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Solution 1.

(a) Let l(y) be the number of 0 ’s in the sequence y .

PY |H(y|0) =
1

22k

PY |H(y|1) =

{
1

(2k
k )
, if l = k

0, otherwise

(b) The ML decision rule is:

PY |H(y|1)
Ĥ=1

R
Ĥ=0

PY |H(y|0).

Because 1

(2k
k )
> 1

22k
for any value of k , the ML decision rule becomes

Ĥ =

{
0, if l(y) 6= k

1, if l(y) = k.

The single number needed is l(y) , the number of 0 ’s in the sequence y .

(c) The decision rule that minimizes error probability is the MAP rule:

PY |H(y|1)PH(1)
Ĥ=1

R
Ĥ=0

PY |H(y|0)PH(0).

The MAP decision rule gives Ĥ = 0 whenever l(y) 6= k . When l(y) = k :

Ĥ =

{
0, if

(2k
k )

22k
≥ PH(1)

PH(0)

1, otherwise.

(d) Trivial solution: If PH(1) = 1 then Ĥ = 1 for all y (In this case, l(y) = k is
guaranteed). Similarly, if PH(0) = 1 then Ĥ = 0 for all y .

Now assume PH(1) 6= 1. Then there is a nonzero probability that l(y) 6= k , in which
case Ĥ = 0. The MAP decision rule always chooses Ĥ = 0 if(

2k
k

)
22k
≥ PH(1)

PH(0)
⇐⇒ PH(0) ≥

1

(2k
k )

1

(2k
k )

+ 1
22k

.



Solution 2.

(a) A and B must be chosen such that the suggested functions become valid probability

density functions, i.e.
∫ 1

0
fY |H(y|i)dy = 1 for i = 0, 1 . This yields A = 4/3 and

B = 6/7 . (A quicker way is to draw the functions and find the area by looking at
the drawings.)

(b) Let us first find the marginal of Y , i.e.

fY (y) = fY |H(y|0)PH(0) + fY |H(y|1)PH(1) = C −Dy,

where we find C = 23/21 and D = 4/21 . Then, applying Bayes’ rule gives

PH|Y (0|y) =
fY |H(y|0)PH(0)

fY (y)
=

1

2

A− A
2
y

C −Dy
=

1

2

4/3− 2/3y

23/21− 4/21y
,

and similarly

PH|Y (1|y) =
fY |H(y|1)PH(1)

fY (y)
=

1

2

B + B
3
y

C −Dy
=

1

2

6/7 + 2/7y

23/21− 4/21y
.

(c) Here is a plot of PH|Y (0|y) and PH|Y (1|y) :
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The threshold is where the two a posteriori probabilities are equal,

1

2

4/3− 2/3y

23/21− 4/21y
=

1

2

6/7 + 2/7y

23/21− 4/21y
,

or equivalently,

4/3− 2/3y = 6/7 + 2/7y.

The y that satisfies this equation is our threshold θ , thus θ = 1
2

.
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(d) The probability that we decide Ĥγ(y) = 1 when in reality H = 0 is just the proba-
bility that y is larger than the threshold given that H = 0, which is

Pr {Y > γ|H = 0} =

∫ 1

γ

fY |H(y|0)dy =

∫ 1

γ

(
A− A

2
y

)
dy

= A(1− γ)− A

2

1− γ2

2

=
4(1− γ)

3
− 1− γ2

3
.

(e) By analogy to the previous question,

Pr {Y < γ|H = 1} =

∫ γ

0

fY |H(y|1)dy =

∫ γ

0

(
B +

B

3
y

)
dy

= Bγ +
B

3

γ2

2

=
6γ

7
+
γ2

7
.

Pe(γ) = Pr {Y > γ|H = 0}PH(0) + Pr {Y < γ|H = 1}PH(1)

=
1

2

(
4(1− γ)

3
− 1− γ2

3
+

6γ

7
+
γ2

7

)
For γ = θ = 0.5 , we find Pe(θ) = 0.44 .

(f) To minimize Pe over γ , we observe that Pe(γ) is a convex function of γ (it is
a parabola with positive coefficient of γ2 ), hence we may take the derivative with
respect to γ and set it equal to zero, i.e.

d

dγ
Pe(γ) =

1

2

(
−4

3
+

2γ

3
+

6

7
+

2γ

7

)
Setting this equal to zero, we find γ = 0.5 . We observe that the value of γ which
minimizes Pe(γ) is equal to θ . This was expected, because the MAP decision rule
minimizes the error probability.

θ

Pe(θ)

1
2

γ

Pe(γ)
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Solution 3.

Remark (An explanation regarding the title of this problem). Independent
and identically distributed means that all Y1, . . . , Yk have the same probability mass
function and are independent of each other. First-order Markov means that Y1, . . . , Yk
depend on each other in a particular way: the probability mass function Yi depends on
the value of Yi−1 , but given the value of Yi−1 , it is independent of Y1, . . . , Yi−2 . Thus,
in this problem, we observe a binary sequence, and we want to know whether it has been
generated by an i.i.d. (independent and identically distributed) source or by a first-order
Markov source.

(a) We first know that

PY |H(y|0) =

(
1

2

)k
∀y ∈ {0, 1}k

and

PY |H(y|1) =
1

2

(
1

4

)l(
3

4

)k−l−1
,

where l is the number of times the observed sequence y ∈ {0, 1}k changes from zero
to one or one to zero, i.e. the number of transitions in the observed sequence.

Since the two hypotheses are equally likely, we find

PY |H(y|1)

PY |H(y|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
= 1.

