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Problem 1. (Signal Translation) Consider the signals w0(t) and w1(t) shown below,
used to communicate one bit across an AWGN channel of power spectral density N0/2 .

t

w0(t)

T 2T

1

−1

t

w1(t)

2T
1

−1

(a) Determine an orthonormal basis {ψ0(t), ψ1(t)} for the space spanned by {w0(t), w1(t)}
and find the corresponding codewords c0 and c1 . Work out two solutions, one ob-
tained via Gram-Schmidt and one in which the second element of the orthonormal
basis is a delayed version of the first. Which of the two solutions would you choose
if you had to implement the system? (Justify your answer.)

(b) Let X be a uniformly distributed binary random variable that takes values in {0, 1} .
We want to communicate the value of X over an additive white Gaussian noise
channel. When X = 0, we send w0(t) , and when X = 1, we send w1(t) . Draw the
block diagram of a ML receiver based on a single matched filter.

(c) Determine the error probability Pe of your receiver as a function of T and N0 .

(d) Find a suitable waveform v(t) , such that the new signals w̃0(t) = w0(t) − v(t) and
w̃1(t) = w1(t)− v(t) have minimal energy and plot the resulting waveforms.

(e) What is the name of the type of signaling scheme that uses w̃0(t) and w̃1(t)? Argue
that one obtains this kind of signaling scheme independently of the initial choice of
w0(t) and w1(t) .

Problem 2. (Orthogonal Signal Sets) Consider a set W = {w0(t), . . . , wm−1(t)} of mu-
tually orthogonal signals with squared norm E each used with equal probability.

(a) Find the minimum-energy signal set W̃ = {w̃0(t), . . . , w̃m−1(t)} obtained by trans-
lating the original set.

(b) Let Ẽ be the average energy of a signal picked at random within W̃ . Determine Ẽ
and the energy saving E − Ẽ .



(c) Determine the dimension of the inner-product space spanned by W̃ .

Problem 3. (Energy Efficiency of Single-Shot PAM) This exercise, complements what
we have leaned in Example 4.3. Consider using a m -PAM constellation:

{±a,±3a,±5a, . . . ,±(m− 1)a}

to communicate across the discrete-time AWGN channel of noise variance σ2 = 1. Our
goal is to communicate at some level of reliability, say with error probability Pe ≤ 10−5 .
We are interested in comparing the energy needed by PAM versus the energy need by a
system that operates at channel capacity, namely at
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bits per channel use.

(a) Using the capacity formula, determine the energy per symbol, ECs (k) needed to trans-
mit k bits per channel use. At any rate below capacity it is possible to make the
error probability arbitrarily small by increasing the codeword length. This implies
that there is a way to achieve the desired error probability at energy per symbol
ECs (k) .

(b) Using single-shot m -PAM, we can achieve an arbitrary small error probability by
making the parameter a sufficiently large. As the size m of the constellation in-
creases, the edge effects become negligible and the average error probability ap-
proaches 2Q( a

σ
) which is the probability of error conditioned on an interior point

being transmitted. Find the numerical value of a for which 2Q( a
σ
) = 10−5 .

(You may use the upper-bound Q(x) ≤ 1
2e
−x2

2 which is tight for large values of x as an

approximation to Q(x) ).

(c) Having determined the value of a , determine the average energy EPs (k) needed by
PAM to send k bits at the desired error probability. Compare the numerical values
of EPs (k) and ECs (k) for k = 1, 2, 4 .

Hint: See Equation (4.1) in the book.

(d) Find limk→∞
ECs (k+1)
ECs (k)

and limk→∞
EPs (k+1)
EPs (k)

.

(e) Comment on PAM’s efficiency in terms of energy per bit for small and large values
of k . Comment also on the relationship between this exercise and Example 4.3.
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