited by the time the walk ends nor so long that generating even a single random
map takes more time than an experimenter is willing to wait. Ideally, the expected
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duration of the walk should be on the order of the cover time for the random walk.
Propp and Wilson (1998) show that by using the random walk itself to estimate its
own cover time, one gets an algorithm that generates a random state distributed
according to π in expected time ≤ 15 times the cover time.

At the beginning of this section, we said that one has access to a black box that
simulates the transitions. This is, strictly speaking, ambiguous: does the black box
have an “input port” so that we can ask it for a random transition from a specified
state? Or are we merely passively observing a Markov chain in which we have
no power to intervene? This ambiguity gives rise to two different versions of the
problem, of separate interest. Our CFTP algorithm works for both of them.

For the “passive” version of the problem, it is not hard to show that no scheme
can work in expected time less than the expected cover time of the walk, so in this
setting our algorithm runs in time that is within a constant factor of optimal. It is
possible to do better in the active setting, but no good lower bounds are currently
known for this case.

Exercise

Exercise 22.1. Show that in the special case where the graph is bipartite,
there is a natural partial order on the space of hardcore configurations that is
preserved by Glauber dynamics and that in this case monotone CFTP and CFTP
with the “0, 1, ?” Markov chain are equivalent.

Notes

This chapter is based in part on the expository article “Coupling from the
Past: a User’s Guide,” which appeared in Microsurveys in Discrete Probability,
volume 41 of the DIMACS Series in Discrete Mathematics and Computer Science,
published by the AMS, and contains excerpts from the article “Exact Sampling
with Coupled Markov Chains and Applications to Statistical Mechanics,” which
appeared in Random Structures and Algorithms, volume 9(1&2):223–252, 1996.

For more on perfectly sampling the spanning trees of a graph, see Anantharam
and Tsoucas (1989), Broder (1989), and Aldous (1990). For more examples of per-
fect sampling, see Häggström and Nelander (1998), Wilson (2000a), and the web-
page Wilson (2004b).





CHAPTER 23

Open Problems

This list of questions is not meant to be either novel or comprehensive. The se-
lection of topics clearly reflects the interests of the authors. Aldous and Fill (1999)
features open problems throughout the book; several have already been solved. We
hope this list will be similarly inspirational.

23.1. The Ising Model

For all of these, assume Glauber dynamics unless another transition mechanism
is specified.

Question 1 (Positive boundary conditions). Consider the Ising model on the
n × n grid with the boundary forced to have all positive spins. Show that at any
temperature the mixing time is at most polynomial in n. An upper bound on

the relaxation time of en
1/2+ε

was obtained by Martinelli (1994). The best upper
bounds for d ≥ 3 were obtained by Sugimine (2002).

Question 2 (Monotonicity). Is the spectral gap of the Ising model on a graph
G monotone increasing in temperature? Is the spectral gap of the Ising model
monotone decreasing in the addition of edges?

There is a common generalization of these two questions to the ferromagnetic
Ising model with inhomogeneous interaction strengths. If for simplicity we absorb
the temperature into the interaction strengths, the Gibbs distribution for this model
can be defined by

µ(σ) =
1

Z
exp


 ∑

{u,v}∈E(G)

Ju,vσ(u)σ(v)


 ,

where Ju,v > 0 for all edges {u, v}. In this model, is it true that on any graph the
spectral gap is monotone decreasing in each interaction strength Ju,v? Nacu (2003)
proved this stronger conjecture for the cycle.

Even more generally, we may ask whether for a fixed graph and fixed t the
distance d̄(t) is monotone increasing in the individual interaction strengths Ju,v.
(Corollary 12.6 and Lemma 4.11 ensure that this is, in fact, a generalization.)

Question 3 (Lower bounds). Is it true that on an n-vertex graph, the mix-
ing time for the Glauber dynamics for Ising is at least cn logn? This is known
for bounded degree families (the constant depends on the maximum degree); see
Hayes and Sinclair (2007). We conjecture that on any graph, at any temperature,
there is a lower bound of (1/2 + o(1))n logn on the mixing time.
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Question 4 (Block dynamics vs. single site dynamics). Consider block dy-
namics on a family of finite graphs. If the block sizes are bounded, are mixing
times always comparable for block dynamics and single site dynamics? This is true
for the relaxation times, via comparison of Dirichlet forms.

Question 5 (Systematic updates vs. random updates). Fix a permutation α
of the vertices of an n-vertex graph and successively perform Glauber updates at
α(1), . . . , α(n). Call the transition matrix of the resulting operation Pα. That is,
Pα corresponds to doing a full sweep of all the vertices. Let P be the transition
matrix of ordinary Glauber dynamics.

(i) Does there exist a constant C such that

ntmix(Pα) ≤ Ctmix(P )?

(ii) Does there exist a constant c such that

ntmix(Pα) ≥ c tmix(P )

logn
?

Although theorems are generally proved about random updates, in practice
systematic updates are often used for running simulations. (Note that at infinite
temperature, a single systematic sweep suffices.) See Dyer, Goldberg, and Jerrum
(2006a) and (2006b) for analysis of systematic swap algorithms for colorings.

Question 6 (Ising on transitive graphs). For the Ising model on transitive
graphs, is the relaxation time of order n if and only if the mixing time is of or-
der n logn (as the temperature varies)? This is known to be true for the two-
dimensional torus. See Martinelli (1999) for more on what is known on lattices.

23.2. Cutoff

Question 7 (Transitive graphs of bounded degree). Given a sequence of tran-
sitive graphs of degree ∆ ≥ 3, must the family of lazy random walks on these graphs
have a cutoff?

Question 8 (Cutoff for Ising on transitive graphs). Consider the Ising model
on a transitive graph, e.g. a d-dimensional torus, at high temperature. Is there a
cutoff whenever the mixing time is of order n logn? Is this true, in particular, for
the cycle? Levin, Luczak, and Peres (2007) showed that the answer is “yes” for the
complete graph.

Question 9 (Card shuffling). Do the following shuffling chains have cutoff?
All are known to have pre-cutoff.

(a) Random adjacent transpositions (pre-cutoff follows from (16.4) and (16.7)).
(b) Cyclic-to-random transpositions (see Mossel, Peres, and Sinclair (2004)).
(c) Random-to-random insertions (see the thesis of Uyemura-Reyes (2002)). In

this shuffle, a card is chosen uniformly at random, removed from the deck, and
reinserted into a uniform random position. The other cards retain their original
relative order.
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Question 10 (Lamplighter on tori). Does the lamplighter on tori of dimension
d ≥ 3 have a cutoff? If there is a total variation cutoff, at what multiple of the
cover time of the torus does it occur?

Question 11. Let (X
(n)
t ) denote a family of irreducible reversible Markov

chains, either in continuous-time or in lazy discrete-time. Is it true that there
is cutoff in separation distance if and only if there is cutoff in total variation dis-
tance? That this is true for birth-and-death chains follows from combining results in
Ding, Lubetzky, and Peres (2008b) and Diaconis and Saloff-Coste (2006). A posi-
tive answer to this question for lamplighter walks would also answer Question 10,
in view of Theorem 19.7.

23.3. Other Problems

Question 12 (Spectral gap of the interchange process). Place a pebble at each
vertex of a graph G, and on each edge place an alarm clock that rings at each point
of a Poisson process with density 1. When the clock on edge {u, v} rings, inter-
change the pebbles at u and v. This process is called the interchange process on
G. Handjani and Jungreis (1996) showed that for trees, the interchange process on
G and the continuous-time simple random walk on G have the same spectral gap.
Is this true for all graphs? This question was raised by Aldous and Diaconis (see
Handjani and Jungreis (1996)).

Question 13. Does Glauber dynamics for proper colorings mix in time order
n logn if the number of colors is bigger than ∆ + 2, where ∆ bounds the graph
degrees? This is known to be polynomial for q > (11/6)n—see the Notes to Chap-
ter 14.

Question 14 (Gaussian elimination chain). Consider the group of n×n upper
triangular matrices with entries in Z2. Select k uniformly from {2, . . . , n} and add
the k-th row to the (k − 1)-st row. The last column of the resulting matrices form
a copy of the East model chain. Hence the lower bound of order n2 for the East
model (Theorem 7.15) is also a lower bound for the Gaussian elimination chain.
Diaconis (personal communication) informed us he has obtained an upper bound
of order n4. What is the correct exponent?





APPENDIX A

Background Material

While writing my book I had an argument with Feller. He asserted
that everyone said “random variable” and I asserted that everyone
said “chance variable.” We obviously had to use the same name
in our books, so we decided the issue by a stochastic procedure.
That is, we tossed for it and he won.

—J. Doob, as quoted in Snell (1997).

A.1. Probability Spaces and Random Variables

Modern probability is based on measure theory. For a full account, the reader
should consult one of the many textbooks on the subject, e.g. Billingsley (1995) or
Durrett (2005). The majority of this book requires only probability on countable
spaces, for which Feller (1968) remains the best reference. For the purpose of
establishing notation and terminology we record a few definitions here.

Given a set Ω, a σ-algebra is a collection F of subsets satisfying

(i) Ω ∈ F ,
(ii) if A1, A2, . . . are elements of F , then

⋃∞
i=1Ai ∈ F , and

(iii) if A ∈ F , then Ac := Ω \A ∈ F .

A probability space is a set Ω together with a σ-algebra of subsets, whose elements
are called events.

The following are important cases.

Example A.1. If a probability space Ω is a countable set, the σ-algebra of
events is usually taken to be the collection of all subsets of Ω.

Example A.2. If Ω is Rd, then the Borel σ-algebra is the smallest σ-algebra
containing all open sets.

Example A.3. When Ω is the sequence space S∞ for a finite set S, a set of
the form

A1 ×A2 × · · · ×An × S × S · · · , Ak ⊂ S for all k = 1, . . . , n,

is called a cylinder set. The set of events in S∞ is the smallest σ-algebra containing
the cylinder sets.

Given a probability space, a probability measure is a non-negative function
P defined on events and satisfying the following:

(i) P(Ω) = 1,
(ii) for any sequence of events B1, B2, . . . which are disjoint, meaning Bi∩Bj = ∅

for i 6= j,

P

( ∞⋃

i=1

Bi

)
=

∞∑

i=1

P(Bi).
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If Ω is a countable set, a probability distribution (or sometimes simply a
probability) on Ω is a function p : Ω → [0, 1] such that

∑
ξ∈Ω p(ξ) = 1. We will

abuse notation and write, for any subset A ⊂ Ω,

p(A) =
∑

ξ∈A
p(ξ).

The set function A 7→ p(A) is a probability measure.
A function f : Ω→ R is called measurable if f−1(B) is an event for all open

sets B. If Ω = D is an open subset of Rd and f : D → [0,∞) is a measurable
function satisfying

∫
D f(x)dx = 1, then f is called a density function . Given a

density function, the set function defined for Borel sets B by

µf (B) =

∫

B

f(x)dx

is a probability measure. (Here, the integral is the Lebesgue interval. It agrees with
the usual Riemann integral wherever the Riemann integral is defined.)

Given a probability space, a random variable X is a measurable function
defined on Ω. We write {X ∈ A} as shorthand for the set {ξ ∈ Ω : X(ξ) ∈ A} =
X−1(A). The distribution of a random variable X is the probability measure µX
on R defined for Borel set B by

µX(B) := P{X ∈ B} := P({X ∈ B}).
We call a random variable X discrete if there is a finite or countable set S,

called the support of X , such that µX(S) = 1. In this case, the function

pX(a) = P{X = a}
is a probability distribution on S.

A random variable X is called absolutely continuous if there is a density
function f on R such that

µX(A) =

∫

A

f(x)dx.

For a discrete random variable X , the expectation E(X) can be computed by
the formula

E(X) =
∑

x∈R

xP{X = x}.

(Note that there are at most countably many non-zero summands.) For an abso-
lutely continuous random variable X , the expectation is computed by the formula

E(X) =

∫

R

xfX(x)dx.

If X is a random variable, g : R → R is a function, and Y = g(X), then the
expectation E(Y ) can be computed via the formulas

E(Y ) =

{∫
g(x)f(x)dx if X is continuous with density f,∑
x∈S g(x)pX(x) if X is discrete with support S.

The variance of a random variable X is defined by

Var(X) = E
(
(X −E(X))2

)
.
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Fix a probability space and probability measure P. Two events, A and B, are
independent if P(A ∩ B) = P(A)P(B). Events A1, A2, . . . are independent if for
any i1, i2, . . . , ir,

P(Ai1 ∩Ai2 ∩ · · · ∩Air ) = P(Ai1)P(Ai2 ) · · ·P(Air ).

Random variables X1, X2, . . . are independent if for all Borel sets B1, B2, . . ., the
events {X1 ∈ B1}, {X2 ∈ B2}, . . . are independent.

Proposition A.4. If X and Y and independent random variables such that
Var(X) and Var(Y ) exists, then Var(X + Y ) = Var(X) + Var(Y ).

There are two fundamental inequalities.

Proposition A.5 (Markov’s Inequality). For a non-negative random variable
X,

P{X > a} ≤ E(X)

a
.

Proposition A.6 (Chebyshev’s Inequality). For a random variable X with
finite expectation E(X) and finite variance Var(X),

P{|X −E(X)| > a} ≤ Var(X)

a2
.

A sequence of random variables (Xt) converges in probability to a random
variable X if

lim
t→∞

P{|Xt −X | > ε} = 0, (A.1)

for all ε. This is denoted by Xt
pr−→ X .

Theorem A.7 (Weak Law of Large Numbers). If (Xt) is a sequence of inde-
pendent random variables such that E(Xt) = µ and Var(Xt) = σ2 for all t, then

1

T

T∑

t=1

Xt
pr−→ µ as T →∞.

Proof. By linearity of expectation, E(T−1
∑T
t=1Xt) = µ, and by indepen-

dence, Var(T−1
∑T

t=1Xt) = σ2/T . Applying Chebyshev’s inequality,

P

{∣∣∣∣∣
1

T

T∑

t=1

Xt − µ
∣∣∣∣∣ > ε

}
≤ σ2

Tε2
.

For every ε > 0 fixed, the right-hand side tends to zero as T →∞. �

Theorem A.8 (Strong Law of Large Numbers). Let Z1, Z2, . . . be a sequence
of random variables with E(Zs) = 0 for all s and

Var(Zs+1 + · · ·+ Zs+k) ≤ Ck
for all s and k. Then

P

{
lim
t→∞

1

t

t−1∑

s=0

Zs = 0

}
= 1. (A.2)
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Proof. Let At := t−1
∑t−1
s=0 Zs. Then

E(A2
t ) =

E

[(∑t−1
s=0 Zs

)2
]

t2
≤ C

t
.

Thus, E
(∑∞

m=1A
2
m2

)
<∞, which in particular implies that

P

{ ∞∑

m=1

A2
m2 <∞

}
= 1 and P

{
lim
m→∞

Am2 = 0
}

= 1. (A.3)

For a given t, let mt be such that m2
t ≤ t < (mt + 1)2. Then

At =
1

t


m2

tAm2
t
+

t−1∑

s=m2
t

Zs


 . (A.4)

Since limt→∞ t−1m2
t = 1, by (A.3),

P
{

lim
t→∞

t−1m2
tAm2

t
= 0
}

= 1. (A.5)

Defining Bt := t−1
∑t−1

s=m2
t
Zs,

E(B2
t ) =

Var
(∑t−1

s=m2
t
Zs

)

t2
≤ 2Cmt

t2
≤ 2C

t3/2
.

Thus E(
∑∞

t=0B
2
t ) <∞, and

P

{
lim
t→∞

∑t
s=m2

t +1 Zs

t
= 0

}
= 1. (A.6)

Putting together (A.5) and (A.6), from (A.4) we conclude that (A.2) holds. �

Another important result about sums of independent and identically distributed
random variables is that their distributions are approximately normal:

Theorem A.9 (Central Limit Theorem). For each n, let Xn,1, Xn,2, . . . , Xn,n

be independent random variables, each with the same distribution having expectation
µ = E(Xn,1) and variance σ2 = Var(Xn,1). Let Sn =

∑n
i=1Xn,i. Then for all

x ∈ R,

lim
n→∞

P

{
Sn − nµ√

nσ
≤ x

}
= Φ(x),

where Φ(x) =
∫ x
−∞

1√
2π
e−x

2/2dx.

A.1.1. Limits of expectations. We know from calculus that if (fn) is a
sequence of functions defined on an interval I, satisfying for every x ∈ I

lim
n→∞

fn(x) = f(x) ,

then it is not necessarily the case that

lim
n→∞

∫

I

fn(x)dx =

∫

I

f(x)dx .
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n

2/n

Figure A.1. A sequence of functions whose integrals do not con-
verge to the integral of the limit.

As an example, consider the function gn whose graph is shown in Figure A.1. The
integral of this function is always 1, but for each x ∈ [0, 1], the limit limn→∞ gn(x) =
0. That is,

∫ 1

0

lim
n→∞

gn(x)dx = 0 6= 1 = lim
n→∞

∫ 1

0

gn(x)dx. (A.7)

This example can be rephrased using random variables. Let U be a uniform
random variable, and let Yn = gn(U). Notice that Yn → 0. We have

E(Yn) = E(gn(U)) =

∫
gn(x)fU (x)dx =

∫ 1

0

gn(x)dx,

as the density of U is fU = 1[0,1]. By (A.7),

lim
n→∞

E(Yn) 6= E
(

lim
n→∞

Yn

)
.

