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Solution 1.

(a) The MAP decision rule can always be written as

Ĥ(y) = arg max
i
fY |H(y|i)PH(i)

= arg max
i
gi(T (y))h(y)PH(i)

= arg max
i
gi(T (y))PH(i).

The last step is valid because h(y) is a non-negative constant which is independent
of i and thus does not give any further information for our decision.

(b) Let us define the event B = {y : T (y) = t} . Then,

fY |H,T (Y )(y|i, t) =
fY |H(y|i)1B(y)∫
B fY |H(y|i)dy

.

If fY |H(y|i) = gi(T (y))h(y) , then

fY |H,T (Y )(y|i, t) =
gi(T (y))h(y)1B(y)∫
B gi(T (y))h(y)dy

=
gi(t)h(y)1B(y)

gi(t)
∫
B h(y)dy

=
h(y)1B(y)∫
B h(y)dy

.

Hence, we see that fY |H,T (Y )(y|i, t) does not depend on i , so H → T (Y )→ Y .

Solution 2.

(a) Since Y is an i.i.d. sequence,

PY |H(y|i) =
n∏
k=1

PYk|H(yk|i) =
λ
∑n

k=1 yk
i∏n
k=1(yk)!

e−nλi

= e−nλiλ
n( 1

n

∑n
k=1 yk)

i︸ ︷︷ ︸
gi(T (y))

1∏n
k=1(yk)!︸ ︷︷ ︸
h(y)

.



(b) Since Z1, . . . , Zn are i.i.d. additive noise samples,

fY |H(y|i) =
n∏
k=1

fZ(yk − θi) = λne−λ
∑n

k=1(yk−θi)1 {yk ≥ θi : ∀k = 1, . . . , n}

= λne−λn(
1
n

∑n
k=1 yk−θi)1

{
min

k=1,...,n
yk ≥ θi

}
︸ ︷︷ ︸

gi(T (y))

with h(y) = 1 .

Solution 3. If H = 0, we have Y2 = Z1Z2 = Y1Z2 , and if H = 1, we have Y2 =
−Z1Z2 = Y1Z2 . Therefore, Y2 = Y1Z2 in all cases. Now since Z2 is independent of H ,
we clearly have H → Y1 → (Y1, Z2Y1) . Hence, Y1 is a sufficient statistic.

Solution 4.

(a) The MAP decoder Ĥ(y) is given by

Ĥ(y) = arg max
i
PY |H(y|i) =

{
0 if y = 0 or y = 1
1 if y = 2 or y = 3.

T (Y ) takes two values with the conditional probabilities

PT |H(t|0) =

{
0.7 if t = 0
0.3 if t = 1

PT |H(t|1) =

{
0.3 if t = 0
0.7 if t = 1.

Therefore, the MAP decoder Ĥ(T (y)) is

Ĥ(T (y)) = arg max
i
PT (Y )|H(t|i) =

{
0 if t = 0 (y = 0 or y = 1)
1 if t = 1 (y = 2 or y = 3).

Hence, the two decoders are equivalent.

(b) We have

Pr {Y = 0|T (Y ) = 0, H = 0} =
Pr {Y = 0, T (Y ) = 0|H = 0}

Pr {T (Y ) = 0|H = 0}
=

0.4

0.7
=

4

7

and

Pr {Y = 0|T (Y ) = 0, H = 1} =
Pr {Y = 0, T (Y ) = 0|H = 1}

Pr {T (Y ) = 0|H = 1}
=

0.1

0.3
=

1

3
.

Thus Pr {Y = 0|T (Y ) = 0, H = 0} 6= Pr {Y = 0|T (Y ) = 0, H = 1} , hence H → T (Y )→
Y is not true, although the MAP decoders are equivalent.

Solution 5.
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(a) Let Xi = cH,i be the i -th symbol that was sent, i.e., Xi = 1 if H = 0 and Xi = −1
if H = 1. We have:

PWi|Xi
(1| − 1) = Pr {Yi > 0|H = 1} = Pr {−1 + Z > 0} = Q

(
1

σ

)
.

