Chapter 2, continuation of basic material: sets, functions, sequences, and sums

here:
1. brief review of basic set-related concepts
2. brief mention of functions
3. focus on sequences and sums

1&2 (sets and functions)
if not thoroughly familiar with this material, carefully read Chapter 2
using un-axiomatic treatment: a set is an unordered collection of distinct objects

A is the set of primes less than 13:

$A = \{2, 3, 5, 7, 11\}$

$= \{3, 7, 11, 5, 2\} = \{2, 2, 3, 5, 5, 5, 7, 11\}$

$2, 5 \in A$: 2 and 5 belong to A, are elements of A

B is the set of non-negative integers at most 100:

$B = \{0, 1, 2, \ldots, 100\}$

note usage of “{”, “}” and “…” (ellipses) be unambiguous: $A = \{2, 3, \ldots, 11\}$ is inadequate
Set builder notation:

for propositional function $P(x)$

“$S = \{x \mid P(x) \}$” and “$S = \{x : P(x) \}$”

are both short-hands for

$\forall x \ (x \in S \iff P(x))$

$\Rightarrow S$ is the set of all x such that $P(x)$ holds

(in some implicit domain that is often omitted)

examples:

$A = \{p \mid p$ prime and $p < 13\}$

$B = \{n \mid n$ integer and $0 \leq n \leq 100\}$

$D = \{n \mid n = 2m$ for an integer $m\}$ (even integers)

again: always be clear and unambiguous
Common sets

- \(\mathbb{N} \) is the set of natural numbers
 - for some \(0 \in \mathbb{N} \), others prefer \(0 \notin \mathbb{N} \)
 - no big deal, as long as you’re clear
- \(B = \mathbb{N}_{\leq 100} \)
- \(\mathbb{Z} \) is the set of the integers \((D = 2\mathbb{Z}) \)
- \(\mathbb{Q} \) is the set of the rational numbers
- \(\mathbb{R} \) is the set of the real numbers
- \(\mathbb{C} \) is the set of the complex numbers
Cardinality of a set S, denoted $|S|$ or $\#S$

$|S| = \#S = \text{number of distinct elements of } S$

$|A| = \#A = 5$

$|B| = \#B = 101$

A and B are examples of *finite* sets

examples of *infinite* sets:

$\#N = \#Z = \#Q = \infty$

$\#R = \#C = \infty$

and: $\#N = \#Z = \#Q \neq \#R = \#C$
empty set, the set without elements: \(\emptyset \) (=\{\})
singleton set, a set with a single element
example: \(\{\emptyset\} \), set containing the empty set
equality between sets \(A \) and \(B \):
\[A = B \quad \text{if and only if} \quad \forall x \ (x \in A \iff x \in B) \]
subset: set \(A \) is subset of set \(B \)
if and only if \(\forall x \ (x \in A \rightarrow x \in B) \)
notation: \(A \subseteq B \) (similar: \(A \supseteq B \iff \forall x \ (x \in B \rightarrow x \in A) \))
proper subset: set \(A \) is proper subset of set \(B \)
if and only if \(A \subseteq B \) and \(A \neq B \)
notation: \(A \subset B \) (careful with \(\subseteq \) versus \(\subset \))

thm: for every set \(A \): \(\emptyset \subseteq A \) and \(A \subseteq A \)
(prove \(\emptyset \subseteq A \) using a vacuous proof)
Power set $P(A)$ of set A: set of all subsets of A for every set A: $\emptyset \subseteq A$ and $A \subseteq A$, thus $\emptyset \in P(A)$ and $A \in P(A)$

Let $A = \{1,2,3\}$, then $P(A) =$
\{$\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$\}

note: elements of $P(A)$ are (sub)sets, elements of these (sub)sets may again be (sub)sets:

Let $B = \emptyset$, then $P(B) = \{\emptyset\}$, so $P(\emptyset) = \{\emptyset\}$

Let $C = P(\emptyset) = \{\emptyset\}$,

$P(C) = \{\emptyset, \{\emptyset\}\}$, so $P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}$

Let $D = P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}$, so $P(D) = P(P(P(\emptyset))) = \{\emptyset, \{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$
fye, power set of $P(P(P(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \emptyset, \{\emptyset\}\}$:

$P(P(P(P(\emptyset)))) = \{
\emptyset,
\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\},
\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\{\emptyset\}\}\}, \{\emptyset, \emptyset, \{\emptyset\}\},
\{\{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\},
\{\{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\},
\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\},
\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\},
\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}
\}
Cartesian product $A \times B$ of sets A and B: set of all ordered pairs (a,b), $a \in A$ and $b \in B$:

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

don

example:

$A = \{H,L,S\}$, $B = \{A,B,L',P\}$:

$$A \times B = \{(H,A),(H,B),(H,L'),(H,P),\}
\{(L,A),(L,B),(L,L'),(L,P),\}
\{(S,A),(S,B),(S,L'),(S,P)\}$$

$$\#(A \times B) = \#A \times \#B = 3 \times 4 = 12,$$

relation from A to B: a subset of $A \times B$

don

example:

$$\{ (H,B),(H,L'),(H,P),(L,P) \} \subset A \times B$$
for sets A, B, C

$$A \times B \times C = \{(a,b,c) \mid a \in A \land b \in B \land c \in C\}$$

but

$$(A \times B) \times C = \{(d,c) \mid d \in A \times B \land c \in C\}$$
Set operations

to create new sets from existing sets (similar to using logical operators to create compound propositions from existing propositions)

complement: \(\overline{A} = \{x| x \notin A\} = \{x| \neg(x \in A)\} \)
(always with respect to some universe \(U\))

union: \(A \cup B = \{x| x \in A \lor x \in B\}\)

intersection: \(A \cap B = \{x| x \in A \land x \in B\}\)
\((A \text{ and } B \text{ disjoint if } A \cap B = \emptyset)\)

difference: \(A - B = A \setminus B = \{x| x \in A \land \neg(x \in B)\}\)

symmetric difference:
\(A \oplus B = A \Delta B = \{x| x \in A \oplus x \in B\}\)

Note: correspondence with logical operations (and “\(\subseteq\)” \(\leftrightarrow\) “\(\rightarrow\)”)
set operations lead to set identities (page 132 (124)) such as

\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \quad \text{(distributive law)} \]

\[A \cap B = \overline{A \cup B} \]

\[A \cup B = \overline{A \cap B} \quad \text{(De Morgan’s laws)} \]

…

which can proved

1. with membership tables
2. using both \(\subseteq \) and \(\supseteq \)
3. “directly”
example: Prove \(A \cup B = \overline{A} \cap \overline{B} \)

1. with membership table (i.e., truth table for \(x \in A \), etc.):

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2. using both \(\subseteq \) and \(\supseteq \), thus proving:

\(A \cup B \subseteq \overline{A} \cap \overline{B} \) and \(A \cup B \supseteq \overline{A} \cap \overline{B} \)

3. directly
using \(\subseteq \) and \(\supseteq \) to prove that \(A \cup B = \overline{A} \cap \overline{B} \)

\[\subseteq: \text{let } x \in A \cup B \]

\[\rightarrow x \notin A \cup B \]

\[\rightarrow \neg (x \in A \cup B) \]

\[\rightarrow \neg (x \in A \lor x \in B) \]

\[\rightarrow \neg (x \in A) \land \neg (x \in B) \]

\[\rightarrow (x \notin A) \land (x \notin B) \]

\[\rightarrow x \in \overline{A} \land x \in \overline{B} \]

\[\rightarrow x \in \overline{A} \cap \overline{B} \]

it follows that \(A \cup B \subseteq \overline{A} \cap \overline{B} \)

all “\(\rightarrow \)” can be replaced by “\(\leftrightarrow \)” (or “\(\equiv \)”),

from which “\(\supseteq \)” follows as well
direct proof of $A \cup B = \overline{A \cap \overline{B}}$

\[
A \cup B = \{ x \mid x \notin A \cup B \}
\]
\[
= \{ x \mid \neg (x \in (A \cup B)) \}
\]
\[
= \{ x \mid \neg (x \in A \lor x \in B) \}
\]
\[
= \{ x \mid \neg (x \in A) \land \neg (x \in B) \}
\]
\[
= \{ x \mid (x \notin A) \land (x \notin B) \}
\]
\[
= \{ x \mid x \in \overline{A} \land x \in \overline{B} \}
\]
\[
= \{ x \mid x \in \overline{A \cap \overline{B}} \}
\]
\[
= \overline{A \cap \overline{B}}
\]
prove \(A \cup (A \cap B) = A \) by showing \(\subseteq \) and \(\supseteq \)

- \(A \cup (A \cap B) \subseteq A \):
 if \(x \in A \cup (A \cap B) \), then \(x \in A \) or \(x \in A \cap B \), so:
 \[x \in A \]
 or
 \[(x \in A \text{ and } x \in B) \]
 in either case \(x \in A \)
 it thus follows that \(A \cup (A \cap B) \subseteq A \)

- \(A \cup (A \cap B) \supseteq A \):
 if \(x \in A \), then \(x \in A \cup (A \cap B) \)
 it thus follows that \(A \cup (A \cap B) \supseteq A \)
Note on Venn diagrams

- Venn diagrams are pictures of sets, drawn as subsets of some universal set U
- may be used for pictorial purposes but never for proofs
- three sets intersecting in all possible ways:

- four sets:
Note on Venn diagrams

• Venn diagrams are pictures of sets, drawn as subsets of some universal set U
• may be used for pictorial purposes
 but never for proofs
• 5, 7, and 11 sets intersecting in all possible ways:
Returning to sets, a note on cardinalities

given finite sets A and B, what is $|A \cup B|$?

$|A|$ is the cardinality of A
$|B|$ is the cardinality of B
$|A| + |B|$ is the cardinality of the union $A \cup B$ of A and B, where all elements that belong to both A and B are counted twice

thus: $|A| + |B| = |A \cup B| + |A \cap B|$
equivalently: $|A \cup B| = |A| + |B| - |A \cap B|$

known as

the principle of inclusion and exclusion

(and an example of “proof by intimidation”; how to really prove this?)
Inclusion/exclusion example

\[A = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, \ n \text{ multiple of } 5 \} \]

\[= \{ n \in \mathbb{Z} : 0 \leq n \leq 100, \ 5|n \} \]

\[B = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, \ 7|n \} \]

\[\Rightarrow |A| = 21, \ |B| = 15 \]

what is \(|A \cup B| \) ?