Now that we have seen that we cannot always move a limit inside an expecta-
tion, can we ever? The answer is “yes”, given some additional assumptions.

Proposition A.10. Let Yn be a sequence of random variables and let Y be a
random variable such that P {limn→∞ Yn = Y } = 1.

(i) If there is a constant K independent of n such that |Yn| < K for all n, then
limn→∞ E(Yn) = E(Y ).

(ii) If there is a random variable Z such that E(|Z|) <∞ and P { |Yn| ≤ |Z| } = 1
for all n, then limn→∞ E(Yn) = E(Y ).

(iii) If P{Yn ≤ Yn+1} = 1 for all n, then limn→∞ E(Yn) = E(Y ) .

Proposition A.10(i) is called the Bounded Convergence Theorem , Proposi-
tion A.10(ii) is called the Dominated Convergence Theorem , and Proposition
A.10(iii) is called the Monotone Convergence Theorem .

Proof of (i). For any ε > 0,

|Yn − Y | ≤ 2K1{|Yn−Y |>ε/2} + ε/2,
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and taking expectation above shows that

|E(Yn)−E(Y )| ≤ E (|Yn − Y |)
≤ 2KP {|Yn − Y | > ε/2}+ ε/2.

Since P {|Yn − Y | ≥ ε/2} → 0, by taking n sufficiently large,

|E(Yn)−E(Y )| ≤ ε.
That is, limn→∞ E(Yn) = E(Y ). �

For a proofs of (ii) and (iii), see Billingsley (1995).

A.2. Metric Spaces

A setM equipped with a function ρmeasuring the distance between its elements
is called a metric space. In Euclidean space R

k, the distance between vectors is
measured by the norm ‖x − y‖ =

√∑n
i=1(xi − yi)2. On a graph, distance can be

measured as the length of the shortest path connecting x and y. These are examples
of metric spaces.

The function ρ must satisfy some properties to reasonably be called a distance.
In particular, it should be symmetric, i.e., there should be no difference between
measuring from a to b and measuring from b to a. Distance should never be negative,
and there should be no two distinct elements which have distance zero. Finally,
the distance ρ(a, c) from a to c should never be greater than proceeding via a third
point b and adding the distances ρ(a, b) + ρ(b, c). For obvious reasons, this last
property is called the triangle inequality .

We summarize these properties here:

(i) ρ(a, b) = ρ(b, a) for all a, b ∈M .
(ii) ρ(a, b) ≥ 0 for all a, b ∈M , and ρ(a, b) = 0 only if a = b.
(iii) For any three elements a, b, c ∈M ,

ρ(a, c) ≤ ρ(a, b) + ρ(b, c). (A.8)

A.3. Linear Algebra

Theorem A.11 (Spectral Theorem for Symmetric Matrices). If M is a sym-
metric m × m matrix, then there exists a matrix U with UTU = I and a real
diagonal matrix Λ such that M = UTΛU .

(The matrix UT is the transpose of U , whose entries are given by UTi,j := Uj,i.)

A proof of Theorem A.11 can be found, for example, in Horn and Johnson (1990,
Theorem 4.1.5).

Another way of formulating the Spectral Theorem is to say that there is an
orthonormal basis of eigenvectors for M . The columns of UT form one such basis,
and the eigenvalue associated to the i-th column is λi = Λii.

The variational characterization of the eigenvalues of a symmetric matrix is
very useful:

Theorem A.12 (Rayleigh-Ritz). LetM be a symmetric matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn
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and associated eigenvectors x1, . . . , xn. Then

λk = max
x 6=0

x⊥x1,...,xk−1

〈x,Ax〉
〈x, x〉 .

See Horn and Johnson (1990, p. 178) for a discussion.

A.4. Miscellaneous

Stirling’s formula says that

n! ∼
√

2πe−nnn+1/2, (A.9)

where an ∼ bn means that limn→∞ anb
−1
n = 1.

More precise results are known, for example,

n! =
√

2πe−nnn+1/2eεn ,
1

12n+ 1
≤ εn ≤

1

12n
. (A.10)





APPENDIX B

Introduction to Simulation

B.1. What Is Simulation?

Let X be a random unbiased bit:

P{X = 0} = P{X = 1} =
1

2
. (B.1)

If we assign the value 0 to the “heads” side of a coin and the value 1 to the “tails”
side, we can generate a bit which has the same distribution as X by tossing the
coin.

Suppose now the bit is biased, so that

P{X = 1} =
1

4
, P{X = 0} =

3

4
. (B.2)

Again using only our (fair) coin toss, we are able to easily generate a bit with this
distribution: toss the coin twice and assign the value 1 to the result HH and the
value 0 to the other three outcomes. Since the coin cannot remember the result of
the first toss when it is tossed for the second time, the tosses are independent and
the probability of two heads is 1/4. This recipe for generating observations of a
random variable which has the same distribution (B.2) as X is called a simulation

of X .
Consider the random variable Un which is uniform on the finite set

{
0,

1

2n
,

2

2n
, . . . ,

2n − 1

2n

}
. (B.3)

This random variable is a discrete approximation to the uniform distribution on
[0, 1]. If our only resource is the humble fair coin, we are still able to simulate Un:
toss the coin n times to generate independent unbiased bits X1, X2, . . . , Xn, and
output the value

n∑

i=1

Xi

2i
. (B.4)

This random variable has the uniform distribution on the set in (B.3). (See Exercise
B.1.)

Consequently, a sequence of independent and unbiased bits can be used to sim-
ulate a random variable whose distribution is close to uniform on [0, 1]. A sufficient
number of bits should be used to ensure that the error in the approximation is small
enough for any needed application. A computer can store a real number only to
finite precision, so if the value of the simulated variable is to be placed in computer
memory, it will be rounded to some finite decimal approximation. With this in
mind, the discrete variable in (B.4) will be just as useful as a variable uniform on
the interval of real numbers [0, 1].

311
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B.2. Von Neumann Unbiasing*

Suppose you have available an i.i.d. vector of biased bits, X1, X2, . . . , Xn. That
is, each Xk is a {0, 1}-valued random variable, with P{Xk = 1} = p 6= 1/2.
Furthermore, suppose that we do not know the value of p. Can we convert this
random vector into a (possibly shorter) random vector of independent and unbiased
bits?

This problem was considered by von Neumann (1951) in his work on early
computers. He described the following procedure: divide the original sequence of
bits into pairs, discard pairs having the same value, and for each discordant pair
01 or 10, take the first bit. An example of this procedure is shown in Figure B.1;
the extracted bits are shown in the second row.

original bits 00 11 01 01 10 00 10 10 11 10 01 · · ·
extracted unbiased · · 0 0 1 · 1 1 · 1 0 · · ·

discarded bits 0 1 · · · 0 · · 1 · · · · ·
XORed bits 0 0 1 1 1 0 1 1 0 1 1 · · ·

(B.5)

Figure B.1. Extracting unbiased bits from biased bit stream.

Note that the number L of unbiased bits produced from (X1, . . . , Xn) is itself
a random variable. We denote by (Y1, . . . , YL) the vector of extracted bits.

It is clear from symmetry that applying von Neumann’s procedure to a bit-
string (X1, . . . , Xn) produces a bitstring (Y1, . . . , YL) of random length L, which
conditioned on L = m is uniformly distributed on {0, 1}m. In particular, the bits
of (Y1, . . . , YL) are uniformly distributed and independent of each other.

How efficient is this method? For any algorithm for extracting random bits,
let N(n) be the number of fair bits generated using the first n of the original bits.
The efficiency is measured by the asymptotic rate

r(p) := lim sup
n→∞

E(N)

n
. (B.6)

Let q := 1 − p. For the von Neumann algorithm, each pair of bits has probability
2pq of contributing an extracted bit. Hence E(N(n)) = 2

⌊
n
2

⌋
pq and the efficiency

is r(p) = pq.
The von Neumann algorithm throws out many of the original bits. These bits

still contain some unexploited randomness. By converting the discarded 00’s and
11’s to 0’s and 1’s, we obtain a new vector Z = (Z1, Z2, . . . , Z⌊n/2−L⌋) of bits. In
the example shown in Figure B.1, these bits are shown on the third line.

Conditioned on L = m, the string Y = (Y1, . . . , YL) and the string Z =
(Z1, . . . , Z⌊n/2−L⌋) are independent, and the bits Z1, . . . , Z⌊n/2−L⌋ are independent

of each other. The probability that Zi = 1 is p′ = p2/(p2 + q2). We can apply the
von Neumann procedure again on the independent bits Z. Given that L = m, the
expected number of fair bits we can extract from Z is

(length of Z)p′q′ =
⌊n

2
−m

⌋( p2

p2 + q2

)(
q2

p2 + q2

)
. (B.7)
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Since EL = 2
⌊
n
2

⌋
pq, the expected number of extracted bits is

(n+O(1))[(1/2)− pq]
(

p2

p2 + q2

)(
q2

p2 + q2

)
. (B.8)

Adding these bits to the original extracted bits yields a rate for the modified algo-
rithm of

pq + [(1/2)− pq]
(

p2

p2 + q2

)(
q2

p2 + q2

)
. (B.9)

A third source of bits can be obtained by taking the XOR of adjacent pairs.
(The XOR of two bits a and b is 0 if and only if a = b.) Call this sequence
U = (U1, . . . , Un/2). This is given on the fourth row in Figure B.1. It turns out that
U is independent of Y and Z, and applying the algorithm on U yields independent
and unbiased bits. It should be noted, however, that given L = m, the bits in U
are not independent, as it contains exactly m 1’s.

Note that when the von Neumann algorithm is applied to the sequence Z of
discarded bits and to U , it creates a new sequence of discarded bits. The algorithm
can be applied again to this sequence, improving the extraction rate.

Indeed, this can be continued indefinitely. This idea is developed in Peres (1992).

B.3. Simulating Discrete Distributions and Sampling

A Poisson random variable X with mean λ has mass function

p(k) :=
e−λλk

k!
.

The variable X can be simulated using a uniform random variable U as follows:
subdivide the unit interval into adjacent subintervals I1, I2, . . . where the length of
Ik is p(k). Because the chance that a random point in [0, 1] falls in Ik is p(k), the
index X for which U ∈ IX is a Poisson random variable with mean λ.

In principle, any discrete random variable can be simulated from a uniform
random variable using this method. To be concrete, suppose X takes on the values

a1, . . . , aN with probabilities p1, p2, . . . , pN . Let Fk :=
∑k

j=1 pj (and F0 := 0), and

define ϕ : [0, 1]→ {a1, . . . , aN} by

ϕ(u) := ak if Fk−1 < u ≤ Fk. (B.10)

If X = ϕ(U), where U is uniform on [0, 1], then P{X = ak} = pk (Exercise B.2).
One obstacle is that this recipe requires that the probabilities (p1, . . . , pN ) are

known exactly, while in many applications these are only known up to constant
factor. This is a common situation, and many of the central examples treated
in this book (such as the Ising model) fall into this category. It is common in
applications to desire uniform samples from combinatorial sets whose sizes are not
known.

Many problems are defined for a family of structures indexed by instance size.
The efficiency of solutions is measured by the growth of the time required to run
the algorithm as a function of instance size. If the run-time grows exponentially in
instance size, the algorithm is considered impractical.



314 B. INTRODUCTION TO SIMULATION
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Figure B.2. f(x) = 4e−4x, the exponential probability density
function with rate 4.

B.4. Inverse Distribution Function Method

Example B.1. Let U be a uniform random variable on [0, 1], and define Y =
−λ−1 log(1− U). The distribution function of Y is

F (t) = P{Y ≤ t} = P{−λ−1 log(1 − U) ≤ t} = P{U ≤ 1− e−λt}. (B.11)

As U is uniform, the rightmost probability above equals 1 − e−λt, the distribu-
tion function for an exponential random variable with rate λ. (The graph of an
exponential density with λ = 4 is shown in Figure B.2.)

This calculation leads to the following algorithm:

(1) Generate U .
(2) Output Y = −λ−1 log(1− U).

The algorithm in Example B.1 is a special case of the inverse distribution

function method for simulating a random variable with distribution function F ,
which is practical provided that F can be inverted efficiently. Unfortunately, there
are not very many examples where this is the case.

Suppose that F is strictly increasing, so that its inverse function F−1 : [0, 1]→
R is defined everywhere. Recall that F−1 is the function so that F−1 ◦ F (x) = x
and F ◦ F−1(y) = y.

We now show how, using a uniform random variable U , to simulate X with
distribution function F . For a uniform U , let X = F−1(U). Then

P{X ≤ t} = P{F−1(U) ≤ t} = P{U ≤ F (t)}. (B.12)

The last equality follows because F is strictly increasing, so F−1(U) ≤ t if and
only if F

(
F−1(U)

)
≤ F (t). Since U is uniform, the probability on the right can be

easily evaluated to get
P{X ≤ t} = F (t). (B.13)

That is, the distribution function of X is F .

B.5. Acceptance-Rejection Sampling

Suppose that we have a black box which on demand produces a uniform sample
from a region R′ in the plane, but what we really want is to sample from another
region R which is contained in R′ (see Figure B.3).

If independent points are generated, each uniformly distributed over R′, until
a point falls in R, then this point is a uniform sample from R (Exercise B.5).

Now we want to use this idea to simulate a random variable X with density
function f given that we know how to simulate a random variable Y with density
function g.
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Figure B.3. R′ is the diagonally hatched square, and R is the
bricked circle.

We will suppose that

f(x) ≤ Cg(x) for all x, (B.14)

for some constant C. We will see that good choices for the density g minimize the
constant C. Because f and g both integrate to unity, C ≥ 1.

Here is the algorithm:

(1) Generate a random variable Y having probability density function g.
(2) Generate a uniform random variable U .
(3) Conditional on Y = y, if Cg(y)U ≤ f(y), output the value y and halt.
(4) Repeat.

We now show that this method generates a random variable with probability
density function f . Given that Y = y, the random variable Uy := Cg(y)U is uniform
on [0, Cg(y)]. By Exercise B.4, the point (Y, UY ) is uniform over the region bounded
between the graph of Cg and the horizontal axis. We halt the algorithm if and only
if this point is also underneath the graph of f . By Exercise B.5, in this case, the
point is uniformly distributed over the region under f . But again by Exercise B.4,
the horizontal coordinate of this point has distribution f . (See Figure B.4.)
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Cg(x)

f(x)

Figure B.4. The probability density function f lies below the
scaled probability density function of g.

The value of C determines the efficiency of the algorithm. The probability that
the algorithm terminates on any trial, given that Y = y, is f(y)/Cg(y). Using the
law of total probability, the unconditional probability is C−1. The number of trials
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Figure B.5. The Gamma density for α = 2 and λ = 1, along
with 4e−1 times the exponential density of rate 1/2.

required is geometric, with success probability C−1, and so the expected number
of trials before terminating is C.

We comment here that there is a version of this method for discrete random
variables; the reader should work on the details for herself.

Example B.2. Consider the gamma distribution with parameters α and λ. Its
probability density function is

f(x) =
xα−1λαe−λx

Γ(α)
. (B.15)

(The function Γ(α) in the denominator is defined to normalize the density so that it
integrates to unity. It has several interesting properties, most notably that Γ(n) =
(n− 1)! for integers n.)

The distribution function does not have a nice closed-form expression, so in-
verting the distribution function does not provide an easy method of simulation.

We can use the rejection method here, when α > 1, bounding the density by a
multiple of the exponential density

g(x) = µe−µx.

The constant C depends on µ, and

C = sup
x

[Γ(α)]−1(λx)α−1λe−λx

µe−µx
.

A bit of calculus shows that the supremum is attained at x = (α− 1)/(λ− µ) and

C =
λα(α− 1)α−1e1−α

Γ(α)µ(λ − µ)α−1
.

Some more calculus shows that the constant C is minimized for µ = λ/α, in which
case

C =
ααe1−α

Γ(α)
.

The case of α = 2 and λ = 1 is shown in Figure B.5, where 4e−1 1
2e

−x/2 bounds the
gamma density.
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Figure B.6. The standard normal density on the left, and on
the right the joint density of two independent standard normal
variables.

We end the example by commenting that the exponential is easily simulated by
the inverse distribution function method, as the inverse to 1−e−µx is (−1/µ) ln(1−
u).

B.6. Simulating Normal Random Variables

Recall that a standard normal random variable has the “bell-shaped” proba-
bility density function specified by

f(x) =
1√
2π
e−

1
2x

2

. (B.16)

The corresponding distribution function Φ is the integral

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2 t

2

dt, (B.17)

which cannot be evaluated in closed form. The inverse of Φ likewise cannot be
expressed in terms of elementary functions. As a result the inverse distribution
function method requires the numerical evaluation of Φ−1. We present here another
method of simulating from Φ which does not require the evaluation of the inverse
of Φ.

LetX and Y be independent standard normal random variables. Geometrically,
the ordered pair (X,Y ) is a random point in the plane. The joint probability density
function for (X,Y ) is shown in Figure B.6.

