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Problem 1.

(a) H(X) = 2
3

log 3
2

+ 1
3

log 3 = 0.918 bits = H(Y ).

(b) H(X|Y ) = 1
3
H(X|Y = 0) + 2

3
H(X|Y = 1) = 0.667 bits = H(Y |X).

(c) H(X, Y ) = 3× 1
3

log 3 = 1.585 bits.

(d) H(Y )−H(Y |X) = 0.251 bits.

(d) I(X;Y ) = H(Y )−H(Y |X) = 0.251 bits.

(f)
H(X) H(Y )

H(X|Y ) H(Y |X)I(X;Y )

H(X,Y )

Problem 2.

H(X) = −
M∑
k=1

PX(ak) logPX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α logα

= (1− α)H(Y )− (1− α) log(1− α)− α logα

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.

Problem 3.

(a) Using the chain rule for mutual information,

I(X, Y ;Z) = I(X;Z) + I(Y ;Z | X) ≥ I(X;Z),

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) +H(Y | X,Z) ≥ H(X | Z),

with equality iff H(Y | X,Z) = 0, that is, when Y is a function of X and Z.



(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ;Z | X)

≤ H(Z | X) = H(X,Z)−H(X) ,

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,

I(X;Z | Y ) + I(Z;Y ) = I(X, Y ;Z) = I(Z;Y | X) + I(X;Z) ,

and therefore
I(X;Z | Y ) = I(Z;Y | X)− I(Z;Y ) + I(X;Z) .

We see that this inequality is actually an equality in all cases.

Problem 4. Let X i denote X1, . . . , Xi.

(a) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n
i=1H(Xi|X i−1)

n
(1)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(2)

=
H(Xn|Xn−1) +H(X1, X2, . . . , Xn−1)

n
. (3)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n− 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n− 1
(4)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (5)

Combining (3) and (5) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[
H(X1, X2, . . . , Xn−1)

n− 1
+H(X1, X2, . . . , Xn−1)

]
(6)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (7)

(b) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n
i=1H(Xn|Xn−1)

n
(8)

≤
∑n

i=1H(Xi|X i−1)

n
(9)

=
H(X1, X2, . . . , Xn)

n
. (10)
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Problem 5. By the chain rule for entropy,

H(X0|X−1, . . . , X−n) = H(X0, X−1, . . . , X−n)−H(X−1, . . . , X−n) (11)

= H(X0, X1, . . . , Xn)−H(X1, . . . , Xn) (12)

= H(X0|X1, . . . , Xn), (13)

where (12) follows from stationarity.

Problem 6. For a Markov chain, given X0 and Xn are independent given Xn−1. Thus

H(X0|XnXn−1) = H(X0|Xn−1)

But, since conditioning reduces entropy,

H(X0|XnXn−1) ≤ H(X0|Xn).

Putting the above together we see that H(X0|Xn−1) ≤ H(X0|Xn).
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