Problem 1.

(a) We have $H(f(U)) \leq H(f(U), U) = H(U) + H(f(U)|U) = H(U) + 0 = H(U)$.

(b) Notice that $U \rightarrow V \rightarrow f(V)$ is a Markov chain. The data processing inequality implies that $H(U) - H(U|f(V)) = I(U; f(V)) \leq I(U; V) = H(U) - H(U|V)$. Therefore, $H(U|V) \leq H(U|f(V))$.

Problem 2.

(a) We have:

$$H(U|U) \leq H(U,W|U) = H(W|\hat{U}) + H(U|\hat{U}, W) \leq H(W) + H(U|\hat{U}, W)$$

$$= H(W) + H(U|\hat{U}, W = 0) \cdot \mathbb{P}[W = 0] + H(U|\hat{U}, W = 1) \cdot \mathbb{P}[W = 1]$$

$$(*) \leq h_2(p_e) + 0 \cdot (1 - p_e) + \log(|U| - 1) \cdot p_e = h_2(p_e) + p_e \log(|U| - 1),$$

where $(*)$ follows from the following facts:

- $H(W) = h_2(p_e)$.
- $H(U|\hat{U}, W = 0) = 0$: conditioned on $W = 0$, we know that $U = \hat{U}$ and so the conditional entropy $H(U|\hat{U}, W = 0)$ is equal to 0.
- $H(U|\hat{U}, W = 1) \leq \log(|U| - 1)$: conditioned on $W = 1$, we know that $U \neq \hat{U}$ and so there are at most $|U| - 1$ values for U. Therefore, the conditional entropy $H(U|\hat{U}, W = 1)$ is at most $\log(|U| - 1)$.

(b) Let $\hat{U} = f(V)$. We have $H(U|\hat{U}) \leq h_2(p_e) + p_e \log(|U| - 1)$ from (a). On the other hand, from Problem 1(b) we have $H(U|V) \leq H(U|f(V)) = H(U|\hat{U})$. We conclude that $H(U|V) \leq h_2(p_e) + p_e \log(|U| - 1)$.

Problem 3.

(a) W is independent of (U, Z). Therefore, W is independent of $(U, U \oplus Z) = (U, V)$, which implies that $\mathbb{P}_{W|U,V}(w|u,v) = \mathbb{P}_W(w) = \mathbb{P}_{W|V}(w|v)$ for every $u, v, w \in \{0, 1\}$. Thus, $U \rightarrow V \rightarrow W$ is a Markov chain and so we have $I(U; V) \geq I(U; W)$ from the data processing inequality.

In order to show that $U \rightarrow V' \rightarrow W'$ is a Markov chain, we will show first that W' is independent of (U, Z'). For every $u, z', w' \in \{0, 1\}$ we have:

$$\mathbb{P}_{U,Z',W'}(u, z', w') = \mathbb{P}[U = u, Z' = z', U \oplus W = w'] = \mathbb{P}[U = u, Z' = z', W = u \oplus w']$$

$$\overset{(*)}{=} \mathbb{P}_{U,Z'}(u, z') \cdot \frac{1}{2} \overset{(**)}{=} \mathbb{P}_{U,Z'}(u, z') \cdot \mathbb{P}_{W'}(w'),$$

where $(*)$ follows from the fact that W is uniform and independent of (U, Z'). $(**)$ follows from the fact that $W' = U \oplus W$ is uniform (it is easy to check by computing
the joint probability distribution that the XOR of two independent uniform binary random variables is uniform).

Since we have shown that W' is independent of (U, Z'), the proof that $U \leftrightarrow V' \leftrightarrow W'$ is a Markov chain is similar to that of $U \leftrightarrow V \leftrightarrow W$, and the inequality $I(U; V') \geq I(U; W')$ follows from the data processing inequality.

(b) By computing the probability distribution of V, we can see that it is uniform. Similarly, V' is also uniform. We have:

$$- I(U; V) = H(V) - H(V|U) = H(V) - H(U \oplus Z|U) = H(V) - H(Z|U) = H(V) - H(Z) = 1 - h_2(p).$$

$$- I(U; W) = 0 \text{ since } U \text{ and } W \text{ are independent.}$$

$$- I(U; V') = H(V') - H(V'|U) = H(V') - H(U \oplus Z'|U) = H(V') - H(Z'|U) = H(V') - H(Z') = 1 - h_2(p), \text{ where } h_2(p) = p \log \frac{1}{p} + (1 - p) \log \frac{1}{1-p}.$$

$$- I(U; W') = 0 \text{ since } U \text{ and } W' \text{ are independent.}$$

Since $0 < p < \frac{1}{2}$, $h_2(p) < 1$ and $1 - h_2(p) > 0$. Therefore, $I(U; V) > I(U; W)$ and $I(U; V') > I(U; W')$.

