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SOLUTION 1.

a) In this case all components of Y except the first will contain only white Gaussian
noise:

Y1=\/E+Z1
Vi=2,....m, Y;=2;, Z; ~N(0,0%.

(b) This is the event that the receiver declares H =1, since only Y; is larger than the
threshold.

(c)
P.=Pr{(E\NESNEN...NES)} =Pr{ESUE,UE;U...UE,}
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where the inequality follows from the union bound.

(d) Taking the hints given in the problem, the above expression can be written as:
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The first term in the sum goes to zero as £ grows, but the second term only diminishes

if 1— 5a’logye <0, ie., if
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SOLUTION 2. First we compute T, which is the duration of one bit:

1
T, =
1 Mbps

=10"%s.

Now, we can calculate the energy of the signal (i.e., the energy per bit), which is the same
for every j:

& = b’T..



The bit error probability is given by @) ( ) In our case 0 = /Ny/2 = 107", thus we
need to solve

1070 =Q (bll(?_lg) = Q (b1072),

hence b= Q7!(107°) x 10% ~ 426.5.

SOLUTION 3.
(a) There are various pOSSlblhtleS to choose an orthogonal basis. One is ¢;(t) = mgﬁ =
1/ wo ) and ¢o(t) = szll =\/7 w2 . Another choice, that we prefer and will be

our ch01ce in this solution is

2
0ilt) =/ 7T 20
2
Yo(t) = iﬂ[%,n](t)-
With the latter choice the signal space (shown in the figure below) is
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(b) Uy € {£1} and U; € {£1} are mapped into

Uy \/?/11 (t) + U \/ng(t)

The mapping is shown here:



(d)

(—1,-1) (1,-1)

The mapping is such that neighboring points differ by one bit. This minimizes the bit-
error probability since when we make an error chances are that we choose a neighbor
of the correct symbol. Notice that we may decode each bit independently. In fact
the first bit is decoded to a 1 iff the observation is to the right of the vertical axis
and the second bit is 1 iff it is above the horizontal axis. The bit error probability is

therefore
B T.)2\ \/j
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Notice that ¥s(t) = ¢1(t — £). Hence one matched filter is enough. The receiver
block diagram is as follows:

t=T1,/2 Y
R(t) ——fn (5 —1) 1 — U

threshold
t="1T; Y, at 0

— & _ Ts o &8 —
& = % = % and the power is Ts_l.

SOLUTION 4.

(a)

(b)

The average energy is

o) T
/ lws(£)]? dt = %/g cos?(2m(f, + IAS)E) di

—00

_ % F N sin(27(f. + 1A f)t) cos(2n(fe + iAf)t) T .

T |2 1n(f. + 0 )) '

Orthogonality requires
o T
ET/ cos(2m(f. + iAf)t) cos(2m(f. + JAS)t) dt =0,
0

3



for every i # j. Using the trigonometric identity cos(a)cos(B) = 3 cos(a + 3) +

2
1 . o .
5 cos(a — ), an equivalent condition is

T
% / lcos(27(i — J)ASE) + cos(2n(2f, + (i + )AF))] dt = 0.
0
Integrating we obtain

3 {sin(27r(i — NAST)  sin(2w(2f. + (i + j)Af)T)} 0
27(i — j)Af 2w (2fe + (i + 7)AS) '

T

As f.T is assumed to be an integer, the result can be simplified to

13 {sin@ﬂ(i —NDAST)  sin(2n(i + 7)AfT) }
T 21 (i — j)Af 2m(2f. + (i + J)AS)

As i and j are integer, this is satisfied for 7 # j if and only if 20 AfT is an integer
multiple of 7. Hence, we obtain the minimum value of Af if 2nAfT = w which
gives Af = %

Proceeding similarly, we will have orthogonality if and only if

& [sin(2r(i — j)AST + 6; — 6;) — sin(6; — 0;)
T 2m(i — J)Af
N sin(2m(i + §)AfT +60; + 0;) — sin(6; + 6;)

2m(2fe + (i + J)AS)

=0.

