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PROBLEM 1.

(a) Di+1 = PI‘(UH_l = 0) = PI‘(UH_l = 0, Uz = 0) + PI'(UH_l = O, Ul = 1)

= (1= a;)pi + bi(1 — pi).

(b) By stationarity p; does not change with . Also by stationarity P(U;,; = 1,U; =0) =
a;p; does not change with ¢, thus a; does not change with ¢. Similar reasoning holds

for b;.

(c) For stationary processes the entropy rate is given by lim; H(U;|U1), and we also
know that the sequence in the limit is monotone non-increasing. In particular,
H(Uy|Uy) is an upper bound on the entropy rate. Furthermore H(Us|U; = 0) = hy(a),
H(U2|U1 = 1) = hg(b), and thus H(U2|U1) = phg(a) + (]_ —p)hg(b)

(d) For a Markov process, the entropy rate equals H(Us|U;), so the upper bound in (c)
is the exact value. Thus, among all processes with the same transition probabilities
the Markov process has the largest entropy rate.

(e) For such a process we see that b = 1, and from part (a) we find that p = 1/(1+a). By
(c) and (d) we find that the maximal entropy rate for a given value of the parameter
a is hy(a)/(1 + a). It only remains to maximize this quantity to over the choice of a
to find the maximal entropy rate. (Using standard tools of calculus it is easy to show
that the maximum is achieved when a = (3 — /5)/2.)

PROBLEM 2.
(a) The difference between the left and right sides is
P (y) P*(y)
Q" (x)W (y|z) log =) _P(y)log = D(P*||P) =0
2 P ~ 2"y

(b) The left hand side of (a), is upper bounded by maxz W (y|x) log MI/D(EJ")%) whereas
z Y
y

the right hand side of (a) equals C.

(¢) The Kuhn-Tucker conditions for a capacity achieving input distribution Q* were
derived in class to be

W(y|z)
W(yl|z)lo < C, forallzx
> W(ylz)log Py =

Wla) _

with equality whenever Q*(z) > 0. Consequently, mgxz W (y|z) log P(y)

(d) With f(Q) = max, Y, W(y|z)lo W((W from (b) we see that f(Q) > C and that
f(Q*) = C. Thus C = ming f(Q).



PROBLEM 3.

(a)

Note that Y = 1 if and only if X =1 and the channel does not flip. Thus, Pr(Y =
1) = (1 — p)/2. An incompatibility between X and Y occurs if only if X = 0 and
Y = 1. Since these two events are independent a(p) =1 — (1 —p)/4 = (3 + p)/4.

Furthermore, since X and Y are indpendent, conditining on Y does not change the
distribution of X; Thus S(p) = 1/2.

Since (X;,Y;) are i.i.d., and since for each i (X;,Y;) is compatible with probability
a(p), we see that X™ and Y™ will be compatible with probability «(p)".

Without loss of generality assume that Y; = =Y, = 1 and the remaining Y;’s are
0. Since when Y; = 0 any value of X, is compatlble we see that X™ is compatible
with Y™ if and only if X; = — X, = 1. By the independence of X" from Y, this
event has probability 8(p)* = 2 k.

Since for the correct message m, X™(m) is always compatible with Y™, the receiver
will make an error if and only if one of the M —1 incorrect messages is compatible with
Y™. By (b) for each of these incorrect messages the probability of being compatible
with Y is a(p)™, and by the union bound the error probability is upper bounded by

(M . 1)0&(]?)” < 2nRa<p)n — 2n(R+loga(p))
which approaches zero as long as R < Ry = — log a(p).

Let us compute the error probability conditional on the number of 1’s, K, in Y.
By (c), conditional on K = k, each of incorrect codewords has a probability 3(p)*
of being compatible with Y, so, using the union bound, the probability of error,
conditional on £ 1’s in Y™ is upper bounded by

(M —1)B(p)" < 2"B(p)*

Also note that Y; are i.i.d., with Pr(Y; = 1) = (1 — p)/2. Consequently, by the law of
large numbers for any ¢ < (1 — p)/2, we have Pr(K < ng) — 0. We can now write

Pr(Error) = Pr(Error| K < ng) Pr(K < ng) + Pr(Error| K > nq) Pr(K > ngq)
< Pr(K < nq) + Pr(Error| K > ngq).

The first term decays to zero with increasing n as long as ¢ < (1 — p)/2, and by
the computation before, the second term, Pr(Error|K > ng) is upper bounded by
2n(fi+alog 5(p)) which decays to zero as long as R < —qlog 3(p). Consequently whenever
R < R = ——log B(p) = %bg 2, the error probability will approach zero with
increasing n.



PROBLEM 4.

(a)

If Z; = M there is nothing to prove. Otherwise there is a codework x’ for which
x; = 1. Note now that for any codeword x, by the linearity of C, x’ + x is also a
codeword, and thus the map x — x + x’ is a bijection from C to C. Furthermore
because x; = 1, this bijection flips the i’th component of x. Consequently there are
as many codewords with x; = 0 as with x; = 1, and so Z; = M/2.

Note that I(X™Y"™) = H(Y") — H(Y"|X"™). By the channel being memoryless
H(Y™X™) =), H(Y;|X;). On the other hand, H(Y™) < >, H(Y;) with equality if
and only if {Y;} are independent. Thus,

I(X™Y™) <Y HY) — HY|X) =) I(X;;Y).

With X" chosen uniformly from C, by (a) we see that for each ¢ either Pr(X; =0) =1
(in which case I(X;;Y;) = 0) or Pr(X; = 0) = 1/2, (in which case I(X;;Y;) = I[(W).

By (b) and (c) we see that I(X™; Y"™) < nI(W). Suppose now reliable communication
were possible at a rate R using linear codes. Thus for any € > 0, there is a linear code
with error probability at most € > 0, and rate at least R. By Fano’s inequality, the
mutual information between the input message and the decoded message is at least
nR(1 — €) — ha(€). By the data processing theorem

nR(1 —¢€) — ho(e) < I(X™Y") <nl(W),

and thus R < I(W)+ e+ 2hy(e). Since this is true for every € > 0 and since ha(€) — 0
as € — 0 we see that R < I(W).