(c) By computing the joint probability distribution of (V, Z, Z'), we can see that V is independent of (Z, Z'), which implies that V is independent of $Z \oplus Z'$. We have:

$$I(U; VV') = H(V, V') - H(V, V'|U) = H(V, V' \oplus V) - H(U \oplus Z, U \oplus Z'|U)$$

$$= H(V, Z \oplus Z') - H(Z, Z') \overset{(\ast)}{=} H(V) + H(Z \oplus Z') - H(Z) - H(Z')$$

$$\overset{(\ast \ast)}{=} 1 + h_2(2p(1-p)) - 2h_2(p).$$

(\ast) follows from the fact that V is independent of $Z \oplus Z'$ and that Z is independent of Z'. $(\ast \ast)$ follows from the fact that $H(Z \oplus Z') = h_2(2p(1-p))$ (since $\mathbb{P}[Z \oplus Z' = 1] = 2p(1-p)$) and $H(Z) = H(Z') = h_2(p)$.

On the other hand, we have:

$$I(U; WW') = I(U; W, W \oplus W') = I(U; W, U)$$

$$= I(U; U) + I(U; W|U) = H(U) + 0 = 1.$$

In order to see that $I(U; VV') < I(U; WW')$, notice that $H(Z) + H(Z') = H(Z, Z') = H(Z, Z \oplus Z') = H(Z \oplus Z') + H(Z | Z \oplus Z')$. Therefore, $H(Z \oplus Z') \leq H(Z) + H(Z')$ with equality if and only if $H(Z|Z \oplus Z') = 0$. Now notice that for every $a, b \in \{0, 1\}$, $\mathbb{P}[Z = a, Z \oplus Z' = b] = \mathbb{P}[Z = a, Z' = a \oplus b] = \mathbb{P}[Z = a] \mathbb{P}[Z' = a \oplus b] > 0$. This implies that for every $a, b \in \{0, 1\}$, $\mathbb{P}[Z = a | Z \oplus Z' = b] > 0$. Therefore, conditioned on $Z \oplus Z'$, Z is not deterministic and so $H(Z|Z \oplus Z') > 0$. We conclude that $H(Z \oplus Z') < H(Z) + H(Z')$ which implies that $1 + H(Z \oplus Z') - H(Z) - H(Z') < 1$ and $I(U; VV') < I(U; WW')$.

Problem 4.

(a) By using the inequality $\ln x \leq x - 1$ for $x > 0$, we get:

$$p \log \frac{p + q}{2p} + q \log \frac{p + q}{2q} \leq \frac{p}{\ln 2} \left(\frac{p + q}{2p} - 1 \right) + \frac{q}{\ln 2} \left(\frac{p + q}{2q} - 1 \right) = 0.$$
Therefore, \(p \log \frac{1}{p} + p \log \frac{p+q}{2} + q \log \frac{1}{q} + q \log \frac{p+q}{2} \leq 0 \), from which we conclude that \(\frac{1}{2} \left(p \log \frac{1}{p} + q \log \frac{1}{q} \right) \leq \frac{p+q}{2} \log \frac{2}{p+q} \).

(b) We have:

\[
H(r) = \sum_{u \in \mathcal{U}} r(u) \log \frac{1}{r(u)} = \sum_{u \in \mathcal{U}} \frac{p(u) + q(u)}{2} \log \frac{2}{p(u) + q(u)} \geq \frac{1}{2} \left(\sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)} + q(u) \log \frac{1}{q(u)} \right)
= \frac{1}{2} \left(\sum_{u \in \mathcal{U}} p(u) \log \frac{1}{p(u)} \right) + \frac{1}{2} \left(\sum_{u \in \mathcal{U}} q(u) \log \frac{1}{q(u)} \right)
= \frac{1}{2} H(p) + \frac{1}{2} H(q),
\]

where \((*)\) follows from (a).

Problem 5.

(a) We have:

\[
S = \sum_{u \in \mathcal{U}} \max \{ P_1(u), P_2(u) \} \leq \sum_{u \in \mathcal{U}} (P_1(u) + P_2(u)) = \sum_{u \in \mathcal{U}} P_1(u) + \sum_{u \in \mathcal{U}} P_2(u) = 1 + 1 = 2.
\]

It is easy to see from \((*)\) that \(S = 2 \) if and only if \(\max \{ P_1(u), P_2(u) \} = P_1(u) + P_2(u) \) for all \(u \in \mathcal{U} \), which is equivalent to say that there is no \(u \in \mathcal{U} \) for which we have \(P_1(u) > 0 \) and \(P_2(u) > 0 \). In other words, \(S = 2 \) if and only if

\[
\{ u \in \mathcal{U} : P_1(u) > 0 \} \cap \{ u \in \mathcal{U} : P_2(u) > 0 \} = \emptyset.
\]

(b) Let \(l_i = \lceil \log_2 \frac{S}{\max \{ P_1(a_i), P_2(a_i) \}} \rceil \), and let us compute the Kraft sum:

\[
\sum_{i=1}^{M} 2^{-l_i} \leq \sum_{i=1}^{M} 2^{-\log_2 \frac{S}{\max \{ P_1(a_i), P_2(a_i) \}}} = \sum_{i=1}^{M} \frac{\max \{ P_1(a_i), P_2(a_i) \}}{S} = 1.
\]

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to \(a_i \) is \(l_i \).