\[A \cup B = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, \ 5|n \text{ or } 7|n \} \]

\[|A| + |B| = 21 + 15 = 36 \]

counts multiples of both 5 and 7 twice:

\[A \cap B = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, \ 5|n \text{ and } 7|n \} \]

\[= \{ 0, 35, 70 \} \]

\[|A \cup B| = |A| + |B| - |A \cap B| = 21 + 15 - 3 = 33 \]
more complicated

\[A = \{n \in \mathbb{Z} : 0 \leq n \leq 100, \ 5 | n\}, \ |A| = 21 \]
\[B = \{n \in \mathbb{Z} : 0 \leq n \leq 100, \ 7 | n\}, \ |B| = 15 \]
\[C = \{n \in \mathbb{Z} : 0 \leq n \leq 100, \ 3 | n\}, \ |C| = 34 \]

what is \(|A \cup B \cup C| \)?
\[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|\]

Proof: Let \(D = B \cup C \), then

\[|A \cup B \cup C| = |A \cup D|\]
\[= |A| + |D| - |A \cap D|\]
\[= |A| + |B \cup C| - |A \cap (B \cup C)|\]
\[= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)|\]

The result now follows from

\[|(A \cap B) \cup (A \cap C)| = |A \cap B| + |A \cap C| - |(A \cap B) \cap (A \cap C)|\]
\[= |A \cap B| + |A \cap C| - |A \cap B \cap C|\]
more complicated

\[A = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, 5|n \}, \ |A| = 21 \]
\[B = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, 7|n \}, \ |B| = 15 \]
\[C = \{ n \in \mathbb{Z} : 0 \leq n \leq 100, 3|n \}, \ |C| = 34 \]

what is \(|A \cup B \cup C| ? \)
\[A \cap B = \{0, 35, 70\}: \ |A \cap B| = 3 \]
\[A \cap C = \{n \in \mathbb{Z} : 0 \leq n \leq 100, 3|n \ and \ 5|n \} \]
\[= \{0, 15, 30, 45, 60, 75, 90\}: \ |A \cap C| = 7 \]
\[B \cap C = \{n \in \mathbb{Z} : 0 \leq n \leq 100, 3|n \ and \ 7|n \} \]
\[= \{0, 21, 42, 63, 84\}: \ |B \cap C| = 5 \]
\[A \cap B \cap C = \{0\}: \ |A \cap B \cap C| = 1 \]
\[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \]
\[= 21 + 15 + 34 - 3 - 7 - 5 + 1 = 56 \]
Questions?

Concludes 2nd section of Chapter 2
Functions

given nonempty sets A and B,
a function f from A to B is an assignment of
exactly one element of B to each element of A

What does that mean? Can’t we do better?
Functions

first an unusually complicated definition

reminder: a relation from A to B is

an arbitrary subset of $A \times B$

A and B nonempty sets, function f from A to B is:

a relation from A to B

such that $\forall a \in A \exists! b \in B (a, b) \in f$

thus, \textit{for each element of} A \textit{there is}

exactly one ordered pair in f whose

first element equals that element of A

note: no limitation on number of pairs in f

in which any $b \in B$ may appear
Functions, more traditionally:
given nonempty sets A and B,
a function f from A to B is an assignment of
exactly one element of B to each element of A
we say that f maps A to B and write:

- $f(a) = b$ (or $(a,b) \in f$ as on previous slide):
 - b is the image of a
 - a is a preimage of b
- for any element of B, there may be
 any number of elements of A mapping to it
function f from A to B

- $f: A \rightarrow B$
 (note: same arrow as before, different meaning)
- f goes from domain A to codomain B
- f has range $f(A) = \{b \in B | \exists a \in A f(a)=b\} \subseteq B$
 $\Rightarrow \forall b \in f(A) \exists a \in A f(a)=b$, a property that does not necessarily hold for B
- for $S \subseteq A$, the image of S under f is defined as
 $f(S) = \{b | b \in B \text{ and } \exists s \in S f(s)=b\}$
 $= \{f(s) | s \in S\} \subseteq f(A)$
Operations on functions

- sum and product of two functions $f, g: A \to \mathbb{R}$:
 - sum: $f+g: A \to \mathbb{R}$: $(f+g)(x) = f(x) + g(x)$
 - product: $fg: A \to \mathbb{R}$: $(fg)(x) = f(x)g(x)$

- in general: $f, g: A \to B$ inherit operations on B

- composition of $f: A \to B$ and $g: B \to C$:
 $$g \circ f: A \to C: (g \circ f)(x) = g(f(x))$$

Example

f: set of students $\to \mathbb{R}^3$, g: $\mathbb{R}^3 \to \{1, 1.5, 2, 2.5, \ldots, 5, 5.5, 6\}$

$f(Amy) = (H, M, F)$ is triple of Amy’s average homework grade (H), midterm grade (M), and final grade (F)

$g(x, y, z) = [[0.3x + 0.2y + 0.5z]]$ (with $[[.]]$ rounding to nearest half point)

then $(g \circ f)(Amy)$ is Amy’s overall grade

but $(f \circ g)(Anna)$ is not defined
Simple properties of functions

\(f: A \rightarrow \mathbb{R} \)

- \textit{f is increasing:}
 \[\forall x \in A \forall y \in A \ x > y \rightarrow f(x) \geq f(y) \]