Plugging in, we obtain

1/2 · (1/4)l · (3/4)k−l−1

(1/2)k

Ĥ=1

R
Ĥ=0

1.

(b) The sufficient statistic here is simply the number of transitions l ; this entirely specifies
the likelihood ratio.

Solution 4. Note that since noise samples are i.i.d., the conditional probability distri-
bution functions under H0 and H1 will respectively be

fY |H(y|0) =
n∏
k=1

fZ(yk)

fY |H(y|1) =
n∏
k=1

fZ(yk − 2A)

where fZ(z) is the pdf of Zk , k = 1, . . . , n . Furthermore, since the two hypotheses are
equi-probable, the MAP decision reduces to the ML decision rule.
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(a) Plugging the pdf of Z the MAP decision rule becomes

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1(yk−2A)2

Ĥ=1

R
Ĥ=0

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1 y

2
k .

Simplifying the common factor 1
(2πσ2)n/2

and taking the logarithm we have

− 1

2σ2

n∑
k=1

(yk − 2A)2
Ĥ=1

R
Ĥ=0

− 1

2σ2

n∑
k=1

y2k.

Further simplifications reduce the MAP decision rule to

n∑
k=1

yk
Ĥ=1

R
Ĥ=0

nA ⇐⇒
n∑
k=1

(yk − A)
Ĥ=1

R
Ĥ=0

0.

Hence φa(x) = x .

−A A

−A

A

x

φa(x)

(b) Similarly, the MAP decision rule is now

1

(2σ2)n/2
e−

√
2
σ

∑n
k=1 |yk−2A|

Ĥ=1

R
Ĥ=0

1

(2σ2)n/2
e−

√
2
σ

∑n
k=1 |yk|.

Simplifying common terms and taking the logarithm gives

−
√

2

σ

n∑
k=1

|yk − 2A|
Ĥ=1

R
Ĥ=0

−
√

2

σ

n∑
k=1

|yk|.

We can write the above in the desired form by noting that

|x| − |x− 2A| = 2φb(x− A)
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where

φb(x) ,


A if x ≥ A,

x if −A ≤ x ≤ A,

−A if x ≤ −A.
Thus the MAP decision rule will be

n∑
k=1

φb(yk − A)
Ĥ=1

R
Ĥ=0

0.

−A A

−A

A

x

φb(x)

Again note that only the value of A is needed for implementing the decision rule.

Here you see a plot of two noise distributions for σ = 1:
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Gaussian
Laplacian

The Laplacian distribution has larger ‘tails’; it puts more mass on very large positive and
very large (in absolute value) negative values of z . Because of this, for the decision in
part (b) the optimal choice is to first “clip” the input data yk, k = 1, . . . , n so that these
high values do not influence the decision.
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Solution 5. Repeating the same steps as in the previous exercise, we see that the MAP
decision rule is

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1(yk−A)2

Ĥ=1

R
Ĥ=0

1

(2πσ2)n/2
e−

1
2σ2

∑n
k=1(yk+A)

2

Simplifying the common positive factor of 1
(2πσ2)n/2

and taking the logarithm we have

− 1

2σ2

n∑
k=1

(yk − A)2
Ĥ=1

R
Ĥ=0

− 1

2σ2

n∑
k=1

(yk + A)2.

which can further be simplified to

n∑
k=1

yk
Ĥ=1

R
Ĥ=0

0.

Note that for implementing the decision rule the receiver does not need to know the exact
value of A whereas in the previous problem A was a required parameter.

Solution 6.

(a) We have a binary hypothesis testing problem, here the hypothesis H is the answer
you will select, and your decision will be based on the observation of ĤL and ĤR .
Let H take value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this
case, we can write the MAP decision rule as follows:

Pr
{
H = 1|ĤL = 1, ĤR = 2

} Ĥ=1

R
Ĥ=2

Pr
{
H = 2|ĤL = 1, ĤR = 2

}
.

From the problem setting we know the priors Pr {H = 1} and Pr {H = 2} ; we can

also determine the conditional probabilities Pr
{
ĤL = 1|H = 1

}
, Pr

{
ĤL = 1|H = 2

}
,

Pr
{
ĤR = 2|H = 1

}
and Pr

{
ĤR = 2|H = 2

}
(we have Pr

{
ĤL = 1|H = 1

}
= 0.9

and Pr
{
ĤL = 1|H = 2

}
= 0.1). Introducing these quantities and using the Bayes

rule we can formulate the MAP decision rule as

Pr
{
ĤL = 1, ĤR = 2|H = 1

}
Pr {H = 1}

Pr
{
ĤL = 1, ĤR = 2

} Ĥ=1

R
Ĥ=2

Pr
{
ĤL = 1, ĤR = 2|H = 2

}
Pr {H = 2}

Pr
{
ĤL = 1, ĤR = 2

} .

Now, assuming that the event {ĤL = 1} is independent of the event {ĤR = 2} and
simplifying the expression, we obtain

Pr
{
ĤL = 1|H = 1

}
Pr
{
ĤR = 2|H = 1

}
Pr {H = 1}

Ĥ=1

R
Ĥ=2

Pr
{
ĤL = 1|H = 2

}
Pr
{
ĤR = 2|H = 2

}
Pr {H = 2},

which is our final decision rule.
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(b) Evaluating the preceding decision rule, we have

0.9 · 0.3 · 0.25
Ĥ=1

R
Ĥ=2

0.1 · 0.7 · 0.75,

which gives

0.0675
Ĥ=1

R
Ĥ=2

0.0525.

This implies that the answer Ĥ is equal to 1 .
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