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Problem 1. (Properties of the Self-Similarity Function) Prove the following properties
of the self-similarity function. Recall that the self-similarity function of an L2 pulse ξ(t)
is

Rξ(τ) =

∫ ∞
−∞

ξ(t+ τ)ξ∗(t) dt.

(a) Value at zero:
Rξ(τ) ≤ Rξ(0) = ‖ξ‖2, τ ∈ R.

(b) Conjugate symmetry:
Rξ(−τ) = R∗ξ(τ), τ ∈ R.

(c) Convolution representation:

Rξ(τ) = ξ(τ) ? ξ∗(−τ), τ ∈ R.

(d) Fourier relationship:

Rξ(τ) is the inverse Fourier transform of |ξ(f)|2.

Note: The fact that ξF(f) is in L2 implies that |ξF(f)|2 is in L1 . The Fourier
inverse of an L1 function is continuous. Hence Rξ(τ) is continuous.

Problem 2. (Matched Filter Basics) Let

w(t) =
K∑
k=1

dkψ(t− kT )

be a transmitted signal where ψ(t) is a real-valued pulse that satisfies∫ ∞
−∞

ψ(t)ψ(t− kT )dt =

{
0, k 6= 0
1, k = 0,

and dk ∈ {−1, 1} .

(a) Suppose that w(t) is filtered at the receiver by the matched filter with impulse
response ψ(−t) . Show that the filter output y(t) sampled at mT , m ∈ Z , yields
y(mT ) = dm , for 1 ≤ m ≤ K .



(b) Now suppose that the (noiseless) channel outputs the input plus a delayed and scaled
replica of the input. That is, the channel’s impulse response takes the form h(t) =
δ(t) + ρδ(t − T ) for some T and some ρ ∈ [−1, 1] . The transmitted signal w(t) is
filtered by h(t) , then filtered at the receiver by ψ(−t) . The resulting waveform ỹ(t)
is again sampled at multiples of T . Determine the samples ỹ(mT ) , for 1 ≤ m ≤ K .

(c) Suppose that the k -th received sample is Yk = dk+αdk−1+Zk , where Zk ∼ N (0, σ2)
and 0 ≤ α < 1 is a constant. dk and dk−1 are realizations of independent random
variables that take on the values 1 and −1 with equal probability. Suppose that
the receiver decides d̂k = 1 if Yk > 0 , and decides d̂k = −1 otherwise. Find the
probability of error for this receiver.

Problem 3. (Differential Encoding) For many years, telephone companies built their
networks on twisted pairs. This is a twisted pair of copper wires invented by Alexander
Graham Bell in 1881 as a means to mitigate the effect of electromagnetic interference.
In essence, an alternating magnetic field induces an electric field in a loop. This applies
also to the loop created by two parallel wires connected at both ends. If the wire is
twisted, the electric field components that build up along the wire alternate polarity and
tend to cancel out one another. If we swap the two contacts at one end of the cable, the
signal’s polarity at one end is the opposite of that on the other end. Differential encoding
is a technique for encoding the information in such a way that it makes no difference
when the polarity is inverted. The differential encoder takes the data sequence {Di}ni=1 ,
here assumed to have independent and uniformly distributed components taking value in
{0, 1} , and produces the symbol sequence {Xi}ni=1 according to the following encoding
rule:

Xi =

{
Xi−1, Di = 0,

−Xi−1, Di = 1,

where X0 =
√
E by convention. Suppose that the symbol sequence is used to form

X(t) =
n∑
i=1

Xiψ(t− iT ),

where ψ(t) is normalized and orthogonal to its T -spaced time translates. The signal is
sent over the AWGN channel of power spectral density N0/2 and at the receiver is passed
through the matched filter of impulse response ψ∗(−t) . Let Yi be the filter output at
time iT .

(a) Determine KX [k] , k ∈ Z , assuming an infinite sequence {Xi}∞i=−∞ .

(b) Describe a method to estimate Di from Yi and Yi−1 , such that the performance is
the same if the polarity of Yi is inverted for all i . We ask for a simple decoder, not
necessarily ML.

(c) Determine (or estimate) the error probability of your decoder.
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Problem 4. (Power Spectrum: Manchester Pulse) Let the random process X(t) be
generated as

X(t) =
∞∑

i=−∞

Xiψ(t− iT −Θ)

where {Xi}∞i=−∞ is the input of the waveform former, Θ is uniformly distributed in the
interval [0, T ] , and ψ(t) is the so-called Manchester pulse shown below. The Manchester
pulse guarantees that X(t) has at least one transition per symbol, which facilitates the
clock recovery at the receiver.

t

ψ(t)

T

1√
T

- 1√
T

(a) Assume Xi is created from the i.i.d. data sequence {Di}+∞i=−∞ taking values in {±1}
with equal probability by setting Xi =

√
EDi . Compute the power spectral density

of X(t) . At which frequencies is the power spectrum of X(t) zero?

(b) Suppose it is desired to additionally have a zero in the power spectrum of X(t) at
f = 1

T
. To this end, one proposes a precoding scheme by letting Xi be

Xi =
√
E(Di + αDi−1)

where α is a real constant. Is it possible to choose α to produce the desired frequency
null at f = 1

T
? If yes, what are the appropriate values and the resulting power

spectrum?

(c) Now assume we want to have zeros at all multiples of f0 = 1
4T

. Is it possible to have
these zeros with an appropriate choice of α in the previous part? If not, then what
kind of precoding do you suggest to obtain the desired nulls?

Problem 5. (Nyquist Criterion) For each function |ψF(f)|2 in the figure below, indicate
whether the corresponding pulse ψ(t) has unit norm and/or is orthogonal to its time-
translates by multiples of T . The function in (d) is sinc2(fT ) .
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