- \textit{f is strictly increasing:}
 \[\forall x \in A \forall y \in A \ x > y \rightarrow f(x) > f(y) \]

- \textit{f is decreasing:}
 \[\forall x \in A \forall y \in A \ x > y \rightarrow f(x) \leq f(y) \]

- \textit{f is strictly decreasing:}
 \[\forall x \in A \forall y \in A \ x > y \rightarrow f(x) < f(y) \]
Interesting properties of functions, $f: A \rightarrow B$

- f is **one-to-one** or **injective** or an **injection**

 iff $\forall a_1, a_2 \in A \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$

 iff $\forall a_1, a_2 \in A \ a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$:

 no “collisions”

- f is **onto** or **surjective** or a **surjection**

 iff $f(A) = B$

 iff $\forall b \in B \ \exists a \in A \ f(a) = b$:

 everything in B is reached

- f is **one-to-one correspondence** or **bijection**

 iff f is one-to-one and onto

 iff $\forall b \in B \ \exists! a \in A \ f(a) = b$

- injection $f: A \rightarrow B$ is bijection $f: A \rightarrow f(A)$
inverse of a function

injection \(f: A \rightarrow B \), thus bijection \(f: A \rightarrow f(A) \)

\[\forall b \in f(A) \exists! a \in A \ f(a) = b \]

let \(g = \{(b,a) : b \in f(A), a \in A, f(a) = b\} \subseteq f(A) \times A \)
then \(g \) is relation \(\subseteq f(A) \times A \) such that

\[\forall b \in f(A) \exists! a \in A (b,a) \in g \quad (\text{i.e., } g(b) = a) \]
where \((b,a) \in g \iff f(a) = b \)

thus \(g \) is a function from \(f(A) \) to \(A \) such that

\(g(b) = a \) if and only if \(f(a) = b \)

this \(g \) is called the \textit{inverse} \(f^{-1} \) of \(f \):

\(f^{-1} : f(A) \rightarrow A \) such that
\(f^{-1}(b) = a \) if and only if \(f(a) = b \)
remarks on inverse

injection $f: A \to B$, bijection $f: A \to f(A)$,
the latter’s inverse $f^{-1}: f(A) \to A$

with $f^{-1}(b) = a$ if and only if $f(a) = b$

• $\forall a \in A \ f^{-1}(f(a)) = a$
 $\Rightarrow f^{-1} \circ f : A \to f(A) \to A$, the identity on A

• $\forall b \in f(A) \ f(f^{-1}(b)) = b$
 $\Rightarrow f \circ f^{-1} : f(A) \to A \to f(A)$, identity on $f(A)$

• it may be the case that f can be computed while computing f^{-1} is intractable, or vice versa
examples

\(f: \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x^2 \) \((f: x \mapsto x^2) \):

• \(f \) not injective: \(f(1) = f(-1) = 1 \)

• “same” \(f: \mathbb{R}_{\geq 0} \to \mathbb{R} \) is injective

• “same” \(f: \mathbb{R}_{\leq 0} \to \mathbb{R} \) is injective too

• \(f \) not surjective: \(\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} f(x) \neq y \) \((y < 0) \)

 \[\equiv \neg (\ \forall y \in \mathbb{R} \ \exists x \in \mathbb{R} f(x) = y) \]

• “same” \(f: \mathbb{R} \to \mathbb{R}_{\geq 0} \) is surjective

• “same” \(f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) is bijection

 with inverse \(f^{-1}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}: f^{-1}(y) = \sqrt{y} \)

• or “same” \(f: \mathbb{R}_{\leq 0} \to \mathbb{R}_{\geq 0} \) is bijection

 with inverse \(f^{-1}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\leq 0}: f^{-1}(y) = -\sqrt{y} \)
more examples

• \(g: \mathbb{R} \to \mathbb{R}, \ g(x) = x^{2k+1} \text{ for } k \in \mathbb{N} \) (\(g : x \mapsto x^{2k+1} \)): \(g \) is injective and surjective, and thus bijective example of simple non-trivial bijective correspondence between \(\mathbb{R} \) and \(\mathbb{R} \)

• \(h: \mathbb{R} - \{\pi/2 + k\pi : k \in \mathbb{Z}\} \to \mathbb{R}, \ h(x) = \tan(x) \)
 \(h \) surjective, not injective: \(\forall k \in \mathbb{Z} \ h(k\pi) = 0 \)
 “same” \(h: (-\pi/2, \pi/2) \to \mathbb{R} \) (open interval notation!) is injective while staying surjective:
 \(h: (-\pi/2, \pi/2) \to \mathbb{R}, \ h(x) = \tan(x), \) is bijection implies bijection between \((-\pi/2, \pi/2)\) and \(\mathbb{R} \)
 \(\Rightarrow \arctan = \tan^{-1} \) is bijection \(\mathbb{R} \to (-\pi/2, \pi/2) \)
More on cardinalities
sets A and B have by definition the same cardinality if there is a bijection between A and B
a set S is **countable** if S is **finite** or has the same cardinality as \mathbb{N}
if S countable and infinite: $|S| = \aleph_0$: “aleph null”
\Rightarrow countability of S implies that S can be “enumerated”: S is finite, or if not there exists a bijection $f: \mathbb{N} \rightarrow S$,
$S = \{f(i) : i \in \mathbb{N}\} = \{f(0), f(1), f(2), \ldots \}$
a set that is not countable is **uncountable**: any enumeration will miss (infinitely many) elements
N, Z, Q are countable
to prove this, establish bijections between
• N and N:
 the identity map
• Z and N:
 define \(f : Z \to N \):

