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Problem 1. (On-Off Signaling) Consider the binary hypothesis testing problem specified
by:

H = 0 : R(t) = w(t) +N(t)

H = 1 : R(t) = N(t)

where N(t) is additive white Gaussian noise of power spectral density N0/2 and w(t) is
the signal shown in the left figure.

(a) Describe the maximum likelihood receiver for the received signal R(t) , t ∈ R .

(b) Determine the error probability for the receiver you described in (a).

(c) Sketch a block diagram of your receiver of part (a) using a filter with impulse response
h(t) (or a scaled version thereof) shown in the right figure.
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Problem 2. (QAM Receiver) Let the channel output be

R(t) = W (t) +N(t),

where W (t) has the form

W (t) =

{
X1

√
2
T

cos 2πfct+X2

√
2
T

sin 2πfct, for 0 ≤ t ≤ T,

0, otherwise,

2fcT ∈ Z is a constant known to the receiver, X = (X1, X2) is a uniformly distributed
random vector that takes values in
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for some known constant E , and N(t) is white Gaussian noise of power spectral density
N0

2
.



(a) Specify a receiver that, based on the channel output R(t) , decides on the value of
the vector X with least probability of error.

(b) Find the probability of error of the receiver you have specified.

Problem 3. (Matched Filter Implementation) In this problem, we consider the imple-
mentation of matched filter receivers. In particular, we consider Frequency Shift Keying
(FSK) with the following signals:

wj(t) =

{ √
2
T

cos 2π
nj

T
t, for 0 ≤ t ≤ T,

0, otherwise,

where nj ∈ Z and 0 ≤ j ≤ m − 1 . Thus, the communication scheme consists of m
signals wj(t) of different frequencies

nj

T
.

(a) Determine the impulse response hj(t) of a causal matched filter for the signal wj(t) .
Plot hj(t) and specify the sampling time.

(b) Sketch the matched filter receiver. How many matched filters are needed?

(c) Sketch the output of the matched filter with impulse response hj(t) when the input
is wj(t) .

(d) Consider the following ideal resonance circuit:

CL

i(t)

u(t)

For this circuit, the voltage response to the input current i(t) = δ(t) is

h(t) =

{
1
C

cos t√
LC
, t ≥ 0,

0 t < 0.

Show how this can be used to implement the matched filter for signal wj(t) . Deter-
mine how L and C should be chosen.

Hint: Suppose that i(t) = wj(t) . In this case, what is u(t)?
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Problem 4. (Matched Filter Intuition) In this problem, we develop some further intuition
about matched filters. You may assume that all waveforms are real valued. Let

R(t) = ±w(t) +N(t)

be the channel output, where N(t) is additive white Gaussian noise of power spectral
density N0/2 and w(t) is an arbitrary but fixed waveform. Let φ(t) be a unit-norm but
otherwise arbitrary waveform and consider the receiver operation

Y = 〈R, φ〉 = 〈w, φ〉+ 〈N, φ〉

The signal-to-noise ratio (SNR) is thus

SNR =
|〈w, φ〉|2

E [|〈N, φ〉|2]
.

Notice that the SNR is not changed when φ(t) is multiplied by a constant. Notice also
that

E
[
|〈N, φ〉|2

]
=

N0

2
.

(a) Use the Cauchy-Schwarz inequality to give an upper bound on the SNR. What is
the condition for equality in the Cauchy-Schwarz inequality? Find the φ(t) that
maximizes the SNR. What is the relationship between the maximizing φ(t) and the
signal w(t)?

(b) Let us verify that we would get the same result using a pedestrian approach. Instead
of waveforms, consider tuples. Let c = (c1, c2)

T and use calculus (instead of the
Cauchy-Schwarz inequality) to find the φ = (φ1, φ2)

T that maximizes 〈c, φ〉 subject
to the constraint that φ has unit energy.

(c) Verify with a picture (convolution) that the output at time T of a filter with input
w(t) and impulse response h(t) = w(T − t) is indeed ‖w‖2 =

∫
w2(t) dt .

Problem 5. (AWGN Channel and Sufficient Statistic) Let W = {w0(t), w1(t)} be the
signal constellation used to communicate an equiprobable bit across an additive Gaussian
noise channel. In this problem, we verify that the projection of the channel output onto
the inner-product space V spanned by W is not necessarily a sufficient statistic, unless
the noise is white. Let ψ1(t), ψ2(t) be an orthonormal basis for V . We choose the additive
noise to be N(t) = Z1ψ1(t)+Z2ψ2(t)+Z3ψ3(t) for some normalized ψ3(t) that is orthog-
onal to ψ1(t) and ψ2(t) and choose Z1 , Z2 and Z3 to be zero-mean jointly Gaussian
random variables of identical variance σ2 . Let ci = (ci,1, ci,2, 0)T be the codeword associ-
ated to wi(t) with respect to the extended orthonormal basis ψ1(t), ψ2(t), ψ3(t) . There
is a one-to-one correspondence between the channel output R(t) and Y = (Y1, Y2, Y3)

T

where Yi = 〈R,ψi〉 . In terms of Y , the hypothesis testing problem is

H = i : Y = ci + Z i = 0, 1

where we have defined Z = (Z1, Z2, Z3)
T .
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(a) As a warm-up exercise, let us first assume that Z1 , Z2 and Z3 are independent.
Use the Fisher–Neyman factorization theorem to show that (Y1, Y2) is a sufficient
statistic.

(b) Now assume that Z1 and Z2 are independent but Z3 = Z2 . Prove that in this case
(Y1, Y2) is not a sufficient statistic.

(c) To check a specific case, consider c0 = (1, 0, 0)T and c1 = (0, 1, 0)T . Determine the
error probability of an ML receiver when it observes (Y1, Y2)

T and that of another
ML receiver that observes (Y1, Y2, Y3)

T .

Problem 6. (Mismatched Receiver) Let the channel output be

R(t) = cX w(t) +N(t), (1)

where c > 0 is some deterministic constant, X is a uniformly distributed random variable
that takes values in {3, 1,−1,−3} , w(t) is the deterministic waveform

w(t) =

{
1, if 0 ≤ t < 1
0, otherwise,

and N(t) is white Gaussian noise of power spectral density N0

2
.

(a) Describe the receiver that, based on the channel output R(t) , decides on the value
of X with least probability of error.

(b) Find the probability of error of the receiver you have described in Part (a).

(c) Suppose now that you still use the receiver you have described in Part (a), but that
the received signal is actually

R(t) =
3

4
cX w(t) +N(t),

i.e., you were unaware that the channel was attenuating the signal. What is the
probability of error now?

(d) Suppose now that you still use the receiver you have found in Part (a) and that
R(t) is according to Equation (1), but that the noise is colored. In fact, N(t) is a
zero-mean stationary Gaussian noise process of auto-covariance function

KN(τ) =
1

4α
e−|τ |/α,

where 0 < α < ∞ is some deterministic real parameter. What is the probability of
error now?
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