We will write (R,Θ) for the representation of (X,Y ) in polar coordinates and
define S := R2 = X2 + Y 2 to be the squared distance of (X,Y ) to the origin.

The distribution function of S is

P{S ≤ t} = P{X2 + Y 2 ≤ t} =

∫∫

D(
√
t)

1

2π
e−

x2+y2

2 dxdy, (B.18)

where D(
√
t) is the disc of radius

√
t centered at the origin. Changing to polar

coordinates, this equals
∫ √

t

0

∫ 2π

0

1

2π
e−

r2

2 rdrdθ = 1− e−t/2. (B.19)

We conclude that S has an exponential distribution with mean 2.
To summarize, the squared radial part of (X,Y ) has an exponential distribu-

tion, its angle has a uniform distribution, and these are independent.
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Our standing assumption is that we have available independent uniform vari-
ables; here we need two, U1 and U2. Define Θ := 2πU1 and S := −2 log(1 − U2),
so that Θ is uniform on [0, 2π] and S is independent of Θ and has an exponential
distribution.

Now let (X,Y ) be the Cartesian coordinates of the point with polar represen-

tation (
√
S,Θ). Our discussion shows that X and Y are independent standard

normal variables.

B.7. Sampling from the Simplex

Let ∆n be the n− 1-dimensional simplex:

∆n :=

{
(x1, . . . , xn) : xi ≥ 0,

n∑

i=1

xi = 1

}
. (B.20)

This is the collection of probability vectors of length n. We consider here the
problem of sampling from ∆n.

Let U1, U2, . . . , Un−1 be i.i.d. uniform variables in [0, 1], and define U(k) to be
the k-th smallest among these.

Let T : Rn−1 → Rn be the linear transformation defined by

T (u1, . . . , un−1) = (u1, u2 − u1, . . . , un−1 − un−2, 1− un−1).

Note that T maps the set An−1 = {(u1, . . . , un−1) : u1 ≤ u2 ≤ · · · ≤ un−1 ≤ 1}
linearly to ∆n, so Exercise B.8 and Exercise B.9 together show that (X1, . . . , Xn) =
T (U(1), . . . , U(n−1)) is uniformly distributed on ∆n.

We can now easily generate a sample from ∆n: throw down n − 1 points
uniformly in the unit interval, sort them along with the points 0 and 1, and take
the vector of successive distances between the points.

The algorithm described above requires sorting n variables. This sorting can,
however, be avoided. See Exercise B.10.

B.8. About Random Numbers

Because most computer languages provide a built-in capability for simulating
random numbers chosen independently from the uniform density on the unit in-
terval [0, 1], we will assume throughout this book that there is a ready source of
independent uniform-[0, 1] random variables.

This assumption requires some further discussion, however. Since computers
are finitary machines and can work with numbers of only finite precision, it is in
fact impossible for a computer to generate a continuous random variable. Not to
worry: a discrete random variable which is uniform on, for example, the set in (B.3)
is a very good approximation to the uniform distribution on [0, 1], at least when n
is large.

A more serious issue is that computers do not produce truly random numbers
at all. Instead, they use deterministic algorithms, called pseudorandom num-

ber generators, to produce sequences of numbers that appear random. There are
many tests which identify features which are unlikely to occur in a sequence of in-
dependent and identically distributed random variables. If a sequence produced by
a pseudorandom number generator can pass a battery of these tests, it is considered
an appropriate substitute for random numbers.
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Figure B.7. A self-avoiding path

One technique for generating pseudorandom numbers is a linear congruential

sequence (LCS). Let x0 be an integer seed value. Given that xn−1 has been
generated, let

xn = (axn−1 + b) mod m. (B.21)

Here a, b and m are fixed constants. Clearly, this produces integers in {0, 1, . . . ,m};
if a number in [0, 1] is desired, divide by m.

The properties of (x0, x1, x2, . . .) vary greatly depending on choices of a, b and
m, and there is a great deal of art and science behind making judicious choices for
the parameters. For example, if a = 0, the sequence does not look random at all!

Any linear congruential sequence is eventually periodic (Exercise B.12). The
period of a LCS can be much smaller than m, the longest possible value.

The goal of any method for generating pseudorandom numbers is to generate
output which is difficult to distinguish from truly random numbers using statistical
methods. It is an interesting question whether a given pseudorandom number
generator is good. We will not enter into this issue here, but the reader should be
aware that the “random” numbers produced by today’s computers are not in fact
random, and sometimes this can lead to inaccurate simulations. For an excellent
discussion of these issues, see Knuth (1997).

B.9. Sampling from Large Sets*

As discussed in Section 14.4, sampling from a finite set and estimating its size
are related problems. Here we discuss the set of self-avoiding paths of length n and
also mention domino tilings.

Example B.3 (Self-avoiding walks). A self-avoiding walk in Z2 of length n
is a sequence (z0, z1, . . . , zn) such that z0 = (0, 0), |zi − zi−1| = 1, and zi 6= zj
for i 6= j. See Figure B.7 for an example of length 6. Let Ξn be the collection
of all self-avoiding walks of length n. Chemical and physical structures such as
molecules and polymers are often modeled as “random” self-avoiding walks, that
is, as uniform samples from Ξn.

Unfortunately, no efficient algorithm for finding the size of Ξn is known. None-
theless, we still desire (a practical) method for sampling uniformly from Ξn. We
present a Markov chain in Example B.5 whose state space is the set of all self-
avoiding walks of a given length and whose stationary distribution is uniform—but
whose mixing time is not known.

Example B.4 (Domino tilings). Domino tilings, sometimes also called dimer

systems, are another important family of examples for counting and sampling
algorithms. A domino is a 2 × 1 or 1 × 2 rectangle, and, informally speaking,
a domino tiling of a subregion of Z2 is a partition of the region into dominoes,
disjoint except along their boundaries (see Figure B.8).
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Figure B.8. A domino tiling of a 6× 6 checkerboard.

Random domino tilings arise in statistical physics, and it was Kasteleyn (1961)
who first computed that when n and m are both even, there are

2nm
n/2∏

i=1

m/2∏

j=1

(
cos2

πi

n+ 1
+ cos2

πj

m+ 1

)

domino tilings of an n×m grid.
The notion of a perfect matching (a set of disjoint edges together covering all

vertices) generalizes domino tiling to arbitrary graphs, and much is known about
counting and/or sampling perfect matchings on many families of graphs. See, for
example, Luby, Randall, and Sinclair (1995) or Wilson (2004a). Section 22.2 dis-
cusses lozenge tilings, which correspond to perfect matchings on a hexagonal lattice.

Example B.5 (Pivot chain for self-avoiding paths). The space Ξn of self-
avoiding lattice paths of length n was described in Example B.3. These are paths
in Z2 of length n which never intersect themselves.

Counting the number of self-avoiding paths is an unsolved problem. For more
on this topic, see Madras and Slade (1993). Randall and Sinclair (2000) give an
algorithm for approximately sampling from the uniform distribution on these walks.

We describe now a Markov chain on Ξn and show that it is irreducible. If the
current state of the chain is the path (0, v1, . . . , vn) ∈ Ξn, the next state is chosen
by the following:

(1) Pick a value k from {0, 1, . . . , n} uniformly at random.
(2) Pick uniformly at random from the following transformations of Z

2: rota-
tions clockwise by π/2, π, 3π/2, reflection across the x-axis, and reflection
across the y-axis.

(3) Take the path from vertex k on, (vk, vk+1, . . . , vn), and apply the trans-
formation chosen in the previous step to this subpath only, taking vk as
the origin.

(4) If the resulting path is self-avoiding, this is the new state. If not, repeat.

An example move is shown in Figure B.9.
We now show that this chain is irreducible by proving that any self-avoiding

path can be unwound to a straight line by a sequence of possible transitions. Since
the four straight paths starting at (0, 0) are rotations of each other and since any
transition can also be undone by a dual transition, any self-avoiding path can
be transformed into another. The proof below follows Madras and Slade (1993,
Theorem 9.4.4).
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(0,0)

4

−→

(0,0)

4

current path
path after rotating by π
from vertex 4

Figure B.9. Example of a single move of pivot chain for self-
avoiding walk.

For a path ξ ∈ Ξn, put around ξ as small a rectangle as possible, and define
D = D(ξ) to be the sum of the length and the width of this rectangle. The left-hand
diagram in Figure B.10 shows an example of this bounding rectangle. Define also
A = A(ξ) to be the number of interior vertices v of ξ where the two edges incident

at v form an angle of π, that is, which look like either or . We first observe

that D(ξ) ≤ n and A(ξ) ≤ n − 1 for any ξ ∈ Ξn, and D(ξ) + A(ξ) = 2n − 1
if and only if ξ is a straight path. We show now that if ξ is any path different
from the straight path, we can make a legal move—that is, a move having positive
probability—to another path ξ′ which has D(ξ′) +A(ξ′) > D(ξ) +A(ξ).

There are two cases which we will consider separately.
Case 1. Suppose that at least one side of the bounding box does not contain

either endpoint, 0 or vn, of ξ = (0, v1, . . . , vn). This is the situation for the path on
the left-hand side in Figure B.10. Let k ≥ 1 be the smallest index so that vk lies
on this side. Obtain ξ′ by taking ξ and reflecting its tail (vk, vk+1, . . . , vn) across
this box side. Figure B.10 shows an example of this transformation. The new path
ξ′ satisfies D(ξ′) > D(ξ) and A(ξ′) = A(ξ) (the reader should convince himself this
is indeed true!)

Case 2. Suppose every side of the bounding box contains an endpoint of ξ.
This implies that the endpoints are in opposing corners of the box. Let k be the
largest index so that the edges incident to vk form a right angle. The path ξ from
vk to vn forms a straight line segment and must lie along the edge of the bounding
box. Obtain ξ′ from ξ by rotating this straight portion of ξ so that it lies outside
the original bounding box. See Figure B.11.

This operation reduces one dimension of the bounding box by at most the
length of the rotated segment, but increases the other dimension by this length.
This shows that D(ξ′) ≥ D(ξ). Also, we have strictly increased the number of
straight angles, so D(ξ′) +A(ξ′) > D(ξ) +A(ξ).

In either case, D+A is strictly increased by the transformation, so continuing
this procedure eventually leads to a straight line segment. This establishes that the
pivot Markov chain is irreducible.
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(0,0)

−→

(0,0)
reflected across side not containing both
endpoints

Figure B.10. A SAW without both endpoints in corners of
bounding box.

−→

rotated final straight segment outside
box

Figure B.11. A SAW with endpoints in opposing corners.

It is an open problem to analyze the convergence behavior of the pivot chain on
self-avoiding walks. The algorithm of Randall and Sinclair (2000) uses a different
underlying Markov chain to approximately sample from the uniform distribution
on these walks.

Exercises

Exercise B.1. Check that the random variable in (B.4) has the uniform dis-
tribution on the set in (B.3).

Exercise B.2. Let U be uniform on [0, 1], and let X be the random variable
ϕ(U), where ϕ is defined as in (B.10). Show that X takes on the value ak with
probability pk.

Exercise B.3. Describe how to use the inverse distribution function method
to simulate from the probability density function

f(x) =

{
2x if 0 < x < 1,

0 otherwise.
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Exercise B.4. Show that if (Y, UY ) is the pair generated in one round of the
rejection sampling algorithm, then (Y, UY ) is uniformly distributed over the region
bounded between the graph of Cg and the horizontal axis. Conversely, if g is a
density and a point is sampled from the region under the graph of g, then the
projection of this point onto the x-axis has distribution g.

Exercise B.5. Let R ⊂ R′ ⊂ Rk. Show that if points uniform in R′ are
generated until a point falls in R, then this point is uniformly distributed over R.
Recall that this means that the probability of falling in any subregion B of R is
equal to Volk(B)/Volk(R).

Exercise B.6. Argue that since the joint density (2π)−1 exp[−(x2 + y2)/2] is
a function of s = x2 + y2, the distribution of Θ must be uniform and independent
of S.

Exercise B.7. Find a method for simulating the random variable Y with
density

g(x) = e−|x|/2.

Then use the rejection method to simulate a random variable X with the standard
normal density given in (B.16).

Exercise B.8. Show that the vector (U(1), . . . , U(n−1)) is uniformly distributed
over the set An−1 = {(u1, . . . , un−1) : u1 ≤ u2 ≤ · · · ≤ un−1 ≤ 1}.

Let T : Rn−1 → Rn be the linear transformation defined by

T (u1, . . . , un−1) = (u1, u2 − u1, . . . , un−1 − un−2, 1− un−1).

Exercise B.9. Suppose that X is uniformly distributed on a region A of Rd,
and the map T : R

d → R
r, d ≤ r is a linear transformation. A useful fact is that

for a region R ⊂ Rd,

Volumed(TR) =
√

det(T tT )Volume(R),

where Volumed(TR) is the d-dimensional volume of TR ⊂ Rr. Use this to show
that Y = TX is uniformly distributed over TA.

Exercise B.10. (This exercise requires knowledge of the change-of-variables
formula for d-dimensional random vectors.) Let Y1, . . . , Yn be i.i.d. exponential
variables, and define

Xi =
Yi

Y1 + · · ·+ Yn
. (B.22)

Show that (X1, . . . , Xn) is uniformly distributed on ∆n.

Exercise B.11. Let U1, U2, . . . , Un be independent random variables, each
uniform on the interval [0, 1]. Let U(k) be the k-th order statistic, the k-th
smallest among {U1, . . . , Un}, so that

U(1) < U(2) < · · · < U(n).

The purpose of this exercise is to give several different arguments that

E
(
U(k)

)
=

k

n+ 1
. (B.23)

Fill in the details for the following proofs of (B.23):

(a) Find the density of U(k), and integrate.
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3

2 3

1

1 1 2

Figure B.12. A proper 3-coloring of a rooted tree. (As is common
practice, we have placed the root at the top.)

(b) Find the density of U(n), and observe that given U(n), the other variables are
the order statistics for uniforms on the interval [0, U(n)]. Then apply induction.

(c) Let Y1, . . . , Yn be independent and identically distributed exponential variables
with mean 1, and let S1 = Y1, S2 = Y1 + Y2, . . . be their partial sums. Show
that the random vector

1

Sn+1
(S1, S2, . . . , Sn) (B.24)

has constant density on the simplex

An = {(x1, . . . , xn) : 0 < x1 < x2 < · · · < xn < 1}.
Conclude that (B.24) has the same law as the vector of order statistics.

Exercise B.12. Show that if f : {1, . . . ,m} → {1, . . . ,m} is any function and
xn = f(xn−1) for all n, then there is an integer k such that xn = xn+k eventually.
That is, the sequence is eventually periodic.

Exercise B.13. Consider the following algorithm for sampling proper colorings
on a rooted tree (see Figure B.12): choose the color of the root uniformly at random
from {1, . . . , q}. Given that colors have been assigned to all vertices up to depth d,
for a vertex at depth d+ 1, assign a color chosen uniformly at random from

{1, 2, . . . , q} \ {color of parent}. (B.25)

(a) Verify that the coloring generated is uniformly distributed over all proper col-
orings.

(b) Similarly extend the sampling algorithms of Exercises 14.5 and 14.6 to the case
where the base graph is an arbitrary rooted tree.

Exercise B.14. A nearest-neighbor path 0 = v0, . . . , vn is non-reversing if
vk 6= vk−2 for k = 2, . . . , n. It is simple to generate a non-reversing path recursively.
First choose v1 uniformly at random from {(0, 1), (1, 0), (0,−1), (−1, 0)}. Given that
v0, . . . , vk−1 is a non-reversing path, choose vk uniformly from the three sites in Z2

at distance 1 from vk−1 but different from vk−2.
Let Ξnr

n be the set of non-reversing nearest-neighbor paths of length n. Show
that the above procedure generates a uniform random sample from Ξnr

n .

Exercise B.15. One way to generate a random self-avoiding path is to generate
non-reversing paths until a self-avoiding path is obtained.



NOTES 325

(a) Let cn,4 be the number of paths in Z2 which do not contain loops of length 4
at indices i ≡ 0 mod 4. More exactly, these are paths (0, 0) = v0, v1, . . . , vn so
that v4i 6= v4(i−1) for i = 1, . . . , n/4. Show that

cn,4 ≤
[
4(33)− 8

] [
34 − 6

]⌈n/4⌉−1
. (B.26)

(b) Conclude that the probability that a random non-reversing path of length n is
self-avoiding is bounded above by e−αn for some fixed α > 0.

Part (b) implies that if we try generating random non-reversing paths until we get
a self-avoiding path, the expected number of trials required grows exponentially in
the length of the paths.

Notes

On random numbers, von Neumann offers the following:

“Any one who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin” (von Neumann, 1951).

Iterating the von Neumann algorithm asymptotically achieves the optimal ex-
traction rate of −p log2 p − (1 − p) log2(1 − p), the entropy of a biased random
bit (Peres, 1992). Earlier, a different optimal algorithm was given by Elias (1972),
although the iterative algorithm has some computational advantages.

Further reading. For a stimulating and much wider discussion of univariate
simulation techniques, Devroye (1986) is an excellent reference.





