Problem 1. *(Signal Translation)* Consider the signals \(w_0(t) \) and \(w_1(t) \) shown below, used to communicate one bit across an AWGN channel of power spectral density \(N_0/2 \).

\[w_0(t) \]
\[\begin{array}{c}
\cdot \\
T \\
\cdot \\
2T \\
\end{array} \]

\[w_1(t) \]
\[\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
2T \\
\end{array} \]

(a) Determine an orthonormal basis \(\{ \psi_0(t), \psi_1(t) \} \) for the space spanned by \(\{ w_0(t), w_1(t) \} \) and find the corresponding codewords \(c_0 \) and \(c_1 \). Work out two solutions, one obtained via Gram-Schmidt and one in which the second element of the orthonormal basis is a delayed version of the first. Which of the two solutions would you choose if you had to implement the system? (Justify your answer.)

(b) Let \(X \) be a uniformly distributed binary random variable that takes values in \{0, 1\}. We want to communicate the value of \(X \) over an additive white Gaussian noise channel. When \(X = 0 \), we send \(w_0(t) \), and when \(X = 1 \), we send \(w_1(t) \). Draw the block diagram of a ML receiver based on a single matched filter.

(c) Determine the error probability \(P_e \) of your receiver as a function of \(T \) and \(N_0 \).

(d) Find a suitable waveform \(v(t) \), such that the new signals \(\tilde{w}_0(t) = w_0(t) - v(t) \) and \(\tilde{w}_1(t) = w_1(t) - v(t) \) have minimal energy and plot the resulting waveforms.

(e) What is the name of the type of signaling scheme that uses \(\tilde{w}_0(t) \) and \(\tilde{w}_1(t) \)? Argue that one obtains this kind of signaling scheme independently of the initial choice of \(w_0(t) \) and \(w_1(t) \).

Problem 2. *(Orthogonal Signal Sets)* Consider a set \(\mathcal{W} = \{ w_0(t), \ldots, w_{m-1}(t) \} \) of mutually orthogonal signals with squared norm \(E \) each used with equal probability.

(a) Find the minimum-energy signal set \(\tilde{\mathcal{W}} = \{ \tilde{w}_0(t), \ldots, \tilde{w}_{m-1}(t) \} \) obtained by translating the original set.

(b) Let \(\tilde{E} \) be the average energy of a signal picked at random within \(\tilde{\mathcal{W}} \). Determine \(\tilde{E} \) and the energy saving \(E - \tilde{E} \).
(c) Determine the dimension of the inner-product space spanned by \(\mathcal{W} \).

Problem 3. (Energy Efficiency of Single-Shot PAM) This exercise, complements what we have leaned in Example 4.3. Consider using a \(m \)-PAM constellation:

\[
\{ \pm a, \pm 3a, \pm 5a, \ldots, \pm (m-1)a \}
\]

to communicate across the discrete-time AWGN channel of noise variance \(\sigma^2 = 1 \). Our goal is to communicate at some level of reliability, say with error probability \(P_e \leq 10^{-5} \). We are interested in comparing the energy needed by PAM versus the energy need by a system that operates at *channel capacity*, namely at

\[
C = \frac{1}{2} \log_2 \left(1 + \frac{E_s}{\sigma^2} \right)
\]

bits per channel use.

(a) Using the capacity formula, determine the energy per symbol, \(E^C_s(k) \) needed to transmit \(k \) bits per channel use. At any rate below capacity it is possible to make the error probability arbitrarily small by increasing the codeword length. This implies that there is a way to achieve the desired error probability at energy per symbol \(E^C_s(k) \).

(b) Using single-shot \(m \)-PAM, we can achieve an arbitrary small error probability by making the parameter \(a \) sufficiently large. As the size \(m \) of the constellation increases, the edge effects become negligible and the average error probability approaches \(2Q \left(\frac{a}{\sigma} \right) \) which is the probability of error conditioned on an interior point being transmitted. Find the numerical value of \(a \) for which \(2Q \left(\frac{a}{\sigma} \right) = 10^{-5} \).

(You may use the upper-bound \(Q(x) \leq \frac{1}{2} e^{-\frac{x^2}{2}} \) which is tight for large values of \(x \) as an approximation to \(Q(x) \)).

(c) Having determined the value of \(a \), determine the average energy \(E^P_s(k) \) needed by PAM to send \(k \) bits at the desired error probability. Compare the numerical values of \(E^P_s(k) \) and \(E^C_s(k) \) for \(k = 1, 2, 4 \).

Hint: See Equation (4.1) in the book.

(d) Find \(\lim_{k \to \infty} \frac{E^C_s(k+1)}{E^C_s(k)} \) and \(\lim_{k \to \infty} \frac{E^P_s(k+1)}{E^P_s(k)} \).

(e) Comment on PAM’s efficiency in terms of energy per bit for small and large values of \(k \). Comment also on the relationship between this exercise and Example 4.3.