Chapter 6 / 5: Counting

general observation & recommendations:
• messing up while counting is hard to avoid (despite attempts to capture counting in “rules”)
• try smaller examples that keep essence
• check that answer makes sense (negative counts are usually incorrect)
• verify consistency between different ways to count the same
Prelude: counting using Chinese remaindering

to find the number C of people

- let p and q be coprime integers with $pq > C$
- form groups of p persons: find $C_p = C \mod p$
- form groups of q persons: find $C_q = C \mod q$
- thus $C = C_p + kp$ for unknown integer k
- to determine k, note that $C_p + kp = C_q \mod q$
 thus $k = (C_q - C_p)/p \mod q$
- to calculate k we need s such that $sp = 1 \mod q$
 and thus $s = 1/p \mod q$ (and $k = s(C_q - C_p) \mod q$)
- finding s: with “$0*p = q \mod q$” and
 “$1*p = p \mod q$”, perform the Euclidean algorithm on right hand sides until it equals 1
Warm-up: two simple counting rules

A and B are two different tasks, with n ways to do A and m ways to do B

two scenarios:

1. task A must be done followed by task B

 product rule:

 n times m ways to do A and then B

2. task A or task B must be done (not both)

 sum rule:

 n plus m ways to do A or B

question:

how many ways to carry out each scenario?
Trivial example: pick two bits, a 1st & a 2nd how many ways to pick the two bits?

- **task \(A \):** pick 1st bit; 2 ways to do so
- **task \(B \):** pick 2nd bit; 2 ways to do so

\[\Rightarrow \text{do task } A \text{ followed by task } B \]

thus \(2 \times 2 = 4 \) ways to do \(A \) followed by \(B \)

other way to define the tasks:

- **task \(A \):** 1st bit is 0; 2 ways to pick 2nd bit
- **task \(B \):** 1st bit is 1; 2 ways to pick 2nd bit

\[\Rightarrow \text{do task } A \text{ or task } B \]

thus \(2 + 2 = 4 \) ways to do \(A \) or \(B \)

(works because \(A \) and \(B \) are disjoint)
Common pitfall of sum rule

In how many ways can one pick seven bits such that last bit is 1 or the first 3 bits are 0?

A: pick last bit as 1; product rule: 64 ways
B: pick first 3 bits as 0; product rule: 16 ways

⇒ (sum rule?) 64 + 16 = 80 ways to do A or B

Wrong because A and B are not disjoint:
- 8 of the ways under A have first 3 bits 0, or
- half the ways (i.e., 8) under B have last bit 1

⇒ either way, subtract 8 from 80: result 72

(remember principle of inclusion and exclusion: \(|A \cup B| = |A| + |B| - |A \cap B|\))

\(B':\) first 3 bits and last bit all zero, 8 total, is disjoint with A: \(|A| + |B'| = 72\)
The first three of six simple examples
consider strings of length 6 over \{a,b,c,\ldots,y,z\}

1. how many?
 26 choices for 1st, 26 choices for 2nd,
 26 for 3rd, \ldots, and 26 for 6th
 \[\Rightarrow \text{product rule: } 26^6 \]

2. how many begin with a vowel \{a,e,i,o,u\}?
 5 choices for 1st, 26 choices for 2nd – 6th
 \[\Rightarrow \text{product rule: } 5*26^5 \]

3. how many begin and end with a vowel?
 5 choices for 1st and 6th, 26 for 2nd – 5th
 \[\Rightarrow \text{product rule: } 5*26^4*5 = 5^2*26^4 \]
Fourth simple example
consider strings of length 6 over \{a,b,c,\ldots,y,z\}
4. how many begin or end with a vowel?
\[5 \times 26^5\] begin with vowel
\[26^5 \times 5\] end with vowel
\[\Rightarrow 2 \times 5 \times 26^5\] begin or end with vowel
but we counted “begin and end” twice
\[\Rightarrow 2 \times 5 \times 26^5 - 5^2 \times 26^4 = 235 \times 26^4\]

alternative calculation: complement of those
that begin and end with consonant
\[\Rightarrow 26^6 - 21^2 \times 26^4 = (26^2 - 21^2) \times 26^4\]