APPENDIX C

Solutions to Selected Exercises

Solutions to selected Chapter 1 exercises.

1.6. Fix x0. Define for k = 0, 1, . . . , b− 1 the sets

Ck := {x ∈ Ω : Pmb+k(x0, x) > 0 for some m}. (C.1)

Claim: Each x belongs to only one of the sets Ck.
Proof. Suppose Pmb+k(x0, x) > 0 and Pm

′b+j(x0, x) > 0. Suppose, without
loss of generality, that j ≤ k. There exists some r such that P r(x, x0) > 0, whence
r +mb + k ∈ T (x0). Therefore, b divides r + k. By the same reasoning, b divides
r + j. Therefore, b must divide r + k − (r + j) = k − j. As j ≤ k < b, it must be
that k = j. �

Claim: The chain (Xbt)
∞
t=0, when started from x ∈ Ck, is irreducible on Ck.

Proof. Let x, y ∈ Ck. There exists r such that P r(x, x0) > 0. Also, by
definition of Ck, there exists m such that Pmb+k(x0, x) > 0. Therefore, r+mb+k ∈
T (x0), whence b divides r + k. Also, there exists m′ such that Pm

′b+k(x0, y) > 0.

Therefore, P r+m
′b+k(x, y) > 0. Since b divides r + k, we have r +m′b+ k = tb for

some t. �

Suppose that x ∈ Ci and P (x, y) > 0. By definition, there exists m such that
Pmb+i(x0, y) > 0. Since

Pmb+i+1(x0, y) ≥ Pmb+i(x0, x)P (x, y) > 0,

it follows that y ∈ Ci+1.
�

1.8. Observe that

π(x)P 2(x, y) = π(x)
∑

z∈Ω

P (x, z)P (z, y)

=
∑

z∈Ω

π(z)P (z, x)P (z, y)

=
∑

z∈Ω

π(z)P (z, y)P (z, x)

=
∑

z∈Ω

π(y)P (y, z)P (z, x)

= π(y)
∑

z∈Ω

P (y, z)P (z, x)

= π(y)P 2(y, x).

327
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Therefore, π is the stationary distribution for P 2. �

1.11.

(a) Compute

νnP (x) − µn(x) =
1

n
(µPn(x)− µ(x)) ≤ 2

n
,

since any probability measure has weight at most 1 at x.
(b) Bolzano-Weierstrass, applied either directly in R|Ω| or iteratively: first take

a subsequence that converges at x1, then take a subsequence of that which
converges at x2, and so on. Either way, it’s key that the weights of the measure
are bounded and that the state space is finite.

(c) Part (a) gives stationarity, while the fact that the set of probability measures
on Ω (viewed as a set in R|Ω|) is closed gives that ν is a probability distribution.

�

Solutions to selected Chapter 2 exercises.

2.2. Let fk be the expected value of the time until our gambler stops playing.
Just as for the regular gambler’s ruin, the values fk are related:

f0 = fn = 0 and fk =
p

2
(1 + fk−1) +

p

2
(1 + fk+1) + (1 − p)(1 + fk).

It is easy to check that setting fk = k(n − k)/p solves this system of equations.
(Note that the answer is just what it should be. If she only bets a fraction p of the
time, then it should take a factor of 1/p longer to reach her final state.) �

2.3. Let (Xt) be a fair random walk on the set {−n, . . . , n}, starting at the
state 0 and absorbing at ±n. By Proposition 2.1, the expected time for this walk
to be absorbed is (2n− n)(2n− n) = n2.

The walk described in the problem can be viewed as n−|Xt|. Hence its expected
time to absorption is also n2. �

2.4.
n∑

k=1

1

k
≥

n∑

k=1

∫ k+1

k

dt

t
=

∫ n+1

1

dt

t
= log(n+ 1) ≥ logn, (C.2)

and
n∑

k=1

1

k
= 1 +

n∑

k=2

1

k
≤ 1 +

n∑

k=2

∫ k

k−1

dt

t
= 1 +

∫ n

1

dt

t
= 1 + logn. (C.3)

�

2.5.(
d

k + 1

)
P (k + 1, k) +

(
d

k − 1

)
P (k − 1, k)

=
d!

(k + 1)!(d− k − 1)!

k + 1

d
+

d!

(k − 1)!(d− k + 1)!

d− k + 1

d

=

(
d− 1

k

)
+

(
d− 1

k − 1

)
=

(
d

k

)
.

The last combinatorial identity, often called Pascal’s identity, follows from split-
ting the set of k-element subsets of a d-element set into those which contain a
distinguished element and those which do not. �
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2.8. Let ϕ be the function which maps y 7→ x and preserves P . Then

P̂ (z, w) =
π(w)P (w, z)

π(z)
=
π(w)P (ϕ(w), ϕ(z))

π(z)
= P̂ (w, z). (C.4)

Note that the last equality follows since π is uniform, and so π(x) = π(ϕ(x)) for
all x. �

2.10. Suppose that the reflected walk hits c at or before time n. It has prob-
ability at least 1/2 of finishing at time n in [c,∞). (The probability can be larger
than 1/2 because of the reflecting at 0.) Thus

P

{
max

1≤j≤n
|Sj | ≥ c

}
1

2
≤ P {|Sn| ≥ c} .

�

Solutions to selected Chapter 3 exercises.

3.1. Fix x, y ∈ X . Suppose first that π(x)Ψ(x, y) ≥ π(y)Ψ(y, x). In this case,

π(x)P (x, y) = π(x)Ψ(x, y)
π(y)Ψ(y, x)

π(x)Ψ(x, y)
= π(y)Ψ(y, x).

On the other hand, π(y)P (y, x) = π(y)Ψ(y, x), so

π(x)P (x, y) = π(y)P (y, x). (C.5)

Similarly, if π(x)Ψ(x, y) < π(y)Ψ(x, y), then π(x)P (x, y) = π(x)Ψ(x, y). Also,

π(y)P (y, x) = π(y)Ψ(y, x)
π(x)Ψ(x, y)

π(y)Ψ(y, x)
= π(x)Ψ(x, y).

Therefore, in this case, the detailed balance equation (C.5) is also satisfied. �

Solutions to selected Chapter 4 exercises.

4.1. By Proposition 4.2 and the triangle inequality we have

∥∥µP t − π
∥∥

TV
=

1

2

∑

y∈Ω

|µP t(y)− π(y)|

=
1

2

∑

y∈Ω

∣∣∣∣∣
∑

x∈Ω

µ(x)P t(x, y)−
∑

x∈Ω

µ(x)π(y)

∣∣∣∣∣

≤ 1

2

∑

y∈Ω

∑

x∈Ω

µ(x)|P t(x, y)− π(y)|

=
∑

x∈Ω

µ(x)
1

2

∑

y∈Ω

|P t(x, y)− π(y)|

=
∑

x∈Ω

µ(x)
∥∥P t(x, ·) − π

∥∥
TV

≤ max
x∈Ω

∥∥P t(x, ·) − π
∥∥

TV
.

Since this holds for any µ, we have

sup
µ

∥∥µP t − π
∥∥

TV
≤ max

x∈Ω

∥∥P t(x, ·) − π
∥∥

TV
= d(t).
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The opposite inequality holds, since the set of probabilities on Ω includes the point
masses.

Similarly, if α and β are two probabilities on Ω, then

‖αP − βP‖TV =
1

2

∑

z∈Ω

∣∣∣∣∣αP (z)−
∑

w∈Ω

β(w)P (w, z)

∣∣∣∣∣

≤ 1

2

∑

z∈Ω

∑

w∈Ω

β(w)|αP (z) − P (w, z)|

=
∑

w∈Ω

β(w)
1

2

∑

z∈Ω

|αP (z)− P (w, z)|

=
∑

w∈Ω

β(w) ‖αP − P (w, ·)‖TV

≤ max
w∈Ω
‖αP − P (w, ·)‖TV . (C.6)

Thus, applying (C.6) with α = µ and β = ν gives that

‖µP − νP‖TV ≤ max
y∈Ω
‖µP − P (y, ·)‖TV . (C.7)

Applying (C.6) with α = δy, where δy(z) = 1{z=y}, and β = µ shows that

‖µP − P (y, ·)‖TV = ‖P (y, ·)− µP‖TV ≤ max
x∈Ω
‖P (y, ·)− P (x, ·)‖TV . (C.8)

Combining (C.7) with (C.8) shows that

‖µP − νP‖TV ≤ max
x,y∈Ω

‖P (x, ·)− P (y, ·)‖TV .

�

4.2. Define An = n−1
∑n

k=1 ak. Let nk ≤ m < nk+1. Then

Am =
nk
m
Ank

+

∑m
j=nk+1 aj

m
.

Because nk/nk+1 ≤ nk/m ≤ 1, the ratio nk/m tends to 1. Thus the first term
tends to a. If |aj | ≤ B, then the absolute value of the second term is bounded by

B

(
nk+1 − nk

nk

)
→ 0.

Thus Am → a. �

4.3. This is a standard exercise in manipulation of sums and inequalities. Ap-
ply Proposition 4.2, expand the matrix multiplication, apply the triangle inequality,
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switch order of summation, and apply Proposition 4.2 once more:

‖µP − νP‖TV =
1

2

∑

x∈Ω

|µP (x)− νP (x)|

=
1

2

∑

x∈Ω

∣∣∣∣∣∣
∑

y∈Ω

µ(y)P (y, x)−
∑

y∈Ω

ν(y)P (y, x)

∣∣∣∣∣∣

=
1

2

∑

x∈Ω

∣∣∣∣∣∣
∑

y∈Ω

P (y, x) [µ(y)− ν(y)]

∣∣∣∣∣∣

≤ 1

2

∑

x∈Ω

∑

y∈Ω

P (y, x) |µ(y)− ν(y)|

=
1

2

∑

y∈Ω

|µ(y)− ν(y)|
∑

x∈Ω

P (y, x)

=
1

2

∑

y∈Ω

|µ(y)− ν(y)|

= ‖µ− ν‖TV .
�

4.5. For i = 1, . . . , n, let (X(i), Y (i)) be the optimal coupling of µi and νi. Let

X := (X(1), . . . , X(n)),

Y := (Y (1), . . . , X(n)).

Since the distribution of X is µ and the distribution of Y is ν, the pair (X,Y ) is
a coupling of µ and ν. Thus

‖µ− ν‖TV ≤ P{X 6= Y } ≤
n∑

i=1

P{Xi = Yi} =

n∑

i=1

‖µi − νi‖TV .

�

Solutions to selected Chapter 5 exercises.

5.1. Consider the following coupling of the chain started from x and the chain
started from π: run the chains independently until the time τ when they meet,
and then run them together. Recall that by aperiodicity and irreducibility, there is
some r so that α := minx,y P

r(x, y) ≥ 0.
Fix some state x0. Then the probability that both chains, starting from say x

and y, are not at x0 after r steps is at most (1 − α). If the two chains are not at
x0 after these r steps, the probability that they are not both at x0 after another r
steps is again (1 − α). Continuing in this way, we get that P{τ > kr} ≤ (1− α)k.
This shows that P{τ <∞} = 1. �

5.2. We show that

P{τcouple > kt0} ≤ (1 − α)k, (C.9)

from which the conclusion then follows by summing. An unsuccessful coupling
attempt occurs at trial j if Xt 6= Yt for all jt0 < t ≤ (j + 1)t0. Since (Xt, Yt)
is a Markovian coupling, so is (Xt+jt0 , Yt+jt0) for any j, and we can apply the
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given bound on the probability of not coupling to any length-t0 segment of the
trajectories. Hence the probability of an unsuccessful coupling attempt at trial j
is at most (1 − α). It follows that the probability that all the first k attempts are
unsuccessful is at most (1 − α)k. �

5.4. If τi is the coupling time of the i-th coordinate, we have seen already that
E(τi) ≤ n2/4, so

P{τi > dn2} ≤ E(τi)

kdn2
≤ 1

4
.

Suppose that P{τi > (k − 1)dn2} ≤ 4−(k−1). Then

P{τi > kdn2} = P{τi > kdn2 | τi > (k − 1)dn2}P{τi > (k − 1)dn2}
≤ 4−14−(k−1)

= 4−k.

Letting Gi = {τi > kdn2}, we have P(Gi) ≤ 4−1. Thus

P

{
max
1≤i≤d

τi > kdn2

}
≤ P

(
d⋃

i=1

Gi

)
≤

d∑

i=1

P(Gi) ≤ d4−k.

Taking k = (1/2) log2(4d) makes the right-hand side equal 1/4. Thus

tmix ≤ (1/2)[log2(4d)]dn
2 = O([d log2 d]n

2).

�

Solutions to selected Chapter 6 exercises.

6.1. Observe that if τ is a stopping time and r is a non-random and non-
negative integer, then

1{τ+r=t} = 1{τ=t−r} = ft−r(X0, . . . , Xt−r),

where ft is a function from Ωt+1 to {0, 1}. Therefore, 1{τ+r=t} is a function of
(X0, . . . , Xt), whence τ + r is a stopping time. �

6.3. Let ε := [2(2n− 1)]−1. Let µ(v) = (2n− 1)−1. For v 6= v⋆,

∑

w

µ(w)P (w, v) =
∑

w :w∼v
w 6=v

1

(2n− 1)

[
1

2
− ε
]

1

n− 1
+

1

(2n− 1)

[
1

2
+ ε

]

=
1

(2n− 1)

{
(n− 1)

[
1

2
− ε
]

1

n− 1
+

[
1

2
+ ε

]}

=
1

2n− 1
.

Also,

∑

w

µ(w)P (w, v⋆) = (2n− 2)
1

2n− 1

[
1

2
− ε
]

1

n− 1
+

1

2n− 1

(
1

2n− 1

)

=
1

2n− 1
.

�
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6.5. By Exercise 6.4,

s(t) = s

(
t0
t

t0

)
≤ s(t0)t/t0 .

Since s(t0) ≤ ε by hypothesis, applying Lemma 6.13 finishes the solution. �

6.6. By the Monotone Convergence Theorem,

E

(
τ∑

t=1

|Yt|
)

=

∞∑

t=1

E
(
|Yt|1{τ≥t}

)
. (C.10)

Since the event {τ ≥ t} is by assumption independent of Yt and E|Yt| = E|Y1| for
all t ≥ 1, the right-hand side equals

∞∑

t=1

E|Y1|P{τ ≥ t} = E|Y1|
∞∑

t=1

P{τ ≥ t} = E|Y1|E(τ) <∞. (C.11)

By the Dominated Convergence Theorem, since
∣∣∣∣∣
∞∑

t=1

Yt1{τ≥t}

∣∣∣∣∣ ≤
∞∑

t=1

|Yt|1{τ≥t}

and (C.11) shows that the expectation of the non-negative random variable on the
right-hand side above is finite,

E

( ∞∑

t=1

Yt1{τ≥t}

)
=

∞∑

t=1

E(Yt1{τ≥t}) = E(Y1)

∞∑

t=1

P{τ ≥ t} = E(Y1)E(τ).

Now suppose that τ is a stopping time. For each t,

{τ ≥ t} = {τ ≤ t− 1}c = {(Y1, . . . , Yt−1) ∈ Bt−1}c, (C.12)

for some Bt−1 ⊂ Ωt−1. Since the sequence (Yt) is i.i.d., (C.12) shows that {τ ≥ t}
is independent of Yt. �

6.7. Let A be the set of vertices in one of the complete graphs making up G.
Clearly, π(A) = n/(2n− 1) ≥ 2−1.

On the other hand, for x 6∈ A,

P t(x,A) = 1− (1− αn)t (C.13)

where

αn =
1

2

[
1− 1

2(n− 1)

]
1

n− 1
=

1

2n
[1 + o(1)] .

The total variation distance can be bounded below:
∥∥P t(x, ·) − π

∥∥
TV
≥ π(A) − P t(x,A) ≥ (1− αn)t −

1

2
. (C.14)

Since

log(1− αn)t ≥ t(−αn − α2
n/2)

and −1/4 ≥ log(3/4), if t < [4αn(1− αn/2)]−1, then

(1 − αn)t −
1

2
≥ 1

4
.

This implies that tmix(1/4) ≥ n
2 [1 + o(1)]. �
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6.9. Let τ be the first time all the vertices have been visited at least once, and
let τk be the first time that vertex k has been reached. We have

P0{Xτ = k} = P0{Xτ = k | τk−1 < τk+1}P0{τk−1 < τk+1}
+ P0{Xτ = k | τk+1 < τk−1}P0{τk+1 < τk−1}

= Pk−1{τk+1 < τk}P0{τk−1 < τk+1}
+ Pk+1{τk−1 < τk}P0{τk+1 < τk−1}

=
1

n− 1
P0{τk−1 < τk+1}+

1

n− 1
P0{τk+1 < τk−1}

=
1

n− 1
.

The identity Pk+1{τk−1 < τk} = 1/(n− 1) comes from breaking the cycle at k and
using the gambler’s ruin on the resulting segment. �

Solutions to Chapter 7 exercises.

7.1. Let Y it = 2X i
t−1. Since covariance is bilinear, Cov(Y it , Y

j
t ) = 4 Cov(X i

t , X
j
t )

and it is enough to check that Cov(Y it , Y
j
t ) ≤ 0.

