Problem 1. Consider two discrete memoryless channels. The first channel has input alphabet \(X \), output alphabet \(Y \); the second channel has input alphabet \(Y \) and output alphabet \(Z \). The first channel is described by the conditional probabilities \(P_1(y|x) \) and the second channel by \(P_2(z|y) \). Let the capacities of these channels be \(C_1 \) and \(C_2 \). Consider a third memoryless channel described by probabilities

\[
P_3(z|x) = \sum_{y \in Y} P_2(z|y) P_1(y|x), \quad x \in X, \ z \in Z.
\]

(a) Show that the capacity \(C_3 \) of this third channel satisfies

\[
C_3 \leq \min\{C_1, C_2\}.
\]

(b) A helpful statistician preprocesses the output of the first channel by forming \(\tilde{Y} = g(Y) \). He claims that this will strictly improve the capacity.

(b1) Show that he is wrong.

(b2) Under what conditions does he not strictly decrease the capacity?

Problem 2. Let \(X \) be the channel input. Assume that the channel output \(Y \) is passed through a date processor in such a way that no information is lost. That is,

\[
I(X;Y) = I(X;Z)
\]

where \(Z \) is the processor output. Find an example where \(H(Y) > H(Z) \) and find an example where \(H(Y) < H(Z) \). Hint: The data processor does not have to be deterministic.

Problem 3. Find the channel capacity of the following discrete memoryless channel:

\[
\begin{array}{ccc}
 & & Z \\
 & X & \rightarrow \oplus \leftarrow Y \\
\end{array}
\]

where \(\Pr\{Z = 0\} = \Pr\{Z = a\} = 1/2 \) and \(a \neq 0 \). The alphabet for \(x \) is \(X = \{0, 1\} \). Assume that \(Z \) is independent of \(X \).

Observe that the channel capacity depends on the value of \(a \).

Problem 4. Consider the discrete memoryless channel \(Y = X + Z \pmod{11} \), where

\[
\Pr(Z = 1) = \Pr(Z = 2) = \Pr(Z = 3) = 1/3
\]

and \(X \in \{0, 1, \ldots, 10\} \). Assume that \(Z \) is independent of \(X \).
(a) Find the capacity.

(b) What is the maximizing $p^*(x)$?

Problem 5. We are given a memoryless stationary binary symmetric channel BSC(ε). I.e., if $X_1, \ldots, X_n \in \{0, 1\}$ are the input of this channel and $Y_1, \ldots, Y_n \in \{0, 1\}$ are the output, we have:

$$P(Y_i|X_i, X^{i-1}, Y^{i-1}) = P(Y_i|X_i) = \begin{cases} 1 - \epsilon & \text{if } Y_i = X_i, \\ \epsilon & \text{otherwise.} \end{cases}$$

Let W be a random variable that is uniform in $\{0, 1\}$ and consider a communication system with feedback which transmits the value of W to the receiver as follows:

- At time $t = 1$, the transmitter sends $X_1 = W$ through the channel.
- At time $t = i + 1 \leq n$, the transmitter gets the value of Y_i from the feedback and sends $X_{i+1} = Y_i$ through the channel.

(a) Give the capacity C of the channel in terms of ϵ, and show that $C = 0$ when $\epsilon = \frac{1}{2}$.

(b) Show that if $\epsilon = \frac{1}{2}$, $I(X^n; Y^n) = n - 1$. This means that $I(X^n; Y^n) \leq nC$ does not hold for this system.

(c) Show that although $I(X^n; Y^n) > nC$ when $\epsilon = \frac{1}{2}$, we still have $I(W; Y^n) \leq nC$.

Note that since W is the useful information that is being transmitted, it is the value of $I(W; Y^n)$ that we are interested in when we want to compute the amount of information that is shared with the receiver.

Problem 6. Consider a random source S of information, and let W be a random variable which represents the first L symbols U_1, \ldots, U_L of this source, i.e., $W = U_1^L$. We want to transmit the value of W using a memoryless stationary channel as follows:

- At time $t = 1$, we send $X_1 = f_1(W)$ through the channel.
- At time $t = i + 1 \leq n$, we send $X_{i+1} = f_i(W, Y^i)$ through the channel. Y_1, \ldots, Y_i are the output of the channel at times $t = 1, \ldots, i$ respectively.

f_1, \ldots, f_n are n mappings that constitute the encoder. Clearly, this is a communication system with feedback as we are using the value of Y^i in the computation of X_{i+1}.

In the previous problem, we gave an example which satisfies $I(X^n; Y^n) > nC$ and $I(W; Y^n) \leq nC$. Show that the inequality $I(W; Y^n) \leq nC$ always holds by justifying each of the following equalities and inequalities:

1. $I(W; Y^n) \leq \sum_{i=1}^{n} I(W, Y^i; Y^i)$
2. $\sum_{i=1}^{n} I(W, Y^i; Y^i) \leq \sum_{i=1}^{n} I(W, X_i, X^{i-1}, Y^{i-1}, Y_i)$
3. $\sum_{i=1}^{n} I(X_i, X^{i-1}, Y^{i-1}, Y_i) \leq \sum_{i=1}^{n} I(X_i; Y_i)$
4. $I(W; Y^n) \leq nC$.

Since $I(W; Y^n)$ represents the amount of information that is shared with the receiver, the inequality $I(W; Y^n) \leq nC$ shows that feedback does not increase the capacity.