(c) Since the code constructed in (b) is prefix free, it must be the case that \(\bar{l} \geq H(U) \). In order to prove the upper bounds, let \(P^* \) be the true distribution (which is either \(P_1 \) or \(P_2 \)). It is easy to see that \(P^*(a_i) \leq \max \{ P_1(a_i), P_2(a_i) \} \) for all \(1 \leq i \leq M \). We
have:

$$I = \sum_{i=1}^{M} P^*(a_i) l_i = \sum_{i=1}^{M} P^*(a_i) \left[\log_2 \frac{S}{\max\{P_1(a_i), P_2(a_i)\}} \right]$$

$$< \sum_{i=1}^{M} P^*(a_i) \left(1 + \log_2 \frac{S}{\max\{P_1(a_i), P_2(a_i)\}} \right)$$

$$= \sum_{i=1}^{M} P^*(a_i) \left(1 + \log S + \log_2 \frac{1}{\max\{P_1(a_i), P_2(a_i)\}} \right)$$

$$= 1 + \log S + \sum_{i=1}^{M} P^*(a_i) \log_2 \frac{1}{\max\{P_1(a_i), P_2(a_i)\}}$$

$$\leq 1 + \log S + \sum_{i=1}^{M} P^*(a_i) \log_2 \frac{1}{P^*(a_i)} = H(U) + \log S + 1 \leq H(U) + 2,$$

where the inequality (*) uses the fact that $P^*(a_i) \leq \max\{P_1(a_i), P_2(a_i)\}$ for all $1 \leq i \leq M$.

(d) Now let $l_i = \lfloor \log_2 \frac{S}{\max\{P_1(a_i), \ldots, P_k(a_i)\}} \rfloor$, and let us compute the Kraft sum:

$$\sum_{i=1}^{M} 2^{-l_i} \leq \sum_{i=1}^{M} 2^{-\log_2 \frac{S}{\max\{P_1(a_i), \ldots, P_k(a_i)\}}} = \sum_{i=1}^{M} \max\{P_1(a_i), \ldots, P_k(a_i)\} \frac{S}{S} = 1.$$

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to a_i is l_i. Since the code is prefix free, it must be the case that $I \geq H(U)$. In order to prove the upper bounds, let P^* be the true distribution (which is either P_1 or . . . or P_k). It is easy to see that $P^*(a_i) \leq \max\{P_1(a_i), \ldots, P_k(a_i)\}$ for all $1 \leq i \leq M$. We have:

$$I = \sum_{i=1}^{M} P^*(a_i) l_i = \sum_{i=1}^{M} P^*(a_i) \left[\log_2 \frac{S}{\max\{P_1(a_i), \ldots, P_k(a_i)\}} \right]$$

$$< \sum_{i=1}^{M} P^*(a_i) \left(1 + \log_2 \frac{S}{\max\{P_1(a_i), \ldots, P_k(a_i)\}} \right)$$

$$= \sum_{i=1}^{M} P^*(a_i) \left(1 + \log_2 S + \log_2 \frac{1}{\max\{P_1(a_i), \ldots, P_k(a_i)\}} \right)$$

$$= 1 + \log_2 S + \sum_{i=1}^{M} P^*(a_i) \log_2 \frac{1}{\max\{P_1(a_i), \ldots, P_k(a_i)\}}$$

$$\leq 1 + \log_2 S + \sum_{i=1}^{M} P^*(a_i) \log_2 \frac{1}{P^*(a_i)} = H(U) + \log_2 S + 1,$$

where the inequality (*) uses the fact that $P^*(a_i) \leq \max\{P_1(a_i), \ldots, P_k(a_i)\}$ for all $1 \leq i \leq M$. Now notice that $\max\{P_1(a_i), \ldots, P_k(a_i)\} \leq \sum_{j=1}^{k} P_j(a_i)$ for all $1 \leq i \leq M$. Therefore, we have

$$S = \sum_{i=1}^{M} \max\{P_1(a_i), \ldots, P_k(a_i)\} \leq \sum_{i=1}^{M} \sum_{j=1}^{k} P_j(a_i) = \sum_{j=1}^{k} \sum_{i=1}^{M} P_j(a_i) = \sum_{j=1}^{k} 1 = k.$$