 stretch all “non-negatives” to “even”:
 if \(z \geq 0 \) then \(f(z) = 2z \)

 fill the odd holes with the negatives:
 if \(z < 0 \) then \(f(z) = -(2z + 1) \)

this \(f \) is “obviously” a bijection
with \(f^{-1} : N \to Z, \ n \mapsto (-1)^n[(n+1)/2] \)
• Q and N: next slide
More on cardinalities
sets A and B have by definition the same cardinality if there is a bijection between A and B
a set S is countable if S is finite or has the same cardinality as \mathbb{N}
if S countable and infinite: $|S| = \aleph_0$: “aleph null”
⇒ countability of S implies that S can be “enumerated”: S is finite, or if not there exists a bijection $f: \mathbb{N} \to S$,
$S = \{f(i) : i \in \mathbb{N}\} = \{f(0), f(1), f(2), \ldots \}$
a set that is not countable is uncountable:
any enumeration will miss (infinitely many) elements
N, Z, Q are countable

to prove this, establish bijections between

• N and N:
 the identity map

• Z and N:
 define \(f : \mathbb{Z} \rightarrow \mathbb{N} : \)
 stretch all “non-negatives” to “even”:
 if \(z \geq 0 \) then \(f(z) = 2z \)
 fill the odd holes with the negatives:
 if \(z < 0 \) then \(f(z) = -(2z + 1) \)
 this \(f \) is “obviously” a bijection
 with \(f^{-1} : \mathbb{N} \rightarrow \mathbb{Z}, \ n \mapsto (-1)^n[(n+1)/2] \)

• Q and N: next slide
Let $I_k = \{(k-1)k/2, 1+(k-1)k/2, \ldots, k(k+1)/2-1\}$ for $k = 1, 2, 3, \ldots$

then $|I_k| = k(k+1)/2 - 1 - (k-1)k/2 + 1 = k$

$I_1 = \{0\}, I_2 = \{1, 2\}, I_3 = \{3, 4, 5\}, I_4 = \{6, 7, 8, 9\}, \ldots$

$\Rightarrow \bigcup_{k=1}^{\infty} I_k = \mathbb{N}_{\geq 0}$ and $k \neq \ell \rightarrow I_k \cap I_\ell = \emptyset$

$\Rightarrow \forall n \in \mathbb{N}_{\geq 0} \exists! k \ n \in I_k;$ denote this k by $k(n) (=[(1+\sqrt{1+8n})/2])$

$k(0)=1, k(1)=k(2)=2, k(3)=k(4)=k(5)=3, k(6)=k(7)=k(8)=k(9)=4$

define $i(n) = n - (k(n)-1)k(n)/2$: $0 \leq i(n) < k(n)$

$g : \mathbb{N}_{\geq 0} \rightarrow \mathbb{Q}_{>0} \quad n \mapsto \frac{k(n) - i(n)}{i(n) + 1}$ is surjective
\mathbb{R} is uncountable – not too precisely

Proof by contradiction: assume \mathbb{R} is countable, implying countability of $\mathbb{R}_1 = \{x \in \mathbb{R} : 0 < x < 1\}$

$\implies \exists$ bijection $h : \mathbb{N}_{>0} \to \mathbb{R}_1$:

$h(1) = x_1, h(2) = x_2, \ldots, h(i) = x_i, \ldots$
and $\{x_1, x_2, \ldots, x_i, \ldots\} = \mathbb{R}_1$

$x_i = 0.d_{i1}d_{i2}d_{i3} \ldots d_{ii} \ldots$ is x_i’s decimal expansion

for $i = 1, 2, 3, \ldots$, let $\delta_i \neq d_{ii}, \delta_i \in \{0,1,\ldots,9\}$

("Cantor diagonalization argument")

and let $y = 0.\delta_1\delta_2\delta_3 \ldots \delta_i \ldots$

$\implies y \in \mathbb{R}_1$ and $\forall i \ y \neq x_i$

\implies contradiction with $\{x_1, x_2, \ldots, x_i, \ldots\} = \mathbb{R}_1$
(un)countability examples

- the set of real numbers with decimal representation consisting of just digits “7” and possibly a single decimal point:
 \[7, 77, 7.7, 777, 77.7, 7.77, 7777, 777.7, 77.77, 7.777, \ldots\]
 first list the single one consisting of a single digit, then the two consisting of two digits, followed by the three consisting of three digits, etc. ⇒ countable

- as above, but allow digits 8 as well: use Cantor’s diagonalization to show that for any enumeration an element can be found that will not be enumerated by picking 7 if \(d_{ii} = 8\) and 8 if \(d_{ii} = 7\) (see previous slide) ⇒ uncountable

- the set of all finite length bit strings:
 \[0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots\]
 for \(k = 1, 2, 3, \ldots\) in succession list the \(2^k\) bit strings of length \(k\) (by counting in binary from 0 to \(2^k - 1\) and using leading zeros) ⇒ countable
Special functions