Similarly, we can show that PWi|Xi
(−1|− 1) = 1−Q

(
1
σ

)
, PWi|Xi

(−1|1) = Q
(
1
σ

)
and

PWi|Xi
(1|1) = 1−Q

(
1
σ

)
.

The overall system between Xi and Wi may be viewed as a channel with input 1
or −1 and output also 1 or −1 . There is a certain probability ε (called transition
or crossover probability, and which is equal to Q

(
1
σ

)
in our case) that the channel

converts 1 into −1 or vice versa:

−1 −1

1 1

Xi Wi

1− ε

1− ε

ε

ε

This particular channel is called the Binary Symmetric Channel. Various results can
be found easily from the above diagram. For instance, it is clear that if we put n
consecutive 1 ’s into the channel, the probability of getting, at the output, a particular
sequence (w1, . . . , wn) which contains exactly k 1 ’s is simply (1−ε)kεn−k . Similarly,
the probability of getting, at the output, any sequence that contains exactly k 1 ’s
is (nk)(1− ε)kεn−k because there are (nk) distinct sequences with exactly k ones each,
and every one of them has probability (1− ε)kεn−k .

The MAP decision rule is

PW1...Wn|H(w1, . . . , wn|1)

PW1...Wn|H(w1, . . . , wn|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
= 1 or,

εk(1− ε)n−k

(1− ε)kεn−k
=

(
ε

1− ε

)2k−n Ĥ=1

R
Ĥ=0

1.

The expression only depends on k , therefore the number of ones in the received
sequence is a sufficient statistic.

Taking the logarithm, we obtain

(2k − n) log

(
ε

1− ε

) Ĥ=1

R
Ĥ=0

0.
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Since ε < 1/2 , log
(

ε
1−ε

)
< 0 , and thus, when we divide by this term, the direction

of the inequality is changed. Using this, the decision rule can be written as

k
Ĥ=0

R
Ĥ=1

n

2
.

That is, the best decision rule is simply majority voting: if the majority of the received
values is 1 , we decide for hypothesis H = 0 (i.e. the transmitted value was 1). If
the majority of the received values is −1 , we decide for hypothesis H = 1 (i.e. the
transmitted value was −1).

(b) Let us assume that n is odd. Then,

Pe(0) = Pr {k < n/2|H = 0}

=

(n−1)/2∑
m=0

(nm)(1− ε)mεn−m.

By the symmetry of the problem, Pe(1) has the same value. Thus,

P̃e =

(n−1)/2∑
m=0

(nm)(1− ε)mεn−m.

If n is even, we introduce a slight asymmetry because the term for n/2 has to be
assigned to either H = 0 or H = 1.

Because this sum cannot be evaluated explicitly, in the following, we bound it using
the Bhattacharyya bound.

(c) The general formula for the Bhattacharyya bound is

P̃e ≤
∑
i

∑
j:j 6=i

√
PH(i)PH(j)

∫
w∈Rn

√
fW |H(w|i)fW |H(w|j) dw.

In our case, this becomes

P̃e ≤ 2
1

2

∑
w

√
PW |H(w|0)PW |H(w|1)

=
∑
w

√
(1− ε)k(w)εn−k(w) εk(w)(1− ε)n−k(w)

=
∑
w

√
εn(1− ε)n

= 2n
√
εn(1− ε)n.

(d) Again, we assume that n is odd. The following plot shows the error probabilities for
various values of n :
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Solution 6.

(a) Inequality (a) follows from the Bhattacharyya Bound.

Using the definition of DMC, it is straightforward to see that

PY |X(y|c0) =
n∏
i=1

PY |X(yi|c0,i) and

PY |X(y|c1) =
n∏
i=1

PY |X(yi|c1,i).

(b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that
∑

y is the same as
∑

y1,...,yn
(the first one

being a vector notation for the sum over all possible y1, . . . , yn ).

In (c), we see that we want the sum of all possible products. This is the same as
summing over each yi and taking the product of the resulting sum for all yi . This
results in equality (d). We obtain (e) by writing (d) in a more concise form.