If the i-th coordinate is chosen in the first t steps, the conditional expectation
of Y it is 0. Thus

E(Y it ) =

(
1− 1

n

)t
.

Similarly,

E(Y it Y
j
t ) =

(
1− 2

n

)t

since we only have a positive contribution if both the coordinates i, j were not
chosen in the first t steps. Finally,

Cov
(
Y it , Y

j
t

)
= E

(
Y it Y

j
t

)
−E

(
Y it
)
E
(
Y jt

)

=

(
1− 2

n

)t
−
(

1− 1

n

)2t

≤ 0,

because (1− 2/n) < (1− 1/n)2.
The variance of the sum Wt =

∑n
i=1X

i
t is

Var(Nt) =

n∑

i=1

Var(X i
t) +

∑

i6=j
Cov(X i

t , X
j
t ) ≤

n∑

i=1

1

4
.

�
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7.2.

Q(S, Sc) =
∑

x∈S

∑

y∈Sc

π(x)P (x, y)

=
∑

y∈Sc

[∑

x∈Ω

π(x)P (x, y) −
∑

x∈Sc

π(x)P (x, y)

]

=
∑

y∈Sc

∑

x∈Ω

π(x)P (x, y) −
∑

x∈Sc

π(x)
∑

y∈Sc

P (x, y)

=
∑

y∈Sc

π(y)−
∑

x∈Sc

π(x)


1−

∑

y∈S
P (x, y)




=
∑

y∈Sc

π(y)−
∑

x∈Sc

π(x) +
∑

x∈Sc

∑

y∈S
π(x)P (x, y)

=
∑

x∈Sc

∑

y∈S
π(x)P (x, y)

= Q(Sc, S).

�

7.3. Let {v1, . . . , vn} be the vertex set of the graph, and let (Xt) be the Markov
chain started with the initial configuration q in which every vertex has color q.

Let N : Ω→ {0, 1, . . . , n} be the number of sites in the configuration x colored
with q. That is,

N(x) =

n∑

i=1

1{x(vi)=q}. (C.15)

We write Nt for N(Xt).
We compare the mean and variance of the random variableN under the uniform

measure π and under the measure P t(q, ·). (Note that the distribution of N(Xt)
equals the distribution of N under P t(q, ·).)

The distribution of N under the stationary measure π is binomial with param-
eters n and 1/q, implying

Eπ(N) =
n

q
, Varπ(N) = n

1

q

(
1− 1

q

)
≤ n

4
.

LetXi(t) = 1{Xt(vi)=q}, the indicator that vertex vi has color q. SinceXi(t) = 0
if and only if vertex vi has been updated at least once by time t and the latest of
these updates is not to color q, we have

Eq(Xi(t)) = 1−
[
1−

(
1− 1

n

)t]
q − 1

q
=

1

q
+
q − 1

q

(
1− 1

n

)t

and

Eq(Nt) =
n

q
+
n(q − 1)

q

(
1− 1

n

)t
.

Consequently,

Eq(Nt)− Eπ(N) =

(
q − 1

q

)
n

(
1− 1

n

)t
.
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The random variables {Xi(t)} are negatively correlated; check that Yi = qXi−(q−1)
are negatively correlated as in the solution to Exercise 7.1. Thus,

σ2 := max{Varq(Nt),Varπ(N)} ≤ n

4
,

and

|Eπ(N)−Eq(N(Xt))| =
n

2

(
1− 1

n

)t
≥ σ 2(q − 1)

q

√
n

(
1− 1

n

)t
.

Letting r(t) = [2(q − 1)/q]
√
n(1− n−1)t,

log(r2(t)) = 2t log(1− n−1) +
2(q − 1)

q
logn

≥ 2t

(
− 1

n
− 1

2n2

)
+

2(q − 1)

q
logn, (C.16)

where the inequality follows from log(1 − x) ≥ −x − x2/2, for x ≥ 0. As in the
proof of Proposition 7.13, it is possible to find a c(q) so that for t ≤ (1/2)n logn−
c(q)n, the inequality r2(t) ≥ 32/3 holds. By Proposition 7.8, tmix ≥ (1/2)n logn−
c(q)n. �

Solutions to selected Chapter 8 exercises.

8.1. Given a specific permutation η ∈ Sn, the probability that σk(j) = η(j)

for j = 1, 2, . . . , k is equal to
∏k−1
i=0 (n − i)−1, as can be seen by induction on

k = 1, . . . , n− 1. �

8.3.

(a) This is by now a standard application of the parity of permutations. Note that
any sequence of moves in which the empty space ends up in the lower right
corner must be of even length. Since every move is a single transposition, the
permutation of the tiles (including the empty space as a tile) in any such posi-
tion must be even. However, the desired permutation (switching two adjacent
tiles in the bottom row) is odd.

(b) In fact, all even permutations of tiles can be achieved, but it is not entirely
trivial to demonstrate. See Archer (1999) for an elementary proof and some
historical discussion. Zhentao Lee discovered a new and elegant elementary
proof during our 2006 MSRI workshop.

�

8.4. The function σ is a permutation if all of the images are distinct, which
occurs with probability

pn :=
n!

nn
.

By Stirling’s formula, the expected number of trials needed is asymptotic to

en√
2πn

,

since the number of trials needed is geometric with parameter pn. �
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8.5. The proposed method clearly yields a uniform permutation when n = 1
or n = 2. However, it fails to do so for for all larger values of n. One way to see
this is to note that at each stage in the algorithm, there are n options. Hence the
probability of each possible permutation must be an integral multiple of 1/nn. For
n ≥ 3, n! is not a factor of nn, so no permutation can have probability 1/n! of
occurring. �

8.6. False! Consider, for example, the distribution that assigns weight 1/2
each to the identity and to the permutation that lists the elements of [n] in reverse
order. �

8.7. False! Consider, for example, the distribution that puts weight 1/n on all
the cyclic shifts of a sorted deck: 123 . . . n, 23 . . . n1, . . . , n12 . . . n− 1. �

8.9. By Cauchy-Schwarz, for any permutation σ ∈ Sn we have

ϕσ =
∑

k∈[n]

ϕ(k)ϕ(σ(k)) ≤


∑

k∈[n]

ϕ(k)2




1/2
∑

k∈[n]

ϕ(σ(k))2




1/2

= ϕid.

�

8.10. By the half-angle identity cos2 θ = (cos(2θ) + 1)/2, we have

∑

k∈[n]

cos2
(

(2k − 1)π

2n

)
=

1

2

∑

k∈[n]

(
cos

(
(2k − 1)π

n

)
+ 1

)
.

Now,

∑

k∈[n]

cos

(
(2k − 1)π

n

)
= Re


e−π/n

∑

k∈[n]

e2kπ/n


 = 0,

since the sum of the n-th roots of unity is 0. Hence
∑

k∈[n]

cos2
(

(2k − 1)π

2n

)
=
n

2
.

�

8.11.

(a) Just as assigning t independent bits is the same as assigning a number chosen
uniformly from {0, . . . , 2n − 1} (as we implicitly argued in the proof of Propo-
sition 8.12), assigning a digit in base a and then a digit in base b, is the same
as assigning a digit in base ab.

(b) To perform a forwards a-shuffle, divide the deck into amultinomially-distributed
stacks, then uniformly choose an arrangement from all possible permutations
that preserve the relative order within each stack. The resulting deck has at
most a rising sequences, and there are an ways to divide and then riffle together
(some of which can lead to identical permutations).

Given a permutation π with r ≤ a rising sequences, we need to count the
number of ways it could possibly arise from a deck divided into a parts. Each
rising sequence is a union of stacks, so the rising sequences together determine
the positions of r − 1 out of the a− 1 dividers between stacks. The remaining
a − r dividers can be placed in any of the n + 1 possible positions, repetition
allowed, irrespective of the positions of the r − 1 dividers already determined.
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For example: set a = 5 and let π ∈ S9 be 152738946. The rising sequences
are (1, 2, 3, 4), (5, 6), and (7, 8, 9), so there must be packet divisions between 4
and 5 and between 6 and 7, and two additional dividers must be placed.

This is a standard choosing-with-repetition scenario. We can imagine build-
ing a row of length n+ (a − r) objects, of which n are numbers and a− r are
dividers. There are

(
n+a−r
n

)
such rows.

Since each (division, riffle) pair has probability 1/an, the probability that
π arises from an a-shuffle is exactly

(
n+a−r
n

)
/an.

�

Solutions to selected Chapter 9 exercises.

9.1. Let d ≥ 2. Let U−d+1 = 1, and let

U−d+2, U−d+1, . . . , U0, . . . , Un

be i.i.d. and uniform on [0, 1]. Let V1, . . . , Vd be the order statistics for U−d+1, . . . , U0,
let V0 = 0, and define, for 1 ≤ j ≤ d,

A
(j)
t := |{−d+ 1 ≤ j ≤ t} : Vj−1 < Uj ≤ Vj}|.

Observe that A
(j)
0 = 1 for all 1 ≤ j ≤ d.

Consider an urn with initially d balls, each of a different color. At each unit of
time, a ball is drawn at random and replaced along with an additional ball of the

same color. Let B
(j)
t be the number of balls of color j after t draws.

Claim: The distribution of ({A(j)
t }dj=1) and ({B(j)

t }dj=1) are the same.

Proof of Claim. Conditioned on the relative positions of (U−d+2, . . . , Ut),
the relative position of Ut+1 is uniform on all t + d possibilities. Thus the con-
ditional probability that Ut+1 falls between Vj−1 and Vj is proportional to the
number among U0, . . . , Ut which fall in this interval, plus one. Thus, the condi-

tional probability that A
(j)
t increases by one equals A

(j)
t /(t + d). This shows the

transition probabilities for {A(j)
t }dj=1 are exactly equal to those for {B(j)

t }dj=1. Since
they begin with the same initial distribution, their distributions are the same for
t = 0, . . . , n. �

It is clear that the distribution of the d-dimensional vector (A
(1)
t , . . . , A

(d)
t ) is

uniform over {
(x1, . . . , xd) :

d∑

i=1

xi = t+ d

}
.

Construct a flow θ on the box {1, 2, . . . , n}d as in the proof of Proposition 9.16
by defining for edges in the lower half of the box

θ(e) = P{Polya’s d-colored process goes thru e}.
From above, we know that the process is equally likely to pass through each d-
tuple x with

∑
xi = k + d. There are

(
k+d−1
d−1

)
such d-tuples, whence each such

edge has flow [
(
k+d−1
d−1

)
]−1. There are constants c1, c2 (depending on d) such that

c1 ≤
(
k+d−1
d−1

)
/kd−1 ≤ c2. Therefore, the energy is bounded by

E(θ) ≤ 2

n−1∑

k=1

(
k + d− 1

d− 1

)−2(
k + d− 1

d− 1

)
≤ c3(d)

n−1∑

k=1

k−d+1 ≤ c4(d),



C. SOLUTIONS TO SELECTED EXERCISES 339

the last bound holding only when d ≥ 3. �

9.5. In the new network obtained by gluing the two vertices, the voltage func-
tion cannot be the same as the voltage in the original network. Thus the corre-
sponding current flow must differ. However, the old current flow remains a flow. By
the uniqueness part of Thomson’s Principle (Theorem 9.10), the effective resistance
must change. �

9.8. Let W1 be a voltage function for the unit current flow from x to y so
that W1(x) = R(x↔ y) and W1(y) = 0. Let W2 be a voltage function for the unit
current flow from y to z so that W2(y) = R(y ↔ z) and W2(z) = 0. By harmonicity
(the maximum principle) at all vertices v we have

0 ≤W1(v) ≤ R(x↔ y) (C.17)

0 ≤W1(v) ≤ R(y ↔ z) (C.18)

Recall the hint. Thus W3 = W1 +W2 is a voltage function for the unit current flow
from x to z and

R(x↔ z) = W3(x)−W3(z) = R(x↔ y) +W2(x)−W1(z). (C.19)

Applying (C.18) gives W2(x) ≤ R(y ↔ z) and (C.17) gives W1(z) ≥ 0 so finally by
(C.19) we get the triangle inequality. �

Solutions to selected Chapter 10 exercises.

10.4.

(a) By the Commute Time Identity (Proposition 10.6) and Example 9.7, the value
is 2(n− 1)(m− h).

(b) By (a), these pairs are clearly maximal over all those which are at the same
level. If a is at level m and b is at level h, where h < m, let c be a descendant
of b at level m. Since every walk from a to c must pass through b, we have
Eaτb ≤ Eaτc. A similar argument goes through when a is higher than b.

�

10.5. Observe that hm(k) is the mean hitting time from k to 0 in Gk, which
implies that hm(k) is monotone increasing in k. (This is intuitively clear but harder
to prove directly on the cube.) The expected return time from o to itself in the
hypercube equals 2m but considering the first step, it also equals 1 + hm(1). Thus

hm(1) = 2m − 1. (C.20)

To compute hm(m), use symmetry and the Commute Time Identity. The effective
resistance between 0 and m in Gm is R(0↔ m) =

∑m
k=1[k

(
m
k

)
]−1. In this sum all

but the first and last terms are negligible: the sum of the other terms is at most
4/m2 (check!). Thus

2hm(m) = 2R(0↔ m)|edges(Gm)| ≤ 2

(
2

m
+

4

m2

)
(m2m−1),

so

hm(m) ≤ 2m(1 + 2/m). (C.21)

Equality (C.20) together with (C.21) and monotonicity concludes the proof. �
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10.7. By Lemma 10.10,

2Ea(τbca) = [Ea(τb) + Eb(τc) + Ec(τa)] + [Ea(τc) + Ec(τb) + Eb(τa)]

= [Ea(τb) + Eb(τa)] + [Eb(τc) + Ec(τb)] + [Ec(τa) + Ea(τc)] .

Then the conclusion follows from Proposition 10.6. �

10.8. Taking expectations in (10.32) yields

Ex(τa) + Ea(τz) = Ex(τz) + Px{τz < τa} [Ez(τa) + Ea(τz)] ,

which shows that

Px{τz < τa} =
Ex(τa) + Ea(τz)−Ex(τz)

Ez(τa) + Ea(τz)
, (C.22)

without assuming reversibility.
In the reversible case, the cycle identity (Lemma 10.10) yields

Ex(τa) + Ea(τz)−Ex(τz) = Ea(τx) + Ez(τa)−Ez(τx). (C.23)

Adding the two sides of (C.23) together establishes that

Ex(τa) + Ea(τz)−Ez(τz)

=
1

2
{[Ex(τa) + Ea(τx)] + [Ea(τz) + Ez(τa)]− [Ex(τz) + Ez(τx)]} .

Let cG =
∑
x∈V c(x) = 2

∑
e c(e), as usual. Then by the Commute Time Identity

(Proposition 10.6), the denominator in (C.22) is cGR(a↔ z) and the numerator is
(1/2)cG [R(x↔ a) +R(a↔ z)−R(z ↔ x)]. �

10.9.

∞∑

k=0

cks
k =

∞∑

k=0

k∑

j=0

ajbk−js
k

=

∞∑

k=0

∞∑

j=0

ajs
jbk−js

k−j1{k≥j}

=

∞∑

j=0

∞∑

k=0

ajsjbk−js
k−j1{k≥j}

=

∞∑

j=0

ajsj
∞∑

k=0

bk−js
k−j1{k≥j}

=

∞∑

j=0

ajsj
∞∑

ℓ=0

bℓs
ℓ

= A(s)B(s).

The penultimate equality follows from letting ℓ = k − j. The reader should check
that the change of the order of summation is justified. �
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Solutions to selected Chapter 11 exercises.

11.1.

(a) Use the fact that, since the Bj ’s partition B, E(Y | B) =
∑

j P(Bj)E(Y | Bj).
(b) Many examples are possible; a small one is Ω = B = {1, 2, 3}, Y = 1{1,3},

B1 = {1, 2}, B2 = {2, 3}, M = 1/2.

�

Solutions to selected Chapter 12 exercises.

12.1.

(a) For any function f ,

‖Pf‖∞ = max
x∈Ω

∣∣∣∣∣∣
∑

y∈Ω

P (x, y)f(y)

∣∣∣∣∣∣
≤ ‖f‖∞.

If Pϕ = λϕ, then ‖Pf‖∞ = |λ| ‖f‖∞ ≤ ‖f‖∞. This implies that |λ| ≤ 1.
(c) Assume that a divides T (x). If b is the gcd of T (x), then a divides b. If ω is

an a-th root of unity, then ωb = 1.
Let Cj be the subset of Ω defined in (C.1), for j = 0, . . . , b. It is shown in

the solution to Exercise 1.6 that
(i) there is a unique j(x) ∈ {0, . . . , b− 1} such that x ∈ Cj(x) and
(ii) if P (x, y) > 0, then j(y) = j(x)⊕ 1. (Here ⊕ is addition modulo b.)

Let f : Ω→ C be defined by f(x) = ωj(x). We have that, for some ℓ ∈ Z,

Pf(x) =
∑

y∈Ω

P (x, y)ωj(y) = ωj(x)⊕1 = ωj(x)+1+ℓb = ωωj(x) = ωf(x).

