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SOLUTION 1.

(a) Let I(y) be the number of 0’s in the sequence y.
1
Py (y]0) =5k

(%,iﬂzk
k

0, otherwise

PYIH(Z/H) = {

(b) The ML decision rule is:
H=1
PY|H(ZJ|1) ; PY\H(y‘O)'
H=0

Because ﬁ > 2% for any value of k, the ML decision rule becomes
k

ﬁ:{q if I(y) # &
1, ifl(y) = k.

The single number needed is I(y), the number of 0’s in the sequence y .

(¢) The decision rule that minimizes error probability is the MAP rule:

Prin(uDPi(1) Z Pyya(y|0)Pi(0).

The MAP decision rule gives H = 0 whenever [(y) # k. When I(y) = k:

o (F) < Pu(y)
jig. {07 if o > Pir(0)

1, otherwise.

(d) Trivial solution: If Py(1) = 1 then H = 1 for all y (In this case, I(y) = k is
guaranteed). Similarly, if Py(0) =1 then H =0 for all y.

Now assume P (1) # 1. Then there is a nonzero probability that I(y) # k, in which
case H =0. The MAP decision rule always chooses H = 0 if
1
2%k 2Ry
Q > PH(l) — (k)
2% = Py(0) H\Y) = (21k) 2%




SOLUTION 2.

(a) A and B must be chosen such that the suggested functions become valid probability
density functions, i.e. fol fyi(yli)dy = 1 for i = 0,1. This yields A = 4/3 and
B =6/7. (A quicker way is to draw the functions and find the area by looking at
the drawings.)

(b) Let us first find the marginal of Y, i.e.
K@) = HrWl0)Pu(0) + fyin(y[l)Pu(l) = C — Dy,

where we find C'=23/21 and D = 4/21. Then, applying Bayes’ rule gives

Frin@l0)Pu(0)  1A-gy 1 4/3-2/3y
fr () T 2C—Dy  223/21 —4/21y’

Puy(Oly) =

and similarly

e fr () T 20 —Dy  223/21 — 421y’

(c) Here is a plot of Pyy(0ly) and Py (1ly):

1 | Pay(ily) . — Py (Oly)
=== Pyy(1]y)

The threshold is where the two a posteriori probabilities are equal,

1.4/3-2/3y 1 6/7T+2/Ty
223/21 —4/21y  223/21 — 4/21y’

or equivalently,
4/3-2/3y = 6/7+2/Ty.
The y that satisfies this equation is our threshold 6, thus 6 = %
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(d) The probability that we decide ﬁv(y) =1 when in reality H = 0 is just the proba-
bility that y is larger than the threshold given that H = 0, which is

/71 Sy (y|0)dy = /71 (A - gy) dy

Pr{Y > ~|H = 0}

Al —~2
= A(l—v)—g 5
A=) 17
N 3 3

(e) By analogy to the previous question,

2l v B
peqy <ol =1 = "ty = [ (B+50) dy
B 2

P.(y) = Pr{Y >~|H =0}Py(0)+Pr{Y <~|H =1}Py(1)
TEEOIRE

2 3 3 7 7
For v =6 =0.5, we find P.(6) =0.44.

(f) To minimize P, over 7, we observe that P.(v) is a convex function of ~ (it is
a parabola with positive coefficient of 7?), hence we may take the derivative with
respect to v and set it equal to zero, i.e.

d 1 4  2v 6 2y
—P - 2= 2]
g e0) 2(3+3+7+7)

Setting this equal to zero, we find v = 0.5. We observe that the value of v which
minimizes P.(7) is equal to 6. This was expected, because the MAP decision rule

minimizes the error probability.




SOLUTION 3.

REMARK (AN EXPLANATION REGARDING THE TITLE OF THIS PROBLEM). Independent
and identically distributed means that all Yi,...,Y;, have the same probability mass
function and are independent of each other. First-order Markov means that Yi,...,Y}
depend on each other in a particular way: the probability mass function Y; depends on
the value of Y;_ 1, but given the value of Y;_ 1, it is independent of Yi,...,Y; 5. Thus,
in this problem, we observe a binary sequence, and we want to know whether it has been
generated by an i.i.d. (independent and identically distributed) source or by a first-order
Markov source.

(a) We first know that

Py g (yl0) = (%)k vy € {0,1}*

ruom =1 (1) (3)

where [ is the number of times the observed sequence y € {0,1}* changes from zero
to one or one to zero, i.e. the number of transitions in the observed sequence.

and

Since the two hypotheses are equally likely, we find

Prn(yl) "S' Pu(0) _
= =1.
Priu(yl0) 5=, Pu(l)
Plugging in, we obtain
12 (1/4) - (3/Hkt 2
k < '
(1/2) o

(b) The sufficient statistic here is simply the number of transitions [; this entirely specifies
the likelihood ratio.