• rounding:
 \(R \rightarrow Z, \ x \mapsto \lfloor x \rfloor \), the integer nearest to \(x \)
 (halves rounded down; \(-\lceil -x \rceil \) goes up)

• floor:
 \(R \rightarrow Z, \ x \mapsto \lfloor x \rfloor \), the largest integer \(\leq x \)

• ceiling:
 \(R \rightarrow Z, \ x \mapsto \lceil x \rceil \), the smallest integer \(\geq x \)

• entier:
 \(R_{\geq 0} \rightarrow Z, \ x \mapsto [x] \), the integer part of \(x \)

• factorial:
 \(N \rightarrow Z, \ n \mapsto n! \), with \(n! = \prod_{i=1}^{n} i \); note that \(0! = 1 \)
example
\[3x = \lceil x \rceil + \lceil x + \frac{1}{3} \rceil + \lceil x + \frac{2}{3} \rceil \]

Proof. let \(x = n + \varepsilon \), with \(n \in \mathbb{Z} \) and \(0 \leq \varepsilon < 1 \)
case analysis:

• if \(0 \leq \varepsilon < \frac{1}{3} \), then \(3x = 3n + \delta \), \(0 \leq \delta < 1 \),
 \(\lfloor 3x \rfloor = 3n \) and \(\lceil x \rceil = \lceil x + \frac{1}{3} \rceil = \lceil x + \frac{2}{3} \rceil = n \)
• if \(\frac{1}{3} \leq \varepsilon < \frac{2}{3} \), then \(3x = 3n+1 + \delta \), \(0 \leq \delta < 1 \),
 \(\lfloor 3x \rfloor = 3n+1 \) and \(\lceil x \rceil = \lceil x + \frac{1}{3} \rceil = n \),
 but \(\lceil x + \frac{2}{3} \rceil = n+1 \)
• if \(\frac{2}{3} \leq \varepsilon < 1 \), then \(3x = 3n+2 + \delta \), \(0 \leq \delta < 1 \),
 \(\lfloor 3x \rfloor = 3n+2 \) and \(\lceil x \rceil = n \),
 but \(\lceil x + \frac{1}{3} \rceil = \lceil x + \frac{2}{3} \rceil = n+1 \)
Another example
\[
\lceil 2x \rceil = \lceil x \rceil + \lceil x - \frac{1}{2} \rceil
\]

normally, one takes \(x = m - \varepsilon \), with \(0 \leq \varepsilon < 1 \)
instead, let \(x = n + \varepsilon \), with \(n \in \mathbb{Z} \) and \(0 < \varepsilon \leq 1 \),
then \(\lceil x \rceil = n + 1 \)

- if \(0 < \varepsilon \leq \frac{1}{2} \), then \(2x = 2n + 2\varepsilon \) with \(0 < 2\varepsilon \leq 1 \),
 so \(\lceil 2x \rceil = 2n + 1 \);
 \(\lceil x - \frac{1}{2} \rceil = n \) then implies \(\lceil 2x \rceil = \lceil x \rceil + \lceil x - \frac{1}{2} \rceil \)
- if \(\frac{1}{2} < \varepsilon \leq 1 \), then \(2x = 2n + 2\varepsilon \) with \(1 < 2\varepsilon \leq 2 \),
 so \(\lceil 2x \rceil = 2n + 2 \);
 \(\lceil x - \frac{1}{2} \rceil = n + 1 \) then implies \(\lceil 2x \rceil = \lceil x \rceil + \lceil x - \frac{1}{2} \rceil \)
Any questions?

Concludes 3rd section of Chapter 2
Introduction to sequences and summations

informally:
a sequence is a possibly infinite ordered list with a first, a second, a third, a fourth, ... element

slightly more formally:
a sequence is a function f from a subset of the set of natural numbers (with or without 0) to some other set S:

\[a_1, a_2, a_3, \ldots \in S \]

or

\[a_0, a_1, a_2, \ldots \in S \]

where $a_i = f(i)$
common sequences

- 0, 1, 2, 3, 4, ...
 sequence of natural numbers, \(n_i = i, \ i \geq 0 \)
- 0, 2, 4, 6, 8, ...
 sequence of even numbers \(\geq 0, \ m_i = 2i, \ i \geq 0 \)
- 1, 1, 2, 6, 24, 120, 720,…
 sequence of factorials, \(f_i = i!, \ i \geq 0 \)
- 2, 3, 5, 7, 11, 13, 17, 19, …
 sequence of primes, \(p_i \) is \(i \)th prime, \(i \geq 1 \)
- 0, 1, 1, 2, 3, 5, 8, 13, 21,…
 Fibonacci sequence:
 \[
 F_i = i \text{ for } i = 0, 1, \quad F_i = F_{i-2} + F_{i-1} \text{ for } i \geq 2
 \]
crazy sequences

• 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, …
 \[b_i = \text{bitlength of } p_i, \ i \geq 1 \]
• 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, …
 \[\text{(in French: 4, 2, 4, 5, 6, 4, 3, 4, 4, 4, 3, 4, …)} \]
• 5, 6, 5, 6, 5, 5, 7, 6, 5, 5, 8, 7, …
 \[\text{(in French: 7, 8, 9, 9, 9, 7, 8, 8, 8, 7, 7, 8, …)} \]
• given an integer sequence
 \[\text{(such as 171, 277, 367, 561, 567, 18881,…}, \]
 how to find what it is?

