Problem 1.

(a) Since the X_1, \ldots, X_n are i.i.d., so are $p(X_1), p(X_2), \ldots, p(X_n)$, and hence we can apply the law of large numbers to obtain

$$
\lim -\frac{1}{n} \log p(X_1, \ldots, X_n) = \lim -\frac{1}{n} \sum \log p(X_i)
$$

$$
= -E[\log p(X)]
$$

$$
= - \sum p(x) \log p(x)
$$

$$
= H(X).
$$

(b) Since the X_1, \ldots, X_n are i.i.d., so are $q(X_1), q(X_2), \ldots, q(X_n)$, and hence we can apply the law of large numbers to obtain

$$
\lim -\frac{1}{n} \log q(X_1, \ldots, X_n) = \lim -\frac{1}{n} \sum \log q(X_i)
$$

$$
= -E[\log q(X)]
$$

$$
= - \sum p(x) \log q(x)
$$

$$
= \sum p(x) \log \frac{p(x)}{q(x)} - \sum p(x) \log p(x)
$$

$$
= D(p||q) + H(X).
$$

(c) Again, by the law of large numbers,

$$
\lim -\frac{1}{n} \log \frac{q(X_1, \ldots, X_n)}{p(X_1, \ldots, X_n)} = \lim -\frac{1}{n} \sum \log \frac{q(X_i)}{p(X_i)}
$$

$$
= -E\left[\frac{q(X)}{p(X)}\right]
$$

$$
= - \sum p(x) \log \frac{q(x)}{p(x)}
$$

$$
= \sum p(x) \log \frac{p(x)}{q(x)}
$$

$$
= D(p||q).
$$

Problem 2.

(a) It is easy to check that W is an i.i.d. process but Z is not. As W is i.i.d. it is also stationary. We want to show that Z is also stationary. To show this, it is sufficient
to prove that the distribution of the process does not change by shift in the time domain.

\[
p_Z(Z_m = a_m, Z_{m+1} = a_{m+1}, \ldots, Z_{m+r} = a_{m+r})
\]

\[
= \frac{1}{2} p_X(X_m = a_m, X_{m+1} = a_{m+1}, \ldots, X_{m+r} = a_{m+r})
\]

\[
+ \frac{1}{2} p_Y(Y_m = a_m, Y_{m+1} = a_{m+1}, \ldots, Y_{m+r} = a_{m+r})
\]

\[
= \frac{1}{2} p_X(X_{m+s} = a_m, X_{m+s+1} = a_{m+1}, \ldots, X_{m+s+r} = a_{m+r})
\]

\[
+ \frac{1}{2} p_Y(Y_{m+s} = a_m, Y_{m+s+1} = a_{m+1}, \ldots, Y_{m+s+r} = a_{m+r})
\]

\[
= p_Z(Z_{m+s} = a_m, Z_{m+s+1} = a_{m+1}, \ldots, Z_{m+s+r} = a_{m+r}),
\]

where we used the stationarity of the \(X \) and \(Y \) processes. This shows the invariance of the distribution with respect to the arbitrary shift \(s \) in time which implies stationarity.

(b) For the \(Z \) process we have

\[
H(Z) = \lim_{n \to \infty} \frac{1}{n} H(Z_1, \ldots, Z_n)
\]

\[
= \lim_{n \to \infty} H(Z_1, \ldots, Z_n | \Theta)
\]

\[
= \frac{1}{2} H(X_0) + \frac{1}{2} H(Y_0) = 1.
\]

\(W \) process is an i.i.d process with the distribution \(p_W(a) = \frac{1}{2} p_X(a) + \frac{1}{2} p_Y(a) \). From concavity of the entropy, it is easy to see that \(H(W) = H(W_0) \geq \frac{1}{2} H(X_0) + \frac{1}{2} H(Y_0) = 1 \). Hence, the entropy rate of \(W \) is greater than the entropy rate of \(Z \) and the equality holds if and only if \(X_0 \) and \(Y_0 \) have the same probability distribution function.

PROBLEM 3. Upon noticing \(0.9^6 > 0.1 \), we obtain \(\{1, 01, 001, 0001, 00001, 000001, 0000000\} \) as the dictionary entries.

PROBLEM 4. Since the words of a valid and prefix condition dictionary reside in the leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider climbing up the tree starting from the root, choosing one of the \(D \) branches that climb up from a node with equal probability. The probability of reaching a leaf at depth \(l_i \) is then \(D^{-l_i} \). Since the climbing process will certainly end in a leaf, we have

\[
1 = \Pr(\text{ending in a leaf}) = \sum_i D^{-l_i}.
\]

If the dictionary is valid but not prefix-free, by removing all words that already have a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this reduced dictionary would satisfy the Kraft inequality with equality, the extra words would cause the inequality to be violated.

PROBLEM 5.