In this case we see that both parts become zero if and only if 27AfT is an even
multiple of 7, meaning that the smallest Af is Af = % which is twice the min-
imum frequency separation needed in the previous part. Hence, the cost of phase
uncertainty is a bandwidth expansion by a factor of 2.

The condition for essential orthogonality is that

E [sin(2n(i — j)AfT +0; — 0;) — sin(f; — 6;)
T 2m(i — j)Af }
3 [sin(27r(2fc(i + )AfT) + 6, + 6;) —sin(6; + 0;)
2m(2fe + (i +J)Af)

T

is small compared to the signal’s energy &£. The first term vanishes if Af = % The
second term is very small compared to & if f.T > 1.

We have m signals separated by Af. The approximate bandwidth is mAf. This
means bandwidth % without random phase, and bandwidth % with random phase.
We see that in both cases, WT is proportional to 2¥, i.e. it grows exponentially with

k.



SOLUTION 5.

(a) The block diagram is shown below.

t=1T H=0
R(t) —wo(T — ) —— Yy :

(b) Given A = a, the distance of signals is 2a+/&,, hence

a0 (o)

We integrate by parts, noting that [ 20 da = —e~":

P&\ .| 28\ .
Pr=—-Q|lay/— |e® +/ Q |ay/— | e da.
! ( No) oo No
Taking the derivative of an integral with respect to the lower boundary gives the
negative of the value of the integrand evaluated at the lower boundary, i.e.

Q)= e

No

4 25,\ 1 _2a [2§
a0 \VNN, )~ ar. VN,

Plugging this in, we find

1 [ 1 286 (5
2 o V2rV Ny

which we now reshape to make it an integral over a Gaussian density, as follows:

125, | © a2
R ) )
I=37VN, /0 [l s —

2(a)? VES \ B

Thus, for the derivative of @) (a 2—5”> with respect to a, we can write




Now, it is clear that the integral evaluates to one half (since the integral is only over

half of the real line), and we find

bl 1 &N _1f) /Ny
= aVl1+e/Ny 2\ \1+e/Ny )
b 0 b 0

Let 0 = \%, then

oo oo 1 a2
m=RE[A] = / 2a%¢™" da = Zﬁ/ a? e 2?2 da = \/T0* =
0 0 %

o\ 2T

Thus, using the formula from part (b):

P.(m) = Q (W?) _q (@@) |

For the given example we get

-1 —5\\2
é = 2(@7(1077)) ~ 10.6 dB.
NO s

For the fading we use the result of part (c) to get

&  (1-2-107%)?

— = ~ 44 dB.
No 1—(1-2-1075)
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™
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The difference is quite significant! It is clear that this behavior is fundamentally

different from the non-fading case.

SOLUTION 6.

(a) We pass R(t) through a whitening filter h(¢) such that the output R'(t) looks like
the output of an AWGN channel. After this step we are facing a familiar situation and
can implement a matched filter receiver. The receiver architecture is shown below:

R(t R'(t t=T Y
RO, h(t) ® | wh(T — 1) LN
t=T Yi
wi (T —t) ! Select .
: . | argmax; Y; H
t=T Y, _
o wh, (T — 1) :




Let N'(t) = [ N(a)h(t — @) do be the noise at the output of the whitening filter.
We want to select the ﬁlter h(t) such that 22 = G(f)|hr(f)|?, i.e

No
2G(f)

hr(f)I* =

The output of the filter is

/R h(t — a) da = /wi(oz)h(t—oc) da+/N(a)h(t—a) do

t) + N'(¢),

where N'(t) is white Gaussian noise and wi(t) = [w;(a)h(t — ) da. We need to
design the matched filter for the signals wi(t )

To minimize both the noise and the energy of the signal, we need to select an antipodal
signal pair that is frequency-limited to [a,b] and has energy &£.