encyclopedia of integer sequences
http://oeis.org/
Remarks on sequences

sequences do not necessarily consist of integers:
• \(x_i = 1/i \) \((i>0)\)
• \(y_i = r^i \) for \(r \in \mathbb{R} \)

sequences are not necessarily infinite:
• \(s_i \) = \(i \)th SD student (lexicographically or sciper-wise)

sequences are not necessarily well understood
• 3, 5, 17, 257, 65537, ..., primes \(2^{2^i} + 1 \)
 (are there more than five Fermat primes?)
• 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, ...
 (are there infinitely many twin primes?)
• primes 123456789101112131415...: any?
Common sequences

arithmetic progression: a sequence of the form \(a, a+d, a+2d, a+3d, \ldots, a+kd, \ldots \) for \(a, d \in \mathbb{R} \) with *initial term* \(a \) and *common difference* \(d \):

\[\text{ith term } a_i \text{ equals } a+id \quad (\forall i>0 \quad a_i-a_{i-1}=d) \]

geometric progression: a sequence of the form \(g, gr, gr^2, gr^3, \ldots, gr^k, \ldots \) for \(g, r \in \mathbb{R} \) with *initial term* \(g \) and *common ratio* \(r \):

\[\text{ith term } g_i \text{ equals } gr^i \quad (\forall i>0 \quad g_i/g_{i-1}=r) \]
Often needed: summations of sequences

- sum of elements of arithmetic progression
 \[a, a+d, a+2d, a+3d, \ldots, a+kd \]
- sum of elements of geometric progression
 \[g, gr, gr^2, gr^3, \ldots, gr^k, \]
- and sums of elements of similar sequences

for \(a_i = a+id \) determine \(a_0 + a_1 + \ldots + a_k = \sum_{i=0}^{k} a_i \)

for \(g_i = gr^i \) determine \(g_0 + g_1 + \ldots + g_k = \sum_{i=0}^{k} g_i \)

\Rightarrow \text{need to be familiar with methods to calculate such sums}
Sum of an arithmetic progression

\[a_i = a + id, \text{ then } a_0 + a_1 + a_2 + \ldots + a_k = \sum_{i=0}^{k} a_i \]

\[= \sum_{i=0}^{k} (a + id) = \sum_{i=0}^{k} a + \sum_{i=0}^{k} id \]

\[= (k + 1)a + d \sum_{i=0}^{k} i \]

\[= (k + 1)a + d \frac{k(k+1)}{2} = (k + 1)(a + \frac{dk}{2}) \]

here we use:

\[\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{i=1}^{k} i \right) / 2 \]

let \(j = k + 1 - i \), thus \(i = k + 1 - j \); \(j = k \) when \(i = 1 \) and \(j = 1 \) when \(i = k \); thus

\[\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{j=1}^{k} (k + 1 - j) \right) / 2 \]

\[= \left(\sum_{j=1}^{k} j + \sum_{j=1}^{k} (k + 1 - j) \right) / 2 = \left(\sum_{j=1}^{k} (j + (k + 1 - j)) \right) / 2 \]

\[= \left(\sum_{j=1}^{k} (k + 1) \right) / 2 = \frac{k(k + 1)}{2} \]
Often needed: summations of sequences

• sum of elements of arithmetic progression

\[a, a+d, a+2d, a+3d, \ldots, a+kd: \]

\[a_i = a+id \text{ determine } a_0 + a_1 + \ldots + a_k = \sum_{i=0}^{k} a_i \]

• sum of elements of geometric progression

\[g, gr, gr^2, gr^3, \ldots, gr^m: \]

\[g_j = gr^j \text{ determine } g_0 + g_1 + \ldots + g_m = \sum_{j=0}^{m} g_j \]

• sums of elements of related progression

\[r, 2r^2, 3r^3, 4r^4, \ldots, nr^n: \]

\[t_\ell = \ell r^\ell \text{ determine } t_1 + t_2 + \ldots + t_n = \sum_{\ell=1}^{n} t_\ell \]

⇒ need to be familiar with those sums
and with the methods to calculate them
Sum of a geometric progression, I

\[g_i = gr^i, \text{ then } g_0 + g_1 + g_2 + \ldots + g_k = \sum_{i=0}^{k} g_i = \sum_{i=0}^{k} gr^i = g \sum_{i=0}^{k} r^i \]

let \(S = \sum_{i=0}^{k} r^i; \) if \(r = 0 \) then \(S = 1 \)

assume \(r \neq 0 \), then \(S = r \sum_{i=0}^{k} r^{i-1} \), thus \(S / r = \sum_{i=0}^{k} r^{i-1} = 1 / r + \sum_{i=1}^{k} r^{i-1} \)

let \(i - 1 = j \), then \(j = 0 \) if \(i = 1 \), and \(j = k - 1 \) if \(i = k \), thus

\[
S / r = 1 / r + \sum_{j=0}^{k-1} r^j = 1 / r + \left(\sum_{j=0}^{k} r^j \right) - r^k = 1 / r + S - r^k
\]

with \(r \neq 0 \) it follows that \(S = 1 + rS - r^{k+1} \) and thus, if \(r \neq 1 \), that

