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SOLUTION 1.

(a) The MAP decision rule can always be written as

H(y) = arg max fy u (y|1) P (7)
= arg miaxgz( () () Pr (i)
= argmax g;(T'(y)) Pr (i).

The last step is valid because h(y) is a non-negative constant which is independent

of 7 and thus does not give any further information for our decision.

(b) Let us define the event B = {y: T(y) =t}. Then,

fyi(yli)1s(y)
fB fY\H(y‘wdy‘

Iyimro(ylist) =

If fyia(yli) = 9:(T(y))h(y), then

fyinroy(ylist) = f 7
B 1

Hence, we see that fy g r)(y|i,t) does not depend on i, s0 H = T(Y) =Y.

SOLUTION 2.

(a) Since Y is an i.i.d. sequence,

)\Zk 1Yk N
Py (y|i) HPYk\H Yrli Hk 1(%) e "
_ e—n)\i)\"’7‘<ﬁ k=1 yk) 1
. — [Tz (we)!
9:(T'(y)) —



(b) Since Zi,...,Z, are ii.d. additive noise samples,
Fri(yli) = [T f2(us — ) = Xre A B @001 {y > 6, : ke = 1, n}
k=1

— Al Sioive—0i) g {knllin Yp 2> 91}

.

0:(T(w)
with h(y) = 1.

SOLUTION 3. If H = 0, we have Y, = Z,7Z, = Y1Z,, and if H = 1, we have Yy =
—Z1Zy = Y1Z5. Therefore, Yo = Y Z5 in all cases. Now since Z, is independent of H ,
we clearly have H — Y; — (Y1, Z2Y1). Hence, Y; is a sufficient statistic.

SOLUTION 4.

(a) The MAP decoder H(y) is given by

) - 0 ify=0o0ry=1
H(y):argmzaXPYlH(y‘Z):{ 1 jfi:?orzzg’-

T(Y) takes two values with the conditional probabilities

0.7 ift=0 0.3 ift=0
Priu(t]0) = { 0.3 ift=1 Prin(tll) = { 0.7 if t = 1.

Therefore, the MAP decoder H(T(y)) is

- . 0 ift=0 (y=0ory=1
H(T(y)):argmlaXPT(Y)lH(t‘Z):{ 1 ift=1 Ey=2ory=3%.

Hence, the two decoders are equivalent.

(b) We have

_ oo Pr{Y=0T(¥)=0H=0} 04 4
Priy =0T(Y) =01 =0} = Pr{T(Y)=0H=0} 07 7

and

_ _ . Pr{y=0T(Y)=0H=1} 01 1
Pr{Y =0[T(Y)=0,H =1} = BT A =T =633

Thus Pr{Y =0|T(Y)=0,H =0} # Pr{Y =0/T(Y) =0,H =1} ,hence H - T(Y) —
Y is not true, although the MAP decoders are equivalent.

SOLUTION 5.



(a) Let X; = cp,; be the i-th symbol that was sent, i.e., X; =1 if H =0 and X; = —1
if H=1. We have:

1
Py, x,(1] =1)=Pr{Y; >0/H =1} =Pr{-1+ 2> 0} =Q (—) )
o
Similarly, we can show that Py, x,(—1|—1) =1-Q (2), Pw,x,(-1]1) =Q (%) and
PWi\X¢(1|1) =1- Q (%) .
The overall system between X; and W; may be viewed as a channel with input 1
or —1 and output also 1 or —1. There is a certain probability € (called transition

or crossover probability, and which is equal to @ (%) in our case) that the channel
converts 1 into —1 or vice versa:

1—c¢
—1 -1
€
X; Wi
€
1 1
1—e¢

This particular channel is called the Binary Symmetric Channel. Various results can
be found easily from the above diagram. For instance, it is clear that if we put n
consecutive 1’s into the channel, the probability of getting, at the output, a particular
sequence (wy, . ..,w,) which contains exactly k 1’sis simply (1—¢€)*e"*. Similarly,
the probability of getting, at the output, any sequence that contains exactly £ 1’s

is (1)(1—¢€)*e"* because there are (}) distinct sequences with exactly k ones each,

and every one of them has probability (1 — ¢)ke"*.
The MAP decision rule is
P, w, (Wi, ..., w,[1) szl Pu(0) 1 or
Po,w, i (e, we|0) = 0 Pr(1) 7
k(1 — )k _ ¢ 2k—n HZ:1 X
(1 — e)ken—F 1—e¢ =
H=

0

The expression only depends on k, therefore the number of ones in the received
sequence is a sufficient statistic.

Taking the logarithm, we obtain

€ H>:1
(2k—n)log<1 ) = 0

— € .
H=0




Since € < 1/2, log (ﬁ) < 0, and thus, when we divide by this term, the direction
of the inequality is changed. Using this, the decision rule can be written as

H=0

k

=AY
vl 3

1

That is, the best decision rule is simply majority voting: if the majority of the received
values is 1, we decide for hypothesis H = 0 (i.e. the transmitted value was 1). If
the majority of the received values is —1, we decide for hypothesis H =1 (i.e. the
transmitted value was —1).