When c0,i = c1,i ,
√
PY |X(y|c0,i)PY |X(y|c1,i) = PY |X(y|c0,i) . Therefore,∑

y

√
PY |X(y|c0,i)PY |X(y|c1,i) =

∑
y

PY |X(y|c0,i) = 1.

This does not affect the product, so we are only interested in the terms where c0,i 6=
c1,i . We form the product of all such sums where c0,i 6= c1,i . We then look out for
terms where c0,i = a and c1,i = b, a 6= b , and raise the sum to the appropriate power.
(e.g. If we have the product prpqrpqrr , we would write it as p3q2r4 ). Hence equality
(f).
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(b) For a binary input channel, we have only two source symbols X = {a, b} . Thus,

Pe ≤ zn(a,b)zn(b,a)

= zn(a,b)+n(b,a)

= zdH(c0,c1).

(c) The value of z is:

(i) For a binary input Gaussian channel,

z =

∫
y

√
fY |X(y|0)fY |X(y|1) dy

= exp

(
− E

2σ2

)
.

(ii) For the Binary Symmetric Channel (BSC),

z =
√

Pr {y = 0|x = 0}Pr {y = 0|x = 1}+
√

Pr {y = 1|x = 0}Pr {y = 1|x = 1}
= 2

√
δ(1− δ).

(iii) For the Binary Erasure Channel (BEC),

z =
√

Pr {y = 0|x = 0}Pr {y = 0|x = 1}+
√

Pr {y = E|x = 0}Pr {y = E|x = 1}
+
√

Pr {y = 1|x = 0}Pr {y = 1|x = 1}
= 0 + δ + 0

= δ.

Solution 7.

(a) From the definition of the decision region Ri ,

Ri =
{
y : PH(i)fY |H(y|i) ≥ PH(j)fY |H(y|j)

}
i 6= j,

it is easy to see that in region R0

PH(0)fY |H(y|0) ≥ PH(1)fY |H(y|1)

and vice-versa. Thus we can write

Pe = PH(0)

∫
R1

fY |H(y|0) dy + PH(1)

∫
R0

fY |H(y|1) dy

=

∫
R1

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy

+

∫
R0

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy

=

∫
R0∪R1

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy

=

∫
y

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy.
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(b) Without loss of generality, let us assume that a ≤ b . Then
√
b/a ≥ 1 and min(a, b) =

a ≤ a
√
b/a =

√
ab .

To show that for a, b ≥ 0,
√
ab ≤ a+b

2
, we proceed as follows. Let m = (a + b)/2 be

the midpoint of an imaginary segment of the real line that goes from a to b . Let
d = (b− a)/2 be half the distance between a and b . Writing a and b in terms of m
and d we obtain ab = (m− d)(m+ d) = m2 − d2 ≤ m2 , which is the desired result.

Considering this, we can write

Pe =

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

≤
∫
y

√
PH(0)fY |H(y|0)PH(1)fY |H(y|1) dy

=
√
PH(0)PH(1)

∫
y

√
fY |H(y|0)fY |H(y|1) dy

≤ PH(0) + PH(1)

2

∫
y

√
fY |H(y|0)fY |H(y|1) dy

=
1

2

∫
y

√
fY |H(y|0)fY |H(y|1) dy.

(c) In the book, we upper-bound Pe(i) individually instead of upper-bounding the final
result, Pe =

∑
i PH(i)Pe(i) . For the binary case, this is equivalent to

Pe(0) =

∫
R1

fY |H(y|0) dy

=

∫
R1

min
{
fY |H(y|0), fY |H(y|1)

}
dy

≤
∫
R1

√
fY |H(y|0)fY |H(y|1) dy

≤
∫
y

√
fY |H(y|0)fY |H(y|1) dy.

The last step, which further loosens the bound, is necessary to find a bound of Pe(0)
that does not depend on R1 . This “over-bounding” is avoided in (b) by finding the
bound over the whole Pe .
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