Therefore, f(x) is an eigenfunction with eigenvalue ω.
Let ω be an a-th root of unit, and suppose that ωf = Pf for some f .

Choose x such that |f(x)| = r := maxy∈Ω |f(y)|. Since

ωf(x) = Pf(x) =
∑

y∈Ω

P (x, y)f(y),

taking absolute values shows that

r ≤
∑

y∈Ω

P (x, y)|f(y)| ≤ r.

We conclude that if P (x, y) > 0, then |f(y)| = r. By irreducibility, |f(y)| = r
for all y ∈ Ω.

Since the average of complex numbers of norm r has norm r if and only if
all the values have the same angle, it follows that f(y) has the same value for
all y with P (x, y) > 0. Therefore, if P (x, y) > 0, then f(y) = ωf(x). Now fix
x0 ∈ Ω and define for j = 0, 1, . . . , a− 1

Cj = {z ∈ Ω : f(z) = ωjf(x0)}.
It is clear that if P (x, y) > 0 and x ∈ Cj , then x ∈ Cj⊕1, where ⊕ is addition
modulo a. Also, it is clear that if t ∈ T (x0), then a divides t.

�
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12.3. Let f be an eigenfunction of P with eigenvalue µ. Then

µf = P̃ f =
Pf + f

2
.

Rearranging shows that (2µ − 1) is an eigenvalue of P . Thus 2µ − 1 ≥ −1, or
equivalently, µ ≥ 0. �

12.4. We first observe that

Eπ(P
tf) =

∑

x∈Ω

(P tf)(x)π(x) =
∑

x∈Ω

∑

y∈Ω

f(y)P t(x, y)π(x)

=
∑

y∈Ω

f(y)
∑

x∈Ω

π(x)P t(x, y) =
∑

y∈Ω

f(y)π(y) = Eπ(f).

Since we take the first eigenfunction f1 to be the constant function with value 1,
we have Eπ(P tf) = Eπ(f) = 〈P tf, f1〉π. Therefore, it follows from (12.5) that

P tf − Eπ(P tf) =
∑Ω

j=2〈f, fj〉πfjλtj . Since the fj’s are an orthonormal basis,

Varπ(f) = 〈P tf − Eπ(P tf), P tf − Eπ(P tf)〉π

=

|Ω|∑

j=2

〈f, fj〉2πλ2t
j

≤ (1− γ⋆)2
|Ω|∑

j=2

〈f, fj〉2π .

We observe that
|Ω|∑

j=2

〈f, fj〉2π =

|Ω|∑

j=1

〈f, fj〉2π − E2
π(f) = Eπ(f

2)− E2
π(f) = Varπ(f).

�

12.6. According to (12.2),

P 2t+2(x, x)

π(x)
=

|Ω|∑

j=1

fj(x)
2λ2t+2
j .

Since λ2
j ≤ 1 for all j, the right-hand side is bounded above by

∑|Ω|
j=1 fj(x)

2λ2t
j ,

which equals P 2t(x, x)/π(x). �

12.7. A computation verifies the claim:

(P1 ⊗ P2)(ϕ ⊗ ψ)(x, y) =
∑

(z,w)∈Ω1×Ω2

P1(x, z)P2(y, w)ϕ(z)ψ(w)

=
∑

z∈Ω1

P1(x, z)ϕ(z)
∑

w∈Ω2

P2(y, w)ψ(w)

= [P1ϕ(x)] [P2ψ(y)]

= λµϕ(x)ψ(y)

= λµ(ϕ ⊗ ψ)(x, y).

That is, the product λµ is an eigenvalue of the eigenfunction ϕ⊗ ψ. �
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Solutions to selected Chapter 13 exercises.

13.3. For a directed edge e = (z, w), we define ∇f(e) := f(w)− f(z). Observe
that

2Ẽ(f) =
∑

(x,y)∈Ẽ
Q̃(x, y)[f(x) − f(y)]2 =

∑

x,y

Q̃(x, y)
∑

Γ∈Pxy

νxy(Γ)

[∑

e∈Γ

∇f(e)

]2

.

Applying the Cauchy-Schwarz inequality yields

2Ẽ(f) ≤
∑

x,y

Q̃(x, y)
∑

Γ∈Pxy

νxy(Γ)|Γ|
∑

e∈Γ

[∇f(e)]2

=
∑

e∈E
[∇f(e)]

2
∑

(x,y)∈Ẽ
Q̃(x, y)

∑

Γ:e∈Γ∈Pxy

νxy(Γ)|Γ|.

By the definition of the congestion ratio, the right-hand side is bounded above by
∑

(z,w)∈E
BQ(z, w)[f(w) − f(z)]2 = 2BE(f),

completing the proof of (13.21).
The inequality (13.24) follows from Lemma 13.22. �

13.4. We compute the congestion ratio

B := max
e∈E


 1

Q(e)

∑

(x,y)∈Ẽ
Q̃(x, y)

∑

Γ:e∈Γ∈Pxy

νxy(Γ)|Γ|




necessary to apply Corollary 13.26, following the outline of the proof of Corol-
lary 13.27. To get a measure on paths between b and c, we write c = ab and give
weight νa(s1, . . . , sk) to the path Γbc corresponding to c = s1 · · · skb.

For how many pairs {g, h} ∈ Ẽ does a specific e ∈ E appear in some Γgh, and
with what weight does it appear? Let s ∈ S be the generator corresponding to e,
that is, e = {b, sb} for some b ∈ G. For every occurrence of an edge {c, sc} using s in

some Γ ∈ Pa, where a ∈ S̃, the edge e appears in the path Γc−1b,ac−1b ∈ Pc−1b,ac−1b.
Furthermore, νc−1b,ac−1b(Γc−1b,ac−1b) = νa(Γ).

Hence the congestion ratio simplifies to

B = max
s∈S

1

µ(s)

∑

a∈S̃
µ̃(a)

∑

Γ∈Pa

νa(Γ)N(s,Γ) |Γ|.

�

13.5. We bound
(
n
δk

)
≤ nδk/(δk)! and similarly bound

(
(1+δ)k
δk

)
. Also,

(
n
k

)
≥

nk/kk. This gives

n/2∑

k=1

(
n
δk

)(
(1+δ)k
δk

)2
(
n
k

) ≤
n/2∑

k=1

nδk((1 + δ)k)2δkkk

(δk)!3nk
.
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Recall that for any integer ℓ we have ℓ! > (ℓ/e)ℓ, and we bound (δk)! by this. We
get

n/2∑

k=1

(
n
δk

)(
(1+δ)k
δk

)2
(
n
k

) ≤
logn∑

k=1

(
logn

n

)(1−δ)k [
e3(1 + δ)2

δ3

]δk

+

n/2∑

k=log n

(
k

n

)(1−δ)k [
e3(1 + δ)2

δ3

]δk
.

The first sum clearly tends to 0 as n tends to∞ for any δ ∈ (0, 1). Since k/n ≤ 1/2
and

(1/2)(1−δ)
[
e3(1 + δ)2

δ3

]δ
< 0.8

for δ < 0.03, for any such δ the second sum tends to 0 as n tends to ∞. �

Solutions to selected Chapter 14 exercises.

14.2. If Lip(f) ≤ 1 and (X,Y ) is a coupling of µ and ν attaining the minimum
in the definition of transportation distance, then

∣∣∣∣
∫
fdµ−

∫
fdν

∣∣∣∣ = |E (f(X)− f(Y )) | ≤ E (ρ(X,Y )) = ρK(µ, ν),

where we used Lip(f) ≤ 1 for the inequality and the fact that (X,Y ) is the optimal
coupling for the last equality. �

14.3. We proceed by induction. Let Hj be the function defined in the first
j steps described above; the domain of Hj is [j]. Clearly H1 is uniform on Ωk,1.
Suppose Hj−1 is uniform on Ωk,j−1. Let h ∈ Ωk,j . Write hj−1 for the restriction
of h to the domain [j − 1]. Then

P{Hj−1 = hj−1} = |Ωk,j−1|−1,

by the induction hypothesis. Note that

|Ωk,j | = (k − 1)|Ωk,j−1|,
since for each element of Ωk,j−1 there are k − 1 ways to extend it to an element
of Ωk,j , and every element of Ωk,j can be obtained as such an extension. By the
construction and the induction hypothesis,

P{Hj = h} = P{Hj−1 = hj−1}P{Hj = h | Hj−1 = hj−1}

=
1

|Ωk,j−1|
1

(k − 1)

= |Ωk,j |−1.

�

14.4. This is established by induction. The cases n = 0 and n = 1 are clear.
Suppose it holds for n ≤ k−1. The number of configurations ω ∈ Ωk with ω(k) = 0
is the same as the total number of configurations in Ωk−1. Also, the number of
configurations ω ∈ Ωk with ω(k) = 1 is the same as the number of configurations in
Ωk−1 having no particle at k−1, which is the same as the number of configurations
in Ωk−2. �
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14.5. Let ω be an element of Ωn, and let X be the random element of Ωn
generated by the algorithm. If ω(n) = 1, then

P{X = ω} =
1

fn−1

(
fn−1

fn+1

)
=

1

fn+1
.

Similarly, if ω(n) = 0, then P{X = ω} = 1/fn+1. �

Solutions to selected Chapter 17 exercises.

17.1. Let (Xt) be simple random walk on Z.

Mt+1 −Mt = (Xt + ∆Xt)
3 − 3(t+ 1)(Xt + ∆Xt)−X3

t + 3tXt

= 3X2
t (∆Xt) + 3Xt(∆Xt)

2 + (∆Xt)
3 − 3t(∆Xt)− 3Xt −∆Xt.

Note that (∆Xt)
2 = 1, so

Mt+1 −Mt = (∆Xt)(3X
2
t − 3t),

and

Ek (Mt+1 −Mt | Xt) = (3X2
t − 3t)Ek(∆Xt | Xt) = 0.

Using the Optional Stopping Theorem,

k3 = Ek(Mτ )

= Ek

[(
X3
τ − 3τXτ

)
1{Xτ =n}

]

= n3Pk{Xτ = n} − 3nEk

(
τ1{Xτ =n}

)
.

Dividing through by kn−1 = Pk{Xτ = n} shows that

nk2 = n3 − 3nEk (τ | Xτ = n) .

Rearranging,

Ek (τ | Xτ = n) =
n2 − k2

3
.

The careful reader will notice that we have used the Optional Stopping Theorem
without verifying its hypotheses! The application can be justified by applying it
to τ ∧ B and then letting B → ∞ and appealing to the Dominated Convergence
Theorem. �

17.2. Suppose that (Xt) is a supermartingale with respect to the sequence (Yt).
Define

At = −
t∑

s=1

E(Xs −Xs−1 | Y0, . . . , Ys−1).

Since At is a function of Y0, . . . , Yt−1, it is previsible. The supermartingale property
ensures that

At −At−1 = −E(Xt −Xt−1 | Y0, . . . , Yt−1) ≥ 0,

whence the sequence At is non-decreasing. Define Mt := Xt +At. Then

E(Mt+1 −Mt | Y0, . . . , Yt) = E(Xt+1 −Xt | Y0, . . . , Yt)

−E(E(Xt+1 −Xt | Y0, . . . , Yt) | Y0, . . . , Yt)

= 0.

�
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17.3. Using the Doob decomposition, Zt = Mt−At, where (Mt) is a martingale
with M0 = Z0 and (At) is a previsible and non-decreasing sequence with A0 = 0.

Note that since both Zt and At are non-negative, so is (Mt). Furthermore,

At+1 −At = E(Zt+1 − Zt | Y t) ≤ B,

so

E(Mt+1 −Mt | Y t) ≤ E(Zt+1 − Zt | Y t) +B ≤ 2B.

Since (At) is previsible, on the event that τ > t,

Var(Mt+1 | Y1, . . . , Yt) = Var(Zt+1 | Y1, . . . , Yt) ≥ σ2 > 0. (C.24)

Given h ≥ 2B, consider the stopping time

τh = min {t : Mt ≥ h} ∧ τ ∧ u.

Since τh is bounded by u, the Optional Stopping Theorem yields

k = E(Mτh
) ≥ hP{Mτh

≥ h}.

Rearranging, we have that

P{Mτh
≥ h} ≤ k

h
. (C.25)

Let

Wt := M2
t − hMt − σ2t.

The inequality (C.24) implies that E(Wt+1 | Y t) ≥ Wt whenever τ > t. That is,
Wt∧τ is a submartingale. By optional stopping, since τh is bounded and τh∧τ = τh,

−kh ≤ E(W0) ≤ E(Wτh
) = E (Mτh

(Mτh
− h))− σ2E(τh).

Since Mτh
(Mτh

− h) is non-positive on the event Mτh
≤ h, the right-hand side

above is bounded above by

(h+ 2B)(2B)P{τh > h}+ σ2E(τh) ≤ 2h2P{τh > h} − σ2E(τh).

Combining these two bounds and using (C.25) shows that σ2E(τh) ≤ kh+2h2(k/h) =
3kh. Therefore,

P{τ > u} ≤ P{Mτh
≥ h}+ P{τh ≥ u}

≤ k

h
+

3kh

uσ2
,

using Markov’s inequality and the bound on E(τh) in the last step.

Optimize by choosing h =
√
uσ2/3, obtaining

P{τ > u} ≤ 2
√

3k

σ
√
u
≤ 4k

σ
√
u
. (C.26)

�
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Solution to Chapter 18 exercise.

18.1. First suppose that the chain satisfies (18.24). Then for any γ > 0, for n
large enough,

tmix(ε) ≤ (1 + γ)tnmix,

tmix(1 − ε) ≥ (1 − γ)tnmix.

Thus
tmix(ε)

tmix(1− ε)
≤ 1 + γ

1− γ .

Letting γ ↓ 0 shows that (18.3) holds.
Suppose that (18.3) holds. Fix γ > 0. For any ε > 0, for n large enough,

tmix(ε) ≤ (1+ γ)tnmix. That is, limn→∞ dn ((1 + γ)tnmix) ≤ ε. Since this holds for all
ε,

lim
n→∞

dn ((1 + γ)tnmix) = 0.

Also, limn→∞ dn ((1− γ)tnmix) ≥ 1−ε, since tmix(1−ε) ≥ (1−γ)tnmix for n sufficiently
large. Consequently,

lim
n→∞

dn ((1 − γ)tnmix) = 1.

�

Solutions to selected Chapter 20 exercises.

20.1. The distribution of a sum of n independent exponential random variables
with rate µ has a Gamma distribution with parameters n and µ, so Sk has density

fk(s) =
µksk−1e−µs

(k − 1)!
.

Since Sk and Xk+1 are independent,

P{Sk ≤ t < Sk +Xk+1} =

∫ t

0

µksk−1e−µs

(k − 1)!

∫ ∞

t−s
µe−µxdxds

=

∫ t

0

µksk−1

(k − 1)!
e−µtds

=
(µt)ke−µt

k!
.

�

20.3. From the definition of eA+B,

eA+B =
∞∑

n=0

(A+B)n

n!
. (C.27)

Since A and B commute, (A+B)n has a binomial formula:

(A+B)n =
n∑

k=0

(
n

k

)
AnBn−k.

Therefore, the left-hand side of (C.27) equals
∞∑

n=0

n∑

k=0

Ak

k!

Bn−k

(n− k)! =

∞∑

k=0

Ak

k!

∞∑

j=0

Aj

j!
= eAeB.
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�

20.5. Let Ω =
∏n
i=1 Ωi. We have

I(µ, ν) =
∑

x∈Ω

√
µ(x)ν(y) =

∑

x1∈Ω1

· · ·
∑

xn∈Ωn

√√√√
n∏

i=1

µi(xi)

n∏

i=1

νi(xi)

=

[ ∑

x1∈Ω1

√
µ1(x1)ν1(x1)

]
· · ·
[ ∑

xn∈Ωn

√
µn(xn)νn(xn)

]
=

n∏

i=1

I(µi, νi).

�

Solutions to selected Chapter 21 exercises.

21.1. We can write Xt = x +
∑t

s=1 Ys, where x ∈ Ω and (Ys)
∞
s=1 is an i.i.d.

sequence of {−1, 1}-valued random variables satisfying

P{Ys = +1} = p,

P{Ys = −1} = q.

By the Strong Law, P0{limt→∞ t−1Xt = (p− q)} = 1. In particular,

P0{Xt > (p− q)t/2 for t sufficiently large} = 1.

That is, with probability one, there are only finitely many visits of the walker to
0. Since the number of visits to 0 is a geometric random variable with parameter
P0{τ+

0 =∞} (see the proof of Proposition 21.3), this probability must be positive.
�

21.2. Suppose that π(v) = 0. Since π = πP ,

0 = π(v) =
∑

u∈X
π(u)P (u, v).

Since all the terms on the right-hand side are non-negative, each is zero. That is,
if P (u, v) > 0, it must be that π(u) = 0.