(b) Let us assume that n is odd. Then,

P.(0) = Pr{k<n/2|H =0}
(n—1)/2

= 3 a—gre.

m=0

By the symmetry of the problem, P,(1) has the same value. Thus,
Po= > ()@—emem

If n is even, we introduce a slight asymmetry because the term for n/2 has to be
assigned to either H =0 or H =1.

Because this sum cannot be evaluated explicitly, in the following, we bound it using
the Bhattacharyya bound.

(c) The general formula for the Bhattacharyya bound is

S Searrnl i

i jijFEl w

\/fW|H(w!i)fW|H(w|j) dw.

In our case, this becomes

P, < 2%%:\/PW|H(w|O)PWH(w|1)

= \/ (1 — e)k(w)en—h(w) cklw)(] — ¢)n—h(w)
= Z Ver(l—en
=2"\/en(1 —e)m.

(d) Again, we assume that n is odd. The following plot shows the error probabilities for
various values of n:
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SOLUTION 6.

(a) Inequality (a) follows from the Bhattacharyya Bound.
Using the definition of DMC, it is straightforward to see that

PY|X(y|CO) = HPY|X(yi|CO,i) and

=1

PY|X(y|Cl) = HPY|X(yz‘|CLi>-

(b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that »_  is the sameas >~ = (the first one
being a vector notation for the sum over all possible y, ...,y ).

In (c), we see that we want the sum of all possible products. This is the same as
summing over each y; and taking the product of the resulting sum for all y;. This
results in equality (d). We obtain (e) by writing (d) in a more concise form.

When co; = 1, /Prix(Wlcos) Prix(yleii) = Pyix(ylco;) . Therefore,

\/PY|X y’COz)PY|X y’Cu ZPY|X y’COz =

Y

This does not affect the product, so we are only interested in the terms where ¢y ; #
c1;. We form the product of all such sums where cy; # ¢1,. We then look out for
terms where co; = a and ¢;; = b,a # b, and raise the sum to the appropriate power.
(e.g. If we have the product prpgrpqrr, we would write it as p3¢*r?). Hence equality

(f).



(b) For a binary input channel, we have only two source symbols X = {a,b}. Thus,

Pe < Zn(a,b) Zn(b,a)
_ Zn(a,b)+n(b,a)

Hdu (co,c1) )

(¢) The value of z is:

(i) For a binary input Gaussian channel,

z = /y\/fnx(y\o)fwx(ym dy

E
= exp —@ .

(ii) For the Binary Symmetric Channel (BSC),

A =

VPr{y=0/z=0}Pr{y=0/z=1} +/Pr{y =1z =0}Pr{y = 1|z = 1}

2,/6(1—9).

(iii) For the Binary Erasure Channel (BEC),

z =

SOLUTION 7.

VPr{y=0{z=0}Pr{y=0{z=1} +/Pr{y = Elz = 0}Pr{y = E|z = 1}
+Pr{y=1z=0}Pr{y =1z =1}

04+d6+0

J.

(a) From the definition of the decision region R;,

Ri={y: Pu(i) fyia(yli) > Pu(i) frin(yli)} i # 7,

it is easy to see that in region Ry

Py (0) fy1a(y]0) > Pu(1) fya(y|1)

and vice-versa. Thus we can write

P. = Pu(0) [ friaWl0) dy+ Pu(l) [ fyia(yll) dy

R1 Ro

= min{ Py (0) fy | (y]0), Par(1) fyia(yI1)} dy

R

+ min{ Py (0) fy#(y]0), Pur(1) fyia(y|1)} dy

Ro

_ /R  win{Pr(0) fyia(l0), P (1) fria(y/1)} dy

_ / min{ Py (0) fy1z (10, Pt (1) fy i (y] 1)} dy.



(b) Without loss of generality, let us assume that a <b. Then y/b/a > 1 and min(a,b) =
a < ay/bja=ab.

To show that for a,b > 0,v/ab < “2 " we proceed as follows. Let m = (a +b)/2 be
the midpoint of an imaginary segment of the real line that goes from a to b. Let
d = (b—a)/2 be half the distance between a and b. Writing a and b in terms of m
and d we obtain ab = (m — d)(m + d) = m? — d* < m?, which is the desired result.

Considering this, we can write

P = / win { Pyr(0) fyr (510), Par(L) e (u]1)} dly

< [Pl f(ol0) P fr 1)
— \/PH(O)PH(l)/\/fY|H(y|0)fYH(y|1) dy
< DB [ Rl fv i) dy

= %/y\/fY|H(y|0)fYH(y|1) dy.

(¢) In the book, we upper-bound F,(i) individually instead of upper-bounding the final
result, P, =), Py(i)P.(i). For the binary case, this is equivalent to

P.(0) = fy1u(y]0) dy
R1

_ / min { fy1(910), frin(y[1)} dy

R1

< [ R0 sl dy
< [\l ol dy

The last step, which further loosens the bound, is necessary to find a bound of P,(0)
that does not depend on R;. This “over-bounding” is avoided in (b) by finding the
bound over the whole P,.