use: \((c_1 = \text{vowel } \vee c_6 = \text{vowel}) \equiv \neg (c_1 \neq \text{vowel } \land c_6 \neq \text{vowel})\)
\[\equiv \neg (c_1 = \text{consonant } \land c_6 = \text{consonant})\]
Fifth simple example
consider strings of length 6 over \{a,b,c,\ldots,y,z\}
5. how many begin or end with a vowel, but not a vowel at begin and end?
 “begin or end” was $2 \times 5 \times 26^5 - 5^2 \times 26^4$
 need to subtract “begin and end” again:
 $\Rightarrow 2 \times 5 \times 26^5 - 2 \times 5^2 \times 26^4 = 210 \times 26^4$
alternative calculation:
 begin vowel, end consonant: $5 \times 26^4 \times 21$
 begin consonant, end vowel: $21 \times 26^4 \times 5$
 these two possibilities are disjoint
 \Rightarrow sum rule:
 $5 \times 26^4 \times 21 + 21 \times 26^4 \times 5 = 210 \times 26^4$
Last simple example
consider strings of length 6 over \{a,b,c,\ldots,y,z\}
6. how many have precisely one vowel?
 1st vowel, others consonants: 5\times21^5
 2nd vowel, others consonants: 21\times5\times21^4
 3rd vowel, others consonants: 21^2\times5\times21^3
 …
 6th vowel, others consonants: 21^5\times5
(all possibilities disjoint)
\Rightarrow sum rule: 6\times5\times21^5
Brief pigeonhole discussion

if N items are distributed over fewer than N bins, then there is a bin with at least two items ($N > 1$)

example: in any group of ≥ 2 persons there are at least 2 who have the same number of friends in the group ("being friends" is "symmetric"):

persons p_1, p_2, \ldots, p_n; $f(i)$: number of friends of p_i

bins $b_0, b_1, \ldots, b_{n-1}$; put person p_i in bin $b_{f(i)}$

\Rightarrow n items in n bins: pigeonhole does not apply

• if b_0 is empty \rightarrow

 p_1, p_2, \ldots, p_n assigned to $b_1, b_2, \ldots, b_{n-1}$

• if b_0 is not empty \rightarrow (symmetry) b_{n-1} empty \rightarrow

 p_1, p_2, \ldots, p_n assigned to $b_0, b_1, \ldots, b_{n-2}$

\Rightarrow either way there is a "collision"
More general pigeonhole principle

with N items distributed over k bins, there is a bin with at least $\lceil N/k \rceil$ items

select 8 different integers from $\{1,2,\ldots,12\}$, then at least two pairs add up to precisely 13 bins are pairs adding up to 13, thus $k = 6$ bins: $(1,12), (2,11), (3,10), (4,9), (5,8), (6,7)$

items are integers that are selected, thus $N = 8$

⇒ selection corresponds to a choice of bins

⇒ there is a bin with $\lceil N/k \rceil = \lceil 8/6 \rceil = 2$ items

⇒ at least one pair adds up to 13

remove it: $N = 6$, $k = 5$, $\lceil 6/5 \rceil = 2$ ⇒ other pair
Related: cabling, and saving a few cables

connect \(p \) printers to \(d \) desktops (\(d > p \)) such that \(p \) desktops always connect to \(p \) distinct printers, but cheaper than running all \(pd \) cables

printers \(P_1, P_2, \ldots, P_p \), desktops \(D_1, D_2, \ldots, D_d \),

- for \(1 \leq i \leq p \) connect \(D_i \) to \(P_i : p \) cables
- \(p < k \leq d \) connect \(D_k \) to all \(P_i \)s: \((d-p)p \) cables

\[\Rightarrow \text{total } (d-p)p+p \] cables (saving \(p^2-p \) cables)

works: \(D_i \) with \(1 \leq i \leq p \) connects to \(P_i \); if free printers then \(D_k (k > p) \) can connect to them

optimal: with \((d-p)p+p-1 \) cables, there is a \(P_i \) connected to \(\leq d-p \) desktops, thus \(P_i \) not connected to \(\geq p \) desktops: let those print…
Permutations, combinations, etc

in how many different ways can \(r \) objects be selected from collection of \(n \) different objects?

have to distinguish different possibilities:

- may an object be selected more than once?
 \(\Rightarrow \) replacement (repetition) or not (if not: \(r \leq n \))

- is the order of selection relevant?
 \(\Rightarrow \) permutation (“yes”) or combination (“no”)

\(\Rightarrow \) 2×2 different possibilities to be considered:

1. permutation without replacement
2. combination without replacement
3. permutation with replacement
4. combination with replacement
Examples with $n = 10$, $r = 3$

1. permutation without replacement
gold, silver, bronze medal among 10 players
2. combination without replacement
select 3 representatives from class of 10
3. permutation with replacement
select 3-digit PIN
4. combination with replacement
select 3 cookies from 10 types of cookies
or:
number of nonnegative integer solutions
to $x_1 + x_2 + \ldots + x_{10} = 3$ ($x_i \in \mathbb{Z}_{\geq 0}$)
Simple formulas for general n and r