\[
S = \frac{r^{k+1} - 1}{r - 1} \quad \text{(also valid for } r = 0; \text{ if } r = 1, \text{ then } S = k + 1)
\]

note: for \(0 \leq r < 1 \) it follows that \(\sum_{i=0}^{\infty} r^i = \frac{1}{1-r} \)
Sum of a geometric progression, II

another way to compute \(S = \sum_{i=0}^{k} r^i \)

let \(f(X) = 1 + X + X^2 + \ldots + X^k \) (then \(f(r) = S \))

\[Xf(X) = X + X^2 + \ldots + X^k + X^{k+1} \]

thus \(Xf(X) - f(X) = X^{k+1} - 1 \) and \(f(X) = \frac{X^{k+1} - 1}{X - 1} \) (if \(X \neq 1 \))

cleaner (without dots): \(f(X) = \sum_{i=0}^{k} X^i \), then

\[
(X - 1) f(X) = (X - 1) \sum_{i=0}^{k} X^i = X \sum_{i=0}^{k} X^i - \sum_{i=0}^{k} X^i
\]

\[= \sum_{i=0}^{k} X^{i+1} - \sum_{i=0}^{k} X^i = \sum_{j=1}^{k+1} X^j - \sum_{i=0}^{k} X^i = \sum_{i=1}^{k+1} X^i - \sum_{i=0}^{k} X^i
\]

\[= X^{k+1} + \sum_{i=1}^{k} X^i - X^0 - \sum_{i=1}^{k} X^i = X^{k+1} - 1 \]
Sum of an arithmetic progression

\[a_i = a + id, \text{ then } a_0 + a_1 + a_2 + ... + a_k = \sum_{i=0}^{k} a_i \]

\[= \sum_{i=0}^{k} (a + id) = \sum_{i=0}^{k} a + \sum_{i=0}^{k} id \]

\[= (k + 1)a + d \sum_{i=0}^{k} i \]

\[= (k + 1)a + d \frac{k(k + 1)}{2} = (k + 1)(a + \frac{dk}{2}) \]

Here we use:

\[\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{i=1}^{k} i \right) / 2 \]

Let \(j = k + 1 - i \), thus \(i = k + 1 - j \); \(j = k \) when \(i = 1 \) and \(j = 1 \) when \(i = k \); thus

\[\sum_{i=1}^{k} i = \left(\sum_{i=1}^{k} i + \sum_{j=1}^{k} (k + 1 - j) \right) / 2 \]

\[= \left(\sum_{j=1}^{k} j + \sum_{j=1}^{k} (k + 1 - j) \right) / 2 = \left(\sum_{j=1}^{k} (j + (k + 1 - j)) \right) / 2 \]

\[= \left(\sum_{j=1}^{k} (k + 1) \right) / 2 = \frac{k(k + 1)}{2} \]
Similar sum $T(r) = \sum_{i=0}^{k} ir^{i-1}$, determined in two ways (for $r \neq 1$)

1 differentiating $S(r) = \sum_{i=0}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1}$ leads to $T(r) = S'(r)$:

$$T(r) = S'(r) = \frac{(k + 1)r^{k}(r - 1) - (r^{k+1} - 1)}{(r - 1)^2} = \frac{kr^{k+1} - (k + 1)r^{k} + 1}{(r - 1)^2}$$

2 directly:

$$T(r) = \sum_{i=1}^{k} ir^{i-1} = \sum_{i=1}^{k} r^{i-1} + \sum_{i=1}^{k} (i - 1)r^{i-1}$$

$$= \sum_{i=0}^{k-1} r^{i} + r \sum_{i=1}^{k-1} (i - 1)r^{i-2} = \sum_{i=0}^{k-1} r^{i} + r \sum_{i=0}^{k-1} ir^{i-1}$$

$$= \frac{r^{k} - 1}{r - 1} + r(T(r) - kr^{k-1}) \quad \Rightarrow \quad T(r) \text{ follows}$$

(page 166/157: more summations, will be proved later)
Section 2.6/3.8: matrices

- if you’re not familiar with matrices: read it
- $k \times m$ rectangles of numbers: k rows, m columns
- originally to represent linear transformations from \mathbb{R}^m to \mathbb{R}^k
- wide variety of applications
Matrix product, traditional computation

∀ \(k, m, n \in \mathbb{Z}_{>0} \):

\[k \times m \text{ matrix } A = (a_{ij})_{i=1,j=1}^{k,m}, \]

\[m \times n \text{ matrix } B = (b_{j\ell})_{j=1,\ell=1}^{m,n}, \]

\[AB = C \text{ is } k \times n \text{ matrix } C = (c_{i\ell})_{i=1,\ell=1}^{k,n} \]

with \(c_{i\ell} = \sum_{j=1}^{m} a_{ij} b_{j\ell} \):

\(c_{i\ell} \) is inner product of \(A \)'s \(i \)th row and \(B \)'s \(\ell \)th column

- computation in \(k \times m \times n \) multiplications (disregarding additions)
- not commutative: even if \(AB \) and \(BA \) both defined, they are not necessarily equal
fye, matrix multiplication exponent

- traditional: $n \times n$ matrices A and B, computation of AB in n^3 multiplications
- can it be done faster?

yes, but no one knows how fast:

$\sim n^{2.3727}$ best so far

(compare to integer multiplication...)

(picture shamelessly copied from wikipedia)