Problem 1.

(a) **Base step.** Let \(n = 1 \). Since \(\sum_{i=1}^{1} f_i^2 = f_1^2 = 1 \) and \(f_1 f_2 = 1 \), then the assertion is true.

Induction step. Assume that \(\sum_{i=1}^{n} f_i^2 = f_n \cdot f_{n+1} \) for some \(n \geq 1 \). Then, using the induction hypothesis and the fact that \(f_{n+2} = f_{n+1} + f_n \), we obtain that

\[
\sum_{i=1}^{n+1} f_i^2 = \sum_{i=1}^{n} f_i^2 + f_{n+1}^2 = f_n \cdot f_{n+1} + f_{n+1}^2 = f_{n+1}(f_n + f_{n+1}) = f_{n+1} \cdot f_{n+2}
\]

(b) **Base step.** Let \(n = 1 \). Since \(f_2 f_0 - f_1^2 = 0 - 1 = -1 \) and \((-1)^1 = -1\), then the assertion is true.

Induction step. Assume that \(f_{n+1} \cdot f_{n-1} - f_n^2 = (-1)^n \) for some \(n \geq 1 \). Using the recursive definition \(f_{n+2} = f_{n+1} + f_n \), \(f_{n+1} = f_n + f_{n-1} \) and applying the induction hypothesis, we obtain

\[
f_{n+2}f_n - f_{n+1}^2 = (f_{n+1} + f_n)f_n - f_{n+1}(f_n + f_{n-1})
= f_{n+1}f_n + f_n^2 - f_{n+1}f_n - f_{n+1}f_{n-1}
= -(f_{n+1}f_n - f_n^2)
= (-1) \cdot (-1)^n
= (-1)^{n+1}.
\]

(c) **Base step.** Let \(n = 1 \). Observing that \[
\begin{bmatrix}
f_2 & f_1 \\
f_1 & f_0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\]
and recalling the definition of \(A \), we easily check the equality.

Induction step. Assume that \(A^n = \begin{bmatrix}
f_{n+1} & f_n \\
f_n & f_{n-1}
\end{bmatrix} \). Then, using the recursive definition \(f_{n+2} = f_{n+1} + f_n \), \(f_{n+1} = f_n + f_{n-1} \) and applying the induction hypothesis, we obtain

\[
A^{n+1} = A^n A = \begin{bmatrix}
f_{n+1} & f_n \\
f_n & f_{n-1}
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
= \begin{bmatrix}
f_{n+1} + f_n & f_{n+1} \\
f_n + f_{n-1} & f_n
\end{bmatrix}
= \begin{bmatrix}
f_{n+2} & f_{n+1} \\
f_{n+1} & f_n
\end{bmatrix}.
\]

Problem 2.

Let \(a_n \) be the answer to the problem and \(n = 3^k \). We have the following recursion : \(a_1 = 1 \), \(a_{3^k} = 3^k + a_{3^{k-1}} \), which follows immediately from the structure of the algorithm.

Claim: For all \(k \geq 0 \) we have that \(a_{3^k} = \frac{3^{2^k+1} - 1}{2} \).

Proof by induction.

Base step: \(a_{3^0} = 1 \). [And indeed, if \(n = 1 \), we print the sentence once.]
Induction step: Suppose that for \(k \geq 0 \) it is true that \(a_{3^k} = \frac{3^{k+1} - 1}{2} \). Then, using the recursion, we obtain \(a_{3^{k+1}} = 3^{k+1} + \frac{3^{k+1} - 1}{2} = \frac{3^{k+2} - 1}{2} \).

As a result, the phrase is printed \(\frac{3^{k+1} - 1}{2} = \frac{3n - 1}{2} \) times.

Problem 3. Let \(v \) be a vertex of the regular convex \(n \)-gon. The number of diagonals departing from \(v \) is \(n - 3 \), because there are \(n - 3 \) vertices which are not adjacent to \(v \). If we go over the \(n \) vertices and we sum the number of diagonals departing from each of them, we count every diagonal twice. Hence, the total number of diagonals is \(\frac{n(n - 3)}{2} \).

Problem 4.

(a) The first 3 letters are fixed, while the remaining 5 are free. Hence, this is equivalent to counting the strings of length 5 where each letter can take 26 different values. The total number of such strings is \(26^5 \).

(b) We fix the first 2 and the last 2 letters, while the remaining 4 are free. Therefore, there are \(26^4 \) possible strings.

(c) The number of strings which begin with \(ab \) is \(26^6 \), the number of strings which end with \(yz \) is \(26^6 \) and the number of strings which begin with \(ab \) and end with \(yz \) is \(26^4 \). By inclusion-exclusion principle the number of strings which begin with \(ab \) or end with \(yz \) is \(26^6 + 26^6 - 26^4 \).

(d) First of all, let us count the ways in which one can choose the positions of these four \(q \)'s. These are the combinations of 4 elements from a class of 12 without replacement, which means that there are \(\binom{12}{4} \) different ways of choosing the positions of the \(q \)'s. The remaining four positions are occupied by any of the 25 letters which is different from a \(q \). As a result, the total number of strings is \(\binom{12}{4} \cdot 25^4 \).

(e) **(Bonus.)** As concerns the first part of the question, counting the bit strings with exactly 4 1’s is equivalent to counting the ways in which one can choose the positions of these four 1’s. These are the combinations of 4 elements from a class of 12 without replacement. Therefore the solution is \(\binom{12}{4} \).

As concerns the second part of the question, let \(A \) be the set of bit strings of length 12 which have exactly four 1’s such that none of these 1’s are adjacent to each other. Let \(B \) be the set of bit strings of length 9 with exactly four 1’s. Consider a string \(a \in A \); it has four 1’s which are not adjacent to each other. Hence, each of the first three 1’s has to be followed by a 0. Consider the function \(f : A \to B \) which maps the string \(a \in A \) into the string \(b \in B \) such that \(b \) is obtained removing the three 0’s immediately after each of the first three 1’s of \(a \). It is easy to check that the function \(f \) is a bijection. Consequently, so \(|A| = |B| \). By reasons similar to those of point (d), \(|B| = \binom{9}{4} \) and, as a result, the solution is \(\binom{9}{4} \).