1. permutation without replacement: $P(n,r)$

 n choices for 1st, $n-1$ for 2nd, \ldots, $n-r+1$ for rth

 $\Rightarrow P(n,r) = n(n-1)\ldots(n-r+1) = n!/(n-r)!$

2. combination without replacement: $C(n,r)$

 each combination can be ordered in $r!$ ways

 $\Rightarrow C(n,r)r! = P(n,r) \Rightarrow C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r}$

 (pronounced: “n choose r”)

3. permutation with replacement

 n choices for 1st, n for 2nd, \ldots, n for rth

 \Rightarrow in total n^r r-permutations with repetition

4. combination with replacement

 (the only non-intuitive one – do this later)
Examples: combinations without replacement

hands of five cards from standard deck:

52 cards: 13 “kinds” (valeurs) in 4 “suits” (couleurs)
(2,…,10, jack, queen, king, ace; spades, clubs, hearts, diamonds)
(2,…,10, valet, dame, roi, as; pique, trèfle, coeur, carreau)

• how many different hands?
52 choose 5 = \(C(52,5) = \binom{52}{5} = \frac{52!}{5!47!} = 2598960\)

• how many hands contain your favorite card (say 5 of clubs)?
 • pick it, left \(\binom{51}{4} = 249900\) (⇒ almost 10%)
 • or: complement of not picking it:
 \(2598960 - \binom{51}{5} = 249900\)
 • or: \(2598960 \times \left(\frac{5}{52}\right) = 249900\)
More card examples

• # hands containing your two favorite cards?
• pick them, left \(\binom{50}{3} = 19600 \) \(\Rightarrow 0.75\% \)
• or: complement of not picking them:
 \[2598960 - \binom{50}{5} = 480200 \]
• not the same, one must be wrong…
• correct version of complement method uses inclusion&exclusion principle:
 \[2598960 - \binom{51}{5} - \binom{51}{5} + \binom{50}{5} = 19600 \]
 (subtract card one excluded, subtract card two excluded, add back both excluded)
More card examples

• # hands containing five kinds?
 pick kinds ($C(13,5)$), four suits per kind:
 \[C(13,5)4^5 = 1317888 \quad (51\%) \]

• # hands with a flush, i.e., all same suit
 pick suit (4), pick 5 out of 13 ($C(13,5)$):
 \[4C(13,5) = 5148 \quad (0.2\%) \]

• # hands with four cards of one kind?
 pick kind ($C(13,1)$),
 pick the four cards of that kind ($C(4,4)=1$),
 and pick remaining card ($C(48,1)=48$):
 \[13*48 = 624 \quad (0.024\%) \]

• three of a kind: $C(13,1)*4*48*44/2$, (2.11%)
 (or: $C(12,2)*4^2$ instead of $48*44/2$)
Combinatorial and algebraic proofs

- combinatorial proof: formula holds based on counting argument or “insight”
- algebraic proof: usual math manipulations
Combinatorial and algebraic proofs

an r-combination from n without replacement is equivalent to
an $(n-r)$-combination from n without replacement

$$\Rightarrow C(n,r) = C(n,n-r)$$

the above is example of a “combinatorial proof”: a counting argument that a formula holds
easily confirmed by a trivial algebraic proof:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n!}{(n-r)!(n-(n-r))!}$$

$$= \binom{n}{n-r} = C(n,n-r)$$
More examples

1. splitting pile of \(n \) stones:
 - strong induction: total cost \(n(n-1)/2 \)
 - “handshake” argument: same result

3. \(P(n+1,r) = P(n,r)(n+1)/(n+1-r) \)
 - algebraic proof immediate
 - combinatorial: argument:

\[
P(n+1,r+1) = (n+1)P(n,r):
\]
 - take first from \(n+1 \), then \(r \)-perm from \(n \)

or

\[
P(n+1,r+1) = P(n+1,r)(n+1-r):
\]
 - first take \(r \)-perm from \(n+1 \), then take last
More about n choose r: binomial coefficients

Pascal’s identity ($0 < k \leq n$): $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

• combinatorial proof:
pick k-combination from $n+1$ by fixing one element: include it ($k-1$ from n remain to be chosen) or don’t (k from n remain to be chosen)

• algebraic proof:
\[
\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}
\]
\[
= \frac{n!k}{k!(n-k+1)!} + \frac{n!(n-k+1)}{k!(n-k+1)!}
\]
\[
= \frac{n!k + n!(n-k+1)}{k!(n+1-k)!} = \binom{n+1}{k}
\]
Binomial theorem

for $n \geq 0$:

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$$

- combinatorial proof:
 expand product $(x+y)^n$: for the term $x^{n-k}y^k$
 the y needs to be chosen k out of n times
 (order irrelevant since $x^{n-k}y^k = yx^{n-k}y^{k-1} = \ldots = y^kx^{n-k}$)
 \Rightarrow coefficient of $x^{n-k}y^k$ must be n choose k

- algebraic proof:
 use mathematical induction
 and Pascal’s identity
Algebraic proof of binomial theorem

let $P(n)$ be the assumption that \[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k\]

- $(x + y)^0 = 1 = \binom{0}{0} x^0 y^0 = \sum_{k=0}^{0} \binom{0}{k} x^{0-k} y^k$
 shows that $P(0)$ holds
- assume $P(n)$ holds for some $n \geq 0$. Then

$$(x + y)^{n+1} = (x + y) \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \text{ (used induction hypothesis)}$$

$$= \sum_{k=0}^{n} \binom{n}{k} x^{n-k+1} y^k + \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k+1}$$

$$= \binom{n}{0} x^{n+1} + \binom{n}{1} x^{n-1} y^1 + \sum_{k=1}^{n-1} \binom{n}{k} x^{n-k} y^{k+1} + \binom{n}{n} y^{n+1}$$

$$= \binom{n+1}{0} x^{n+1} + \sum_{k=1}^{n} \binom{n}{k} x^{n+1-k} y^k + \sum_{k=1}^{n} \binom{n}{k-1} x^{n+1-k} y^k + \binom{n+1}{n+1} y^{n+1}$$

$$= \binom{n}{0} x^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} x^{n+1-k} y^k + \binom{n+1}{n+1} y^{n+1} \text{ (Pascal's identity)}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n+1-k} y^k$$
Combinatorial and algebraic proofs

- combinatorial proof: formula holds based on counting argument or “insight”
- algebraic proof: usual math manipulations

seen both types of proofs for
- Pascal’ identity $(0 < k \leq n)$:
 \[
 \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
 \]
- binomial theorem: for $n \geq 0$
 \[
 (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
 \]
Consequence of binomial theorem

$$2^n = \sum_{k=0}^{n} \binom{n}{k}$$

- algebraic proofs:
 - take $x = y = 1$ in binomial theorem
 - mathematical induction, Pascal’s identity

- combinatorial proof:
 - 2^n is the number of length n bitstrings
 - write the number of length n bitstrings as $\sum_{k=0}^{n} C_i$, where C_i is the number of length n bitstrings with i bits “on”, and note that C_i is n choose I (or look at subsets and their cardinalities)
Another consequence of binomial theorem

\[\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k} \text{ for } r < m, n \]

(Vandermonde's identity)

- **algebraic proof:**
 use \((x+y)^{m+n} = (x+y)^m(x+y)^n\)
 with binomial theorem
 and compare the terms for \(x^{m+n-r}y^r\)

- **combinatorial proof:**
 count cardinality \(r\) subsets of cardinality \(m+n\) set in different ways

- **consequence:** \(\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2\)
Final combinatorial ↔ algebraic example

\[(\binom{n}{r})(\binom{r}{k}) = (\binom{n}{k})(\binom{n-k}{r-k}), \quad 0 \leq k \leq r \leq n\]

- combinatorial proof: suppose you need to pick a committee of \(r\) out of \(n\), and a subcommittee of \(k\) out of those \(r\) (LHS). or pick the subcommittee of \(k\) first, then remaining \(r-k\) from remaining \(n-k\) (RHS)

- algebraic proof straightforward too:

\[
\binom{n}{r}\binom{r}{k} = \frac{n!}{r!(n-r)!} \cdot \frac{r!}{k!(r-k)!} = \frac{n!}{(n-r)!k!(r-k)!} = \frac{(n-r)!k!(r-k)!}{k!(n-k)! (r-k)!(n-r)!} = \binom{n}{k}\binom{n-k}{r-k}
\]
Useful identity (for combination with repetition)
\[\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r} \quad \text{for} \quad r \leq n \]

- Combinatorial proof: look at last “on” bit of \(r+1 \) “on” bits in \(n+1 \) positions
More precisely

combinatorial proof of \(\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r} \ (r \leq n) \)

pick \(r+1 \) out of \(x_1, x_2, \ldots, x_{n+1} \),

- largest index is \(n+1 \)

 or \(\binom{n}{r} \) ways to pick other \(r \)

- largest index is \(n \)

 or \(\binom{n-1}{r} \) ways to pick other \(r \)

- largest index is \(n-1 \)

 or \(\binom{n-2}{r} \) ways to pick other \(r \)