Suppose that there is some y ∈ Ω so that π(y) = 0. By irreducibility, for
any x ∈ Ω, there is a sequence u0, . . . , ut so that u0 = x, ut = y, and each
P (ui−1, ui) > 0 for i = 1, . . . , t. Then by induction it is easy to see that π(ui) = 0
for each of i = 0, 1, 2, . . . , t. Thus π(x) = 0 for all x ∈ Ω, and π is not a probability
distribution. �

21.4. If the original graph is regarded as a network with conductances c(e) = 1
for all e, then the subgraph is also a network, but with c(e) = 0 for all edges which
are omitted. By Rayleigh’s Monotonicity Law, the effective resistance from a fixed
vertex v to ∞ is not smaller in the subgraph than for the original graph. This
together with Proposition 21.6 shows that the subgraph must be recurrent. �

21.5. Define

Ax,y = {t : P t(x, y) > 0}.
By aperiodicity, g.c.d.(Ax,x) = 1. Since Ax,x is closed under addition, there is some
tx so that t ∈ Ax,x for t ≥ tx. Also, by irreducibility, there is some s so that
P s(x, y) > 0. Since

P t+s(x, y) ≥ P t(x, x)P s(x, y),
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if t ≥ tx, then t + s ∈ Ay,x. That is, there exists tx,y such that if t ≥ tx,y, then
t ∈ Ax,y.

Let t0 = max{tx,z, ty,w}. If t ≥ t0, then P t(x, z) > 0 and P t(y, w) > 0. In
particular,

P t0((x, y), (z, w)) = P t0(x, z)P t0(y, w) > 0.

�

21.6. (Xt) is a nearest-neighbor random walk on Z+ which increases by 1 with
probability α and decreases by 1 with probability β = 1 − α. When the walker
is at 0, instead of decreasing with probability β, it remains at 0. Thus if α < β,
then the chain is a downwardly biased random walk on Z+, which was shown in
Example 21.15 to be positive recurrent.

If α = β, this is an unbiased random walk on Z
+. This is null recurrent for

the same reason that the simple random walk on Z is null recurrent, shown in
Example 21.10.

Consider the network with V = Z+ and with c(k, k+1) = rk. If r = p/(1− p),
then the random walk on the network corresponds to a nearest-neighbor random
walk which moves “up” with probability p. The effective resistance from 0 to n is

R(0↔ n) =
n∑

k=1

r−k.

If p > 1/2, then r > 1 and the right-hand side converges to a finite number, so
R(0 ↔ ∞) < ∞. By Proposition 21.6 this walk is transient. The FIFO queue
of this problem is an upwardly biased random walk when α > β, and thus it is
transient as well. �

21.7. Let r = α/β. Then π(k) = (1 − r)rk for all k ≥ 0, that is, π is the
geometric distribution with probability r shifted by 1 to the left. Thus

Eπ(X + 1) = 1/(1− r) = β/(β − α).

Since E(T | X before arrival) = (1 + X)/β, we conclude that Eπ(T ) = 1/(β −
α). �

21.8. Suppose that µ = µP , so that for all k,

µ(k) =
µ(k − 1) + µ(k + 1)

2
.

The difference sequence d(k) = µ(k) − µ(k − 1) is easily seen to be constant, and
hence µ is not bounded. �

Solutions to selected Appendix B exercises.

B.4. Let g(y, u) be the joint density of (Y, UY ). Then

fY,U(y, u) = fY (y)fUY |Y (u| y)

= g(y)1{g(y) > 0}1{0 ≤ u ≤ Cg(y)}
Cg(y)

=
1

C
1{g(y) > 0, u ≤ Cg(y)}. (C.28)

This is the density for a point (Y, U) drawn from the region under the graph of the
function g.
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Conversely, let (Y, U) be a uniform point from the region under the graph of
the function g. Its density is the right-hand side of (C.28). The marginal density
of Y is

fY (y) =

∫ ∞

−∞

1

C
1{g(y) > 0, u ≤ Cg(y)}du = 1{g(y) > 0} 1

C
Cg(y) = g(y). (C.29)

�

B.9. Let R be any region of TA. First, note that since rank(T ) = d, by the
Rank Theorem, T is one-to-one. Consequently, TT−1R = R, and

Volumed(R) = Volumed(TT
−1R) =

√
det(T tT )Volume(T−1R),

so that Volume(T−1R) = Volumed(R)/
√

det(T tT ). To find the distribution of Y ,
we compute

P{Y ∈ R} = P{TX ∈ R} = P{X ∈ T−1R}. (C.30)

Since X is uniform, the right-hand side is

Volume(T−1R)

Volume(A)
=

Volumed(R)√
det(T tT )Volume(A)

=
Volumed(R)

Volumed(TA)
. (C.31)

�

B.11.

(a) x ≤ U(k) ≤ x+dx if and only if among {U1, U2, . . . , Un} exactly k−1 lie to the
left of x, one is in [x, x + dx], and n − k variables exceed x + dx. This occurs
with probability

(
n

(k − 1), 1, (n− k)

)
xk−1(1− x)n−kdx.

Thus,

E
(
U(k)

)
=

∫ 1

0

n!

(k − 1)!(n− k)!x
k(1 − x)n−kdx

=
n!

(k − 1)!(n− k)!
(n− k)!k!
(n+ 1)!

=
k

n+ 1
.

(The integral can be evaluated by observing that the function

x 7→ k!(n− k)!
(n+ 1)!

xk(1− x)n−k

is the density for a Beta random variable with parameters k+1 and n−k+1.)
(b) The distribution function for U(n) is

Fn(x) = P{U1 ≤ x, U2 ≤ x, . . . , Un ≤ x} = P{U1 ≤ x}n = xn.

Differentiating, the density function for U(n) is

fn(x) = nxn−1.

Consequently,

E
(
U(n)

)
=

∫ 1

0

xnxn−1dx =
n

n+ 1
xn+1

∣∣∣
1

0
=

n

n+ 1
.



C. SOLUTIONS TO SELECTED EXERCISES 351

We proceed by induction, showing that

E
(
U(n−k)

)
=
n− k
n+ 1

. (C.32)

We just established the case k = 0. Now suppose (C.32) holds for k = j. Given
U(n−j), the order statistics U(i) for i = 1, . . . , n− j − 1 have the distribution of
the order statistics for n− j − 1 independent variables uniform on [0, U(n−j)].
Thus,

E
(
U(n−j−1) | U(n−j)

)
= U(n−j)

n− j − 1

n− j ,

and so

E
(
U(n−j−1)

)
= E

(
E
(
U(n−j−1) | U(n−j)

))
= E

(
U(n−j)

) n− j − 1

n− j .

Since (C.32) holds for k = j by assumption,

E
(
U(n−j−1)

)
=
n− j
n+ 1

n− j − 1

n− j =
n− j − 1

n+ 1
.

This establishes (C.32) for j = k.
(c) The joint density of (S1, S2, . . . , Sn+1) is e−sn+11{0<s1<···<sn+1}, as can be ver-

ified by induction:

fS1,S2,...,Sn+1(s1, . . . , sn+1) = fS1,S2,...,Sn(s1, . . . , sn)fSn+1|S1,...,Sn
(sn+1 | s1, . . . , sn)

= e−sn1{0<s1<···<sn}e
−(sn+1−sn)1{sn<sn+1}

= e−sn+11{0<s1<···<sn+1}.

Because the density of Sn+1 is snn+1e
−sn+1/(n!)1{sn+1>0},

fS1,...,Sn|Sn+1
(s1, . . . , sn | sn+1) =

n!

snn+1

1{0<s1<···<sn<sn+1}.

If Tk = Sk/Sn+1 for k = 1, . . . , n, then

fT1,...,Tk|Sn+1
(t1, . . . , tn | sn+1) = n!1{0<t1<···<tn<1}.

Since the right-hand side does not depend on sn+1, the vector
(

S1

Sn+1
,
S2

Sn+1
, . . . ,

S1

Sn+1

)

is uniform over the set

{(x1, . . . , xn) : x1 < x2 < · · · < xn}.
�

B.14. We proceed by induction on n. The base case n = 1 is clear. Assume that
the (n − 1)-step algorithm indeed produces a uniformly distributed ξn−1 ∈ Ξnr

n−1.
Extend ξn−1 to ξn according to the algorithm, picking one of the three available
extensions at random. Note that |Ξnr

n | = 4 · 3n−1. For h any path in Ξnr
n , let hn−1

be the projection of h to Ξnr
n−1, and observe that

P{ξn = h} = P{ξn = h | ξn−1 = hn−1}P{ξn−1 = hn−1}

=
1

3

(
1

4 · 3n−2

)
=

1

4 · 3n−1
.

�
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B.15. Since the number of self-avoiding walks of length n is clearly bounded by
cn,4 and our method for generating non-reversing paths is uniform over Ξnr

n which
has size 4 · 3n−1, the second part follows from the first.

There are 4(33) − 8 walks of length 4 starting at the origin which are non-
reversing and do not return to the origin. At each 4-step stage later in the walk,
there are 34 non-reversing paths of length 4, of which six create loops. This estab-
lishes (B.26). �



Bibliography

The pages on which a reference appears follow the symbol ↑.

Ahlfors, L. V. 1978. Complex analysis, 3rd ed., McGraw-Hill Book Co., New York. An introduc-
tion to the theory of analytic functions of one complex variable; International Series in Pure and
Applied Mathematics. ↑125
Aldous, D. J. 1983a. On the time taken by random walks on finite groups to visit every state, Z.
Wahrsch. Verw. Gebiete 62, no. 3, 361–374. ↑152
Aldous, D. 1983b. Random walks on finite groups and rapidly mixing Markov chains, Seminar
on probability, XVII, Lecture Notes in Math., vol. 986, Springer, Berlin, pp. 243–297. ↑60, 218
Aldous, D. 1989a. An introduction to covering problems for random walks on graphs, J. Theoret.
Probab. 2, no. 1, 87–89. ↑152
Aldous, D. J. 1989b. Lower bounds for covering times for reversible Markov chains and random
walks on graphs, J. Theoret. Probab. 2, no. 1, 91–100. ↑152
Aldous, D. 1990. A random walk construction of uniform spanning trees and uniform labelled
trees, SIAM Journal on Discrete Mathematics 3, 450–465. ↑297
Aldous, D. J. 1991a. Random walk covering of some special trees, J. Math. Anal. Appl. 157,
no. 1, 271–283. ↑152
Aldous, D. J. 1991b. Threshold limits for cover times, J. Theoret. Probab. 4, no. 1, 197–211.
↑152, 264
Aldous, D. 1995. On simulating a Markov chain stationary distribution when transition proba-
bilities are unknown (D. Aldous, P. Diaconis, J. Spencer, and J. M. Steele, eds.), IMA Volumes
in Mathematics and its Applications, vol. 72, Springer-Verlag. ↑296
Aldous, D. J. 1999. unpublished note. ↑180
Aldous, D. J. 2004, American Institute of Mathematics (AIM) research workshop “Sharp
Thresholds for Mixing Times” (Palo Alto, December 2004). Summary available at
http://www.aimath.org/WWN/mixingtimes. ↑255
Aldous, D. and P. Diaconis. 1986. Shuffling cards and stopping times, Amer. Math. Monthly 93,
no. 5, 333–348. ↑60, 85, 96, 112, 113
Aldous, D. and P. Diaconis. 1987. Strong uniform times and finite random walks, Adv. in Appl.
Math. 8, no. 1, 69–97. ↑85, 260
Aldous, D. and P. Diaconis. 2002. The asymmetric one-dimensional constrained Ising model:
rigorous results, J. Statist. Phys. 107, no. 5-6, 945–975. ↑98
Aldous, D. and J. Fill. 1999. Reversible Markov chains and random walks on graphs, in progress.
Manuscript available at http://www.stat.berkeley.edu/~aldous/RWG/book.html. ↑xvi, 20, 60,
85, 136, 141, 144, 263, 299
Alon, N. 1986. Eigenvalues and expanders, Combinatorica 6, no. 2, 83–96. ↑188
Alon, N. and V. D. Milman. 1985. λ1, isoperimetric inequalities for graphs, and superconcentra-
tors, J. Combin. Theory Ser. B 38, no. 1, 73–88. ↑188
Anantharam, V. and P. Tsoucas. 1989. A proof of the Markov chain tree theorem, Statistics and
Probability Letters 8, 189–192. ↑
Angel, O., Y. Peres, and D. B. Wilson. 2008. Card shuffling and Diophantine approximation,
Ann. Appl. Probab. 18, no. 3, 1215–1231. ↑168
Archer, A. F. 1999. A modern treatment of the 15 puzzle, Amer. Math. Monthly 106, no. 9,

793–799. ↑336
Artin, M. 1991. Algebra, Prentice Hall Inc., Englewood Cliffs, NJ. ↑35, 111
Asmussen, S., P. Glynn, and H. Thorisson. 1992. Stationary detection in the initial transient
problem, ACM Transactions on Modeling and Computer Simulation 2, 130–157. ↑296

353



354 BIBLIOGRAPHY

Barlow, M. T., T. Coulhon, and T. Kumagai. 2005. Characterization of sub-Gaussian heat kernel
estimates on strongly recurrent graphs, Comm. Pure Appl. Math. 58, no. 12, 1642–1677. ↑284
Barrera, J., B. Lachaud, and B. Ycart. 2006. Cut-off for n-tuples of exponentially converging
processes, Stochastic Process. Appl. 116, no. 10, 1433–1446. ↑274
Basharin, G. P., A. N. Langville, and V. A. Naumov. 2004. The life and work of A. A. Markov,
Linear Algebra Appl. 386, 3–26. ↑20
Baxter, R. J. 1982. Exactly Solved Models in Statistical Mechanics, Academic Press. ↑288
Bayer, D. and P. Diaconis. 1992. Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2,
no. 2, 294–313. ↑111, 113
Benjamin, A. T. and J. J. Quinn. 2003. Proofs that really count: The art of combinatorial proof,
Dolciani Mathematical Expositions, vol. 27, Math. Assoc. Amer., Washington, D. C. ↑196
Berger, N., C. Kenyon, E. Mossel, and Y. Peres. 2005. Glauber dynamics on trees and hyperbolic
graphs, Probab. Theory Related Fields 131, no. 3, 311–340. ↑214
Billingsley, P. 1995. Probability and measure, 3rd ed., Wiley Series in Probability and Mathe-
matical Statistics, John Wiley & Sons Inc., New York. ↑303, 308
Borovkov, A. A. and S. G. Foss. 1992. Stochastically recursive sequences and their generalizations,
Siberian Advances in Mathematics 2, 16–81. ↑288
Bodineau, T. 2005. Slab percolation for the Ising model, Probab. Theory Related Fields 132,
no. 1, 83–118. ↑215
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Notation Index

The symbol := means defined as.

The set {. . . ,−1, 0, 1, . . .} of integers is denoted Z and the set of
real numbers is denoted R.

For sequences (an) and (bn), the notation an = O(bn) means that
for some c > 0 we have an/bn ≤ c for all n, while an = o(bn) means
that limn→∞ an/bn = 0, and an ≍ bn means both an = O(bn) and
bn = O(an) are true.