SOLUTION 4. Note that since noise samples are i.i.d., the conditional probability distri-
bution functions under Hy and H; will respectively be

fY|H(y’0) = H fZ(yk)

Sy (y|l) = Hfz(yk —24)

where f7(z) is the pdf of Z,, k =1,...,n. Furthermore, since the two hypotheses are
equi-probable, the MAP decision reduces to the ML decision rule.
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(a) Plugging the pdf of Z the MAP decision rule becomes

1 1 n 2 H=1 1 1 n 2
e 22 2k=1(k—24)" > T T 3.2 2 h=1Y%
(2mwo2)n/2 H<—0 (2mwo2)n/2 ’

Simplifying the common factor m and taking the logarithm we have

RN 21 &,
5,2 (g —24)° 2 _Fzyk'
k=1 H=0 k=1

Further simplifications reduce the MAP decision rule to

H=1

n H=1 n
Zyk Z nd Z(yk—A) = 0.
k=1 H=0 k=1 H=0
Hence ¢,(x) = .
Pa()
A I |
| | v
—A A
A
(b) Similarly, the MAP decision rule is now
H=1
IR -0 5 S WV R~ S 20 5
(202)n/2 < (202)n/2 :
H=0

Simplifying common terms and taking the logarithm gives
\/5 n H=1 \/5 n
s >y — 24 % s > Lyl
k=1 H=0 k=1

We can write the above in the desired form by noting that

|z| — |z — 2A| = 2¢p(z — A)



where

A ifx > A,
dp(z) 2 if —A<z <A,
—A ifz<—-A.
Thus the MAP decision rule will be
n =1
D oy —A) 20
k=1 H=0
Pp()
A I I
| | v
‘ !
—A A
| / 7;74 |

Again note that only the value of A is needed for implementing the decision rule.

Here you see a plot of two noise distributions for o = 1:

100 © | | — Gaussian

B | | — Laplacian
107t | =
/I\T = -
<1072 | E
= |
1072
1074 ? | I I I | E

—4 —2 0 2 4
z

The Laplacian distribution has larger ‘tails’; it puts more mass on very large positive and
very large (in absolute value) negative values of z. Because of this, for the decision in
part (b) the optimal choice is to first “clip” the input data yx, & =1,...,n so that these
high values do not influence the decision.



SOLUTION 5. Repeating the same steps as in the previous exercise, we see that the MAP
decision rule is

LS Y NS B S
We 252 > k=1 Wk e 202 Zuk=1 Yk
To )"

(2m02)n/?

AV

0

Simplifying the common positive factor of m and taking the logarithm we have

1 n ff>=1 n
- —A)? = —— A)?
k=1 H=0 k=1
which can further be simplified to
n A=1
yr = 0
k=1  H=0

Note that for implementing the decision rule the receiver does not need to know the exact
value of A whereas in the previous problem A was a required parameter.

SOLUTION 6.

(a) We have a binary hypothesis testing problem, here the hypothesis H is the answer
you will select, and your decision will be based on the observation of H; and Hp.
Let H take value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this
case, we can write the MAP decision rule as follows:

H=1
Pr{H: 1H;, = 1,ﬁR:2} = Pr{sz\ﬁL - 1,HR:2}.
H=2

From the problem setting we know the priors Pr{H = 1} and Pr{H = 2}; we can
also determine the conditional probabilities Pr {[:[ L =1|H = 1} , Pr {f] L =1|H = 2},
Pr{ﬁR —9|H = 1} and Pr {FIR —9|H = 2} (we have Pr{ﬁL —1|H = 1} =09
and Pr {ﬁL =1|H = 2} = 0.1). Introducing these quantities and using the Bayes

rule we can formulate the MAP decision rule as

Pr{ﬁL — 1, Hp =2|H = 1}Pr{H =1} = P {ﬁL —1,Hp=2|H = 2}Pr{H — 9}

Pr{ﬁ[L:Lﬁ[R:Q} g<:2 Pr{ﬁL:LF[R:2}

Now, assuming that the event {H; = 1} is independent of the event {Hp = 2} and
simplifying the expression, we obtain

AH=1
Pr {HL —1|H = 1}Pr{HR —9|H = 1}Pr{H —1} 2

=2
Pr {EIL —1|H = Q}Pr {FIR —9|H = Q}Pr{H — 2,

which is our final decision rule.



(b) Evaluating the preceding decision rule, we have

H=1
09-03-025 = 0.1-0.7-0.75,
H=2
which gives
H=1
0.0675 = 0.0525.
H=2

This implies that the answer H is equal to 1.