- largest index is \(n-2 \)

 or \(\binom{n-3}{r} \) ways to pick other \(r \)

\[\vdots \]

- largest index is \(r+1 \)

 or \(\binom{r}{r} \) ways to pick other \(r \)

All possibilities disjoint
Useful identity

\[(n+1)_{r+1} = \sum_{j=r}^{n} \binom{j}{r} \quad \text{for} \quad r \leq n\]

- combinatorial proof: look at last “on” bit of \(r+1\) “on” bits in \(n+1\) positions
- proof by hand waving: repeatedly use Pascal’s identity, walking up Pascal’s triangle
- algebraic proof: use mathematical induction with respect to \(n\) (formalizing hand waving)
 - for \(n = r\) identity holds
 - assume holds for \(n\); then for \(n+1\):
 \[(n+2)_{r+1} = (n+1)_r + (n+1)_{r+1} \quad \text{(use Pascal's identity)}\]
 \[= (n+1)_r + \sum_{j=r}^{n} \binom{j}{r} = \sum_{j=r}^{n+1} \binom{j}{r}\]
Back to counting formulas: pick r from n

1. Permutation without replacement: $P(n,r)$
 \[P(n,r) = n(n-1)\ldots(n-r+1) = \frac{n!}{(n-r)!} \]

2. Combination without replacement: $C(n,r)$
 \[C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r} \]

3. Permutation with replacement
 \[n^r \]

4. Combination with replacement
 still not done, and a bit less intuitive
Pick r-combination from n with replacement to develop intuition, a few basic examples:

- given infinite supply of $n = 1$ cookie type, in how many ways can one pick r cookies? clearly only one way: r cookies of type 1

 \[n = 1: \text{constant in } r \]

- same question with $n = 2$ types of cookies: from 0 to r of type 1, others type 2: $r+1$ ways
 \[n = 2: \text{linear in } r \]

- same question with $n = 3$ types of cookies: $s, 0 \leq s \leq r$, of type 1: $r-s$ of types 2 or 3, thus
 \[\sum_{s=0}^{r} (r - s + 1) = (r + 1)(r + 2) / 2 \] ways
 \[n = 3: \text{quadratic in } r \]
r-combination from n with replacement

observations we made:

- $n = 1$: 1 way
- $n = 2$: $r+1$ ways
- $n = 3$: $(r+1)(r+2)/2$ ways

⇒ suggests $(n+r−1)$ choose $n−1$ ways (✳)
⇒ let $f(n,r)$ denote the number of r-combinations from n with replacement, then

$$f(n,r) = f(n−1,0)+f(n−1,1)+\ldots+f(n−1,r):$$

take r of type 1, 0 left to take of $n−1$ types

take $r−1$ of type 1, 1 left to take of $n−1$ types

take $r−2$ of type 1, 2 left to take of $n−1$ types

... take 0 of type 1, r left to take of $n−1$ types
\textbf{r-combination from }n\textbf{ with replacement observations we made:}

- \(n = 1 \): 1 way

 \(n = 2 \): \(r+1 \) ways

 \(n = 3 \): \((r+1)(r+2)/2\) ways

\(\Rightarrow \) suggests \((n+r-1)\) choose \(n-1\) ways (\(\ast\))

\(\Rightarrow \) let \(f(n,r) \) denote the number of \(r\)-combinations from \(n\) with replacement, then

\[
f(n,r) = f(n-1,0) + f(n-1,1) + \ldots + f(n-1,r)
\]

- induction proof of \(\ast\): basis \(n = 1\) is okay;

\[
f(n,r) = \sum_{s=0}^{r} f(n-1,s) = \sum_{s=0}^{r} \binom{n+s-2}{n-2}
\]

\((\text{use } n + s - 2 = j) = \sum_{j=n-2}^{n+r-2} \binom{j}{n-2} = \binom{n+r-1}{n-1}\)
r-combination from n with replacement
why is the result so simple?
combinatorial proof that $f(n, r) = \binom{n+r-1}{n-1}$
uses $n+r-1$ positions $n-1$ of which are separators that “switch” to next type
note:

- $f(n, r)$ counts number of nonnegative integer solutions to $x_1 + x_2 + \ldots + x_n = r$ ($x_i \in \mathbb{Z}_{\geq 0}$)
little tricks to deal with:
 - $x_i \geq b_i$ for bounds b_i: use $r - \sum_{i=1}^{n} b_i$
 - $x_1 + x_2 + \ldots + x_n \leq r$: use slack variable x_{n+1}
 - $C(n, r)$ product for indistinguishable objects