An (alternating group), 100
B (congestion ratio), 182

E (edge set), 9
Eµ (expectation w.r.t. µ), 58, 92

G (graph), 9
G∗ (lamplighter graph), 257
I (current flow), 117

P (transition matrix), 3
PA (transition matrix of induced chain),

180
bP (time reversal), 15
Q(x, y) (edge measure), 88
SV (configuration set), 40

V (vertex set), 9
Var (variance), 304

Varµ (variance w.r.t. µ), 92
W (voltage), 117

c(e) (conductance), 115

d(t) (total variation distance), 53
d̄(t) (total variation distance), 53
dH (Hellinger distance), 60, 270

i.i.d. (independent and identically
distributed), 63

r(e) (resistance), 115

sx(t) (separation distance started from x),
79

s(t) (separation distance), 79
tcov (worst case expected cover time), 143

tmix(ε) (mixing time), 55
t⋆mix (Cesaro mixing time), 83

tcont
mix (continuous mixing time), 266

trel (relaxation time), 155

t⊙ (target time), 128

β (inverse temperature), 43
δx (Dirac delta), 5

∆ (maximum degree), 70
Γxy (path), 182

γ (spectral gap), 154
γ⋆ (absolute spectral gap), 154

λj (eigenvalue of transition matrix), 154

λ⋆ (maximal non-trivial eigenvalue), 154
Ω (state space), 3

ω (root of unity), 156
Φ(S) (bottleneck ratio of set), 88

Φ⋆ (bottleneck ratio), 88
π (stationary distribution), 10

ρ (metric), 189, 308

ρK(µ, ν) (transportation metric), 189
ρi,j (reversal), 221

σ (Ising spin), 43
τA (hitting time for set), 76, 116, 127

τa,b (commute time), 130
τcouple (coupling time), 64

τcov (cover time), 143

τA
cov (cover time for set), 146

τx (hitting time), 11, 127

τ+
x (first return time), 11, 127

θ (flow), 117

∧ (min), 38

(ijk) (cycle (permutation)), 100
∂S (boundary of S), 88

ℓ2(π) (inner product space), 153

[x] (equivalence class), 25

363
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〈·, ·〉 (standard inner product), 153
〈·, ·〉π (inner product w.r.t. π), 153
bµ (inverse distribution), 55
1A (indicator function), 15
∼ (adjacent to), 9
‖µ − ν‖TV (total variation distance), 47
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Italics indicate that the reference is to an exercise.

absolute spectral gap, 154

absorbing state, 16
acceptance-rejection sampling, 314
adapted sequence, 229

alternating group, 100, 109
aperiodic chain, 8

approximate counting, 196
averaging over paths, 183, 225

ballot theorem, 33
binary tree, 68

Ising model on, 206
random walk on

bottleneck ratio lower bound, 91

commute time, 132
coupling upper bound, 69

cover time, 147
hitting time, 139
no cutoff, 253

birth-and-death chain, 26, 245, 282
stationary distribution, 26

block dynamics
for Ising model, 208, 300

bottleneck ratio, 88, 89

bounds on relaxation time, 177
lower bound on mixing time, 88

boundary, 88
Bounded Convergence Theorem, 307

Catalan number, 32
Cayley graph, 29
Central Limit Theorem, 306

Cesaro mixing time, 83, 140
CFTP, see also coupling from the past

Chebyshev’s inequality, 305
Cheeger constant, 98
children (in tree), 68

coin tossing patterns, see also patterns in
coin tossing

colorings, 37

approximate counting of, 196
Glauber dynamics for, 40, 301

exponential lower bound on star, 90

lower bound on empty graph, 98

path coupling upper bound, 193

Metropolis dynamics for

grand coupling upper bound, 70

relaxation time, 171

communicating classes, 16

commute time, 69, 130

Identity, 130

comparison of Markov chains, 179

canonical paths, 182

on groups, 184

randomized paths, 183

theorem, 182, 209, 217, 224

complete graph, 80

Ising model on, 203

lamplighter chain on, 262

conductance, 115

bottleneck ratio, 98

configuration, 40

congestion ratio, 182, 183

connected graph, 18

connective constant, 211

continuous-time chain, 265

Convergence Theorem, 266

product chains, 269

relation to lazy chain, 266

relaxation time, 268

Convergence Theorem, 52

continuous time, 266

coupling proof, 73

null recurrent chain, 283

positive recurrent chain, 281

convolution, 136, 140

counting lower bound, 87

coupling

bound on d(t), 65

characterization of total variation
distance, 50

from the past, 287

grand, 70, 290, 293

Markovian, 65, 74

of distributions, 49, 50, 189

365
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of Markov chains, 64
of random variables, 49, 189
optimal, 50, 190

coupon collector, 22, 68, 81, 94, 145
cover time, 143
current flow, 117
cutoff, 247

open problems, 300
window, 248

cutset
edge, 122

cycle
biased random walk on, 15
Ising model on

mixing time pre-cutoff, 204, 214
random walk on, 6, 9, 18, 28, 34, 78

bottleneck ratio, 177
coupling upper bound, 65
cover time, 143, 152

eigenvalues and eigenfunctions, 156
hitting time upper bound, 137
last vertex visited, 84
lower bound, 96
no cutoff, 253
relaxation time, 157
strong stationary time upper bound,

82, 84
cycle law, 118
cycle notation, 100
cyclic-to-random shuffle, 112

degree of vertex, 9
density function, 304
depth (of tree), 68
descendant (in tree), 91
detailed balance equations, 14
diameter, 87, 189
diameter lower bound, 87
dimer system, 319
Dirichlet form, 175
distinguishing statistic, 92
distribution function, 304
divergence

of flow, 117
Dominated Convergence Theorem, 307
domino tiling, 319
Doob h-transform, 241
Doob decomposition, 245
Durrett chain

comparison upper bound, 224
distinguishing statistic lower bound, 222

East model, 301
lower bound, 97

edge cutset, 122

edge measure, 88
effective conductance, 118
effective resistance, 118

gluing nodes, 120, 122

of grid graph, 123
of tree, 120
Parallel Law, 119
Series Law, 119
triangle inequality, 125, 131

Ehrenfest urn, 24, 34, 251
eigenvalues of transition matrix, 153, 167
empty graph, 98
energy

of flow, 121
of Ising configuration, 43

ergodic theorem, 58
escape probability, 119
essential state, 16
even permutation, 100
event, 303
evolving-set process, 235
expander graph, 185

Ising model on, 213

expectation, 304

Fibonacci numbers, 199
FIFO queue, 286
“fifteen” puzzle, 109
first return time, 11, 127
flow, 117
fpras, 196
fugacity, 42
fully polynomial randomized approximation

scheme, 196

gambler’s ruin, 21, 34, 124, 233
Gaussian elimination chain, 301
generating function, 136
generating set, 28
Gibbs distribution, 43
Gibbs sampler, 40
Glauber dynamics

definition, 41
for colorings, 40, 301

path coupling upper bound, 193
for hardcore model, 43, 73

coupling from the past, 294
relaxation time, 172

for Ising model, 43, 179, 201
coupling from the past, 288

for product measure, 161
glued graphs, 138

complete, 80
lower bound, 84
strong stationary time upper bound,

81
hypercube

hitting time upper bound, 139
strong stationary time, 141

torus
bottleneck ratio lower bound, 90
hitting time upper bound, 127, 139

gluing (in networks), 120, 122
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grand coupling, 70, 290, 293

graph, 9

Cayley, 29
colorings, see also colorings

complete, 80

connected, 18

degree of vertex, 9
diameter, 87

empty, 98

expander, 185, 213

glued, see also glued graphs

grid, 123
ladder, 210

loop, 10

multiple edges, 10

oriented, 117
proper coloring of, 37, see also colorings

regular, 11

counting lower bound, 87

simple random walk on, 9
Green’s function, 119, 276

grid graph, 123

Ising model on, 211

group, 27
generating set of, 28

random walk on, 28, 75, 99, 184

symmetric, 75

halting state, 79

Hamming weight, 24

hardcore model, 41
Glauber dynamics for, 43

coupling from the past, 294

grand coupling upper bound, 73

relaxation time, 172

with fugacity, 42, 73
harmonic function, 13, 19, 116, 241

heat bath algorithm, see also Glauber
dynamics

heat kernel, 265

Hellinger distance, 60, 270, 273
hill climb algorithm, 39

hitting time, 11, 76, 116, 127

cycle identity, 131

upper bound on mixing time, 134
worst case, 128

hypercube, 23

lamplighter chain on, 263

random walk on, 28
ℓ2 upper bound, 164

bottleneck ratio, 177

coupling upper bound, 68

cover time, 152

cutoff, 164, 250
distinguishing statistic lower bound, 94

eigenvalues and eigenfunctions of, 162

hitting time, 139

relaxation time, 172

separation cutoff, 254
strong stationary time upper bound,

77, 78, 81

Wilson’s method lower bound, 173

i.i.d., 63
increment distribution, 28
independent, 305
indicator function, 15

induced chain, 180, 284
inessential state, 16
interchange process, 301
inverse distribution, 55, 107

method of simulation, 314

irreducible chain, 8
Ising model, 43, 201

block dynamics, 208, 300
comparison of Glauber and Metropolis,

179

energy, 43
fast mixing at high temperature, 201
Gibbs distribution for, 43
Glauber dynamics for, 43

coupling from the past, 288

infinite temperature, 43
inverse temperature, 43
on complete graph

mixing time bounds, 203

on cycle
mixing time pre-cutoff, 204, 214

on expander, 213
on grid

relaxation time lower bound, 211

on tree, 214
mixing time upper bound, 206

open problems, 299
partial order on configurations, 289

partition function, 43
isoperimetric constant, 98

k-fuzz, 285
Kac lemma, 280
Kirchoff’s node law, 117

ℓp(π) distance, 60, 163

ℓ∞(π) distance, 60
L-reversal chain, see also Durrett chain
ladder graph, 210
lamplighter chain, 257, 301

mixing time, 260
on cycle, 262
on hypercube, 263
on torus, 263
relaxation time, 258

separation cutoff, 264
Laws of Large Numbers, 305
lazy version of a Markov chain, 9, 168, 266
leaf, 18, 68

level (of tree), 68
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linear congruential sequence, 319

Lipschitz constant, 171, 198

loop, 10
lower bound methods

bottleneck ratio, 88, 89

counting bound, 87

diameter bound, 87

distinguishing statistic, 92
Wilson’s method, 172

lozenge tiling, 290

lumped chain, see also projection

Markov chain

aperiodic, 8

birth-and-death, 26

communicating classes of, 16
comparison of, see also comparison of

Markov chains

continuous time, 265

Convergence Theorem, 52, 73

coupling, 64
definition of, 3

ergodic theorem, 58

irreducible, 8

lamplighter, see also lamplighter chain

lazy version of, 9
mixing time of, 55

Monte Carlo method, 37, 287

null recurrent, 280

periodic, 8, 167
positive recurrent, 280

product, see also product chain

projection of, 24, 34

random mapping representation of, 7, 70

recurrent, 277
reversible, 15, 116

stationary distribution of, 10

time averages, 165

time reversal of, 15, 34
time-inhomogeneous, 20, 112, 191

transient, 277

transitive, 29, 34

unknown, 296
Markov property, 3

Markov’s inequality, 305

Markovian coupling, 65, 74

martingale, 229

Matthews method
lower bound on cover time, 146

upper bound on cover time, 144

maximum principle, 19, 116

MCMC, see also Markov chain Monte
Carlo method

metric space, 189, 308

Metropolis algorithm, 37

arbitrary base chain, 39

for colorings, 70, 171

for Ising model, 179

symmetric base chain, 37

mixing time, 55

ℓ2 upper bound, 163

Cesaro, 83, 140

continuous time, 266

coupling upper bound, 65

hitting time upper bound, 134

path coupling upper bound, 192
relaxation time lower bound, 155

relaxation time upper bound, 155

Monotone Convergence Theorem, 307

Monte Carlo method, 37, 287

move-to-front chain, 81

Nash-Williams inequality, 122, 278

network, 115

infinite, 277

node, 115

node law, 117

null recurrent, 280

odd permutation, 100

Ohm’s law, 118

optimal coupling, 50, 190

Optional Stopping Theorem, 232
order statistic, 323

oriented edge, 117

Parallel Law, 119

parity (of permutation), 100

partition function, 43

path, 191

metric, 191

random walk on, 63, see also
birth-and-death chain, see also
gambler’s ruin, 120, 248

eigenvalues and eigenfunctions, 158,
159

path coupling, 189

upper bound on mixing time, 192, 201

patterns in coin tossing

cover time, 148

hitting time, 139, 234

perfect sampling, see also sampling, exact
periodic chain, 8

eigenvalues of, 167

pivot chain for self-avoiding walk, 320

Pólya’s urn, 25, 124, 124, 133

positive recurrent, 279

pre-cutoff, 248, 255

mixing time of Ising model on cycle, 204,
214

previsible sequence, 231

probability

distribution, 304

measure, 303

space, 303

product chain
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eigenvalues and eigenfunctions of, 160,
168

in continuous time, 269

spectral gap, 161

Wilson’s method lower bound, 175
projection, 24, 34, 157, 219

onto coordinate, 189

proper colorings, see also colorings

pseudorandom number generator, 318

random adjacent transpositions, 217
comparison upper bound, 217

coupling upper bound, 218

single card lower bound, 219

Wilson’s method lower bound, 220

random colorings, 90
random mapping representation, 7, 70

random number generator, see also
pseudorandom number generator

random sample, 37

Random Target Lemma, 128

random transposition shuffle, 101, 110
coupling upper bound, 102

lower bound, 105

relaxation time, 156

strong stationary time upper bound, 103,
112

random variable, 304
random walk

on Z, 30, 229, 277, 286

biased, 230

null recurrent, 279

on Z
d, 275

recurrent for d = 2, 278

transient for d = 3, 278

on binary tree

bottleneck ratio lower bound, 91
commute time, 132

coupling upper bound, 69

cover time, 147

hitting time, 139

no cutoff, 253
on cycle, 6, 9, 18, 28, 34, 78

bottleneck ratio, 177

coupling upper bound, 65

cover time, 143, 152

eigenvalues and eigenfunctions, 156
hitting time upper bound, 137

last vertex visited, 84

lower bound, 96

no cutoff, 253

relaxation time, 157
strong stationary time upper bound,

82, 84

on group, 27, 75, 99, 184

on hypercube, 23, 28

ℓ2 upper bound, 164

bottleneck ratio, 177

coupling upper bound, 68

cover time, 152

cutoff, 164, 250
distinguishing statistic lower bound, 94

eigenvalues and eigenfunctions of, 162

hitting time, 139

relaxation time, 172

separation cutoff, 254
strong stationary time upper bound,

77, 78, 81

Wilson’s method lower bound, 173

on path, 63, see also birth-and-death
chain, see also gambler’s ruin, 120,
248

eigenvalues and eigenfunctions, 158,
159

on torus, 65

coupling upper bound, 66, 74
cover time, 147, 152

hitting time, 133

perturbed, 183, 187

self-avoiding, 319
simple, 9, 15, 115, 183

weighted, 115

randomized paths, 183, 225

randomized stopping time, 77

Rayleigh’s Monotonicity Law, 122, 278
Rayleigh-Ritz theorem, 308

recurrent, 276, 285

reflection principle, 30, 34, 34

regular graph, 11

counting lower bound, 87
relaxation time, 155

bottleneck ratio bounds, 177

continuous time, 268

coupling upper bound, 171

mixing time lower bound, 155
mixing time upper bound, 155

variational characterization of, 176

resistance, 115

return probability, 136, 239, 284

reversal, 221, see also Durrett chain
reversed chain, see also time reversal

reversibility, 15, 116

detailed balance equations, 14

riffle shuffle, 106, 112

counting lower bound, 109
generalized, 110

strong stationary time upper bound, 108

rising sequence, 107

rooted tree, 68
roots of unity, 156

sampling, 313

and counting, 195

exact, 195, 293

self-avoiding walk, 319, 320, 324

semi-random transpositions, 112
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separation distance, 79, 80, 84, 301

total variation upper bound, 260
upper bound on total variation, 80

Series Law, 119

shift chain, see also patterns in coin tossing
shuffle

cyclic-to-random, 112

move-to-front, 81
open problems, 300

random adjacent transposition, 217

comparison upper bound, 217
coupling upper bound, 218

single card lower bound, 219

Wilson’s method lower bound, 220
random transposition, 101, 110

coupling upper bound, 102
lower bound, 105

relaxation time, 156

strong stationary time upper bound,
103, 112

riffle, 106, 112

counting lower bound, 109

generalized, 110
strong stationary time upper bound,

108

semi-random transpositions, 112

top-to-random, 75
cutoff, 247

lower bound, 96

strong stationary time upper bound,
78, 81, 84

simple random walk, 9, 115, 183

stationary distribution of, 10

simplex, 318
simulation

of random variables, 311, 313

sink, 117
source, 117

spectral gap, 154, see also relaxation time

absolute, 154
bottleneck ratio bounds, 177

variational characterization of, 176
spectral theorem for symmetric matrices,

308

spin system, 43

star, 90
stationary distribution, 10

existence of, 12, 19

uniqueness of, 14, 17
stationary time, 77, 83

strong, 78, 243

Stirling’s formula, 309
stochastic flow, see also grand coupling

stopping time, 76, 84, 231

randomized, 77
strength

of flow, 117

Strong Law of Large Numbers, 305

strong stationary time, 78, 243

submartingale, 230

submultiplicativity
of d̄(t), 54, 55

of s(t), 84

supermartingale, 230, 245

support, 304

symmetric group, 75, 99
symmetric matrix, 308

systematic updates, 300

target time, 128, 129

tensor product, 160

Thomson’s Principle, 121, 278

tiling

domino, 319
lozenge, 290

time averages, 165

time reversal, 15, 34, 55, 57, 60, 82, 107

time-inhomogeneous Markov chain, 20, 112,
191

top-to-random shuffle, 75

cutoff, 247

lower bound, 96

strong stationary time upper bound, 78,
81, 84

torus
definition of, 65

glued

bottleneck ratio lower bound, 90

hitting time upper bound, 139
lamplighter chain on, 263

random walk on

coupling upper bound, 66, 74

cover time, 147, 152

hitting time, 133
perturbed, 183, 187

total variation distance, 47

coupling characterization of, 50

Hellinger distance upper bound, 270
monotonicity of, 59

separation distance upper bound, 80

standardized (d(t), d̄(t)), 53

upper bound on separation distance, 260

transient, 276
transition matrix

definition of, 3

eigenvalues of, 153, 167

multiply on left, 6
multiply on right, 6

spectral representation of, 153

transition probabilities, t-step, 6

transition times, 265
transitive

chain, 29, 34, 60, 300

network, 131

transportation metric, 189, 198

transpose (of a matrix), 308
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transposition, 100
tree, 18, 68

binary, 68, see also binary tree
effective resistance, 120
Ising model on, 206, 214
rooted, 68

triangle inequality, 308

unbiasing
von Neumann, 312

unit flow, 117
unity

roots of, 156
unknown chain

sampling from, 296
up-right path, 33
urn model

Ehrenfest, 24, 34, 251
Pólya, 25, 124, 124, 133

variance, 304
voltage, 117
von Neumann unbiasing, 312

Wald’s identity, 84
Weak Law of Large Numbers, 305
weighted random walk, 115
Wilson’s method, 172, 205, 220
window (of cutoff), 248
winning streak, 56, 69

time reversal, 57
wreath product, 257
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