(a) Let \(I \) be the set of intermediate nodes (including the root), let \(N \) be the set of nodes except the root and let \(L \) be the set of all leaves. For each \(n \in L \) define \(A(n) = \{m \in N : m \text{ is an ancestor of } n\} \) and for each \(m \in N \) define \(D(m) = \{n \in \)
Let \(n \) is a descendant of \(m \}. We assume each leaf is an ancestor and a descendant of itself. Then

\[
E[\text{distance to a leaf}] = \sum_{n \in L} P(n) \sum_{m \in A(n)} d(m)
\]

\[
= \sum_{m \in N} d(m) \sum_{n \in D(m)} P(n) = \sum_{m \in N} P(m)d(m).
\]

(b) Let \(d(n) = -\log Q(n) \). We see that \(-\log P(n_j) \) is the distance associated with a leaf. From part (a),

\[
H(\text{leaves}) = E[\text{distance to a leaf}]
\]

\[
= \sum_{n \in N} P(n)d(n)
\]

\[
= -\sum_{n \in N} P(n) \log Q(n)
\]

\[
= -\sum_{n \in N} P(\text{parent of } n)Q(n) \log Q(n)
\]

\[
= -\sum_{m \in I} P(m) \sum_{n: n \text{ is a child of } m} Q(n) \log Q(n)
\]

\[
= \sum_{m \in I} P(m)H_m'.
\]

(c) Since all the intermediate nodes of a valid and prefix condition dictionary have the same number of children with the same set of \(Q_n \), each \(H_n = H \). Thus \(H(\text{leaves}) = H \sum_{n \in I} P(n) = HE[L] \).

Problem 6.

(a) Assume that \(p \) and \(q \) are two distributions on the same alphabet \(\mathcal{X} \). We have:

\[
-D(p||q) = -\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)} \leq \sum_{x \in \mathcal{X}} \ln 2 \left(\frac{q(x)}{p(x)} - 1 \right)
\]

\[
= \frac{1}{\ln 2} \sum_{x \in \mathcal{X}} (p(x) - q(x)) = \frac{1}{\ln 2} (1 - 1) = 0.
\]

Therefore, \(D(p||q) \geq 0 \). Notice that \(D(p||q) = 0 \) if and only if \(\ln \frac{p(x)}{q(x)} = \frac{p(x)}{q(x)} - 1 \) for every \(x \in \mathcal{X} \) satisfying \(p(x) > 0 \) (see inequality (*)). But \(\ln z = z - 1 \) if and only if \(z = 1 \). Therefore, \(D(p||q) = 0 \) if and only if \(p(x) = q(x) \) whenever \(p(x) > 0 \). On the other hand, it is easy to see that the condition “\(p(x) = q(x) \) whenever \(p(x) > 0 \)” is equivalent to \(p = q \). We conclude that \(D(p||q) = 0 \) if and only if \(p = q \).

(b) Let \(\alpha = p(1) \), we have:

\[
D(p||q) = \alpha \log \frac{\alpha}{2} + (1 - \alpha) \log \frac{1 - \alpha}{2}
\]

\[
= \alpha \log \alpha + \alpha \log 2 + (1 - \alpha) \log (1 - \alpha) + (1 - \alpha) \log 2
\]

\[
= 1 - h_2(\alpha),
\]
where \(h_2(\alpha) = \alpha \log \frac{1}{\alpha} + (1 - \alpha) \log \frac{1}{1 - \alpha} \). On the other hand, we have:

\[
D(q||p) = \frac{1}{2} \log \frac{\frac{1}{\alpha}}{\alpha} + \frac{1}{2} \log \frac{\frac{1}{1 - \alpha}}{1 - \alpha} \\
= \frac{1}{2} \log \frac{1}{\alpha} + \frac{1}{2} \log \frac{1}{1 - \alpha} + \frac{1}{2} \log \frac{1}{\alpha} + \frac{1}{2} \log \frac{1}{1 - \alpha} \\
= \frac{1}{2} \log \frac{1}{\alpha(1 - \alpha)} - 1.
\]

By taking \(\alpha = \frac{1}{4} \), we obtain \(D(p||q) \neq D(q||p) \). Therefore, \(D(p||q) \) is not necessarily equal to \(D(q||p) \) in general.

(d) We have:

\[
I(U; V) = H(U) - H(U|V) = E \left[\log \frac{1}{P_U(U)} \right] - E \left[\log \frac{1}{P_{U|V}(U|V)} \right] \\
= E \left[\log \frac{P_{U|V}(U|V)}{P_U(U)} \right] = E \left[\log \frac{P_{U,V}(U,V)}{P_U(U) \cdot P_V(V)} \right] \\
= \sum_{u \in U, v \in V} P_{U,V}(u,v) \log \frac{P_{U,V}(u,v)}{P_V(v) \cdot P_V(v)} = D(P_{U,V}||P_U \cdot P_V).
\]