1 Rate of convergence: proofs

1.1 Reminder

Let $(X_n, n \geq 0)$ be a Markov chain with state space S and transition matrix P, and consider the following assumptions:

- X is ergodic (irreducible, aperiodic and positive-recurrent), so there exists a stationary distribution π and it is a limiting distribution as well.
- The state space S is finite, $|S| = N$.
- Detailed balance holds ($\pi_i p_{ij} = \pi_j p_{ji}$ $\forall i, j \in S$).

Statement 1.1. Under these assumptions, we have seen that there exist numbers $\lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_{N-1}$ and vectors $\phi^{(0)}, \phi^{(1)}, \ldots, \phi^{(N-1)} \in \mathbb{R}^N$ such that

$$P\phi^{(k)} = \lambda_k \phi^{(k)}, \quad k = 0, \ldots, N-1$$

and $\phi_j^{(k)} = \frac{u_j^{(k)}}{\sqrt{\pi_j}}$, where $u^{(0)}, \ldots, u^{(N-1)}$ is an orthonormal basis of \mathbb{R}^N ($u^{(k)}$ are the eigenvectors of the symmetric matrix Q, where $q_{ij} = \sqrt{\pi_i p_{ij} \frac{1}{\sqrt{\pi_j}}}$). Note that the $\phi^{(k)}$ do not usually form an orthonormal basis of \mathbb{R}^N.

Facts

1. $\phi_j^{(0)} = 1$ $\forall j \in S$, $\lambda_0 = 1$ and $|\lambda_k| \leq 1$ $\forall k \in \{0, \ldots, N-1\}$
2. $\lambda_1 < +1$ and $\lambda_{N-1} > -1$

Definition 1.2. Let us define $\lambda_* = \max_{k \in \{1, \ldots, N-1\}} |\lambda_k| = \max\{\lambda_1, -\lambda_{N-1}\}$. The spectral gap is defined as $\gamma = 1 - \lambda_*$.

![Figure 1: Spectral gap](image)

Theorem 1.3. Under all the assumptions made above, we have

$$\|P^n_i - \pi\|_{TV} = \frac{1}{2} \sum_{j \in S} |p_{ij}(n) - \pi_j| \leq \frac{1}{2\sqrt{\pi_i}} \lambda_*^n \leq \frac{1}{2\sqrt{\pi_i}} e^{-\gamma n}, \quad \forall i \in S, n \geq 1$$
1.2 Proof of Fact 1

Let us first prove that $\phi_j^{(0)} = 1 \ \forall j \in S$ and $\lambda_0 = 1$.

Consider $\phi_j^{(0)} = 1 \ \forall j \in S$: we will prove that $(P\phi^{(0)})_i = \phi_i^{(0)}$ (so $\lambda_0 = 1$):

$$(P\phi^{(0)})_i = \sum_{j \in S} p_{ij} \phi_j^{(0)} = \sum_{j \in S} p_{ij} = 1 = \phi_i^{(0)}$$

Also, we know that $\phi_i^{(0)} = \frac{u_i^{(0)}}{\sqrt{\pi_i}}$, so $u_i^{(0)} = \sqrt{\pi_i} \phi_i^{(0)} = \sqrt{\pi_i}$. The norm of $u^{(0)}$ is therefore equal to 1:

$$||u^{(0)}||^2 = \sum_{i \in S} (u_i^{(0)})^2 = \sum_{i \in S} \pi_i = 1$$

Let us then prove that $|\lambda_k| \leq 1 \ \forall k \in \{0, \ldots, N - 1\}$.

Let $\phi^{(k)}$ be the eigenvector corresponding to λ_k. We define i to be such that $|\phi_i^{(k)}| \geq |\phi_j^{(k)}| \ \forall j \in S$ ($|\phi_i^{(0)}| > 0$ because an eigenvector cannot be all-zero). We will use $P\phi^{(k)} = \lambda_k \phi^{(k)}$ in the following:

$$|\lambda_k \phi_i^{(k)}| = |(P\phi^{(k)})_i| = \sum_{j \in S} p_{ij} \phi_j^{(k)} \leq \sum_{j \in S} p_{ij} |\phi_j^{(k)}| \leq |\phi_i^{(k)}| \sum_{j \in S} p_{ij} \leq |\phi_i^{(k)}| \sum_{j \in S} p_{ij} = |\phi_i^{(k)}| \sum_{j \in S} p_{ij}$$

So we have $|\lambda_k||\phi_i^{(k)}| \leq |\phi_i^{(k)}|$, which implies that $|\lambda_k| \leq 1$, as $|\phi_i^{(k)}| > 0$.

1.3 Proof of Fact 2

We want to prove that $\lambda_1 < +1$ and $\lambda_{N-1} > -1$, which together imply that $\lambda_s < 1$.

By the assumptions made, we know that the chain is irreducible, aperiodic and finite, so $\exists n_0 > 1$ such that $p_{ij}(n) > 0, \forall i, j \in S, \forall n \geq n_0$.

$\lambda_1 < +1$:

Assume ϕ is such that $P\phi = \phi$: we will prove that ϕ can only be a multiple of $\phi^{(0)}$, which implies that the eigenvalue $\lambda = 1$ has a unique eigenvector associated to it, so $\lambda_1 < 1$. Take i such that $|\phi_i| \geq |\phi_j|, \forall j \in S$, and let $n \geq n_0$.

$$\phi_i = (P\phi)_i = (P^n\phi)_i \overset{(\ast)}{=} \sum_{j \in S} p_{ij}(n) \phi_j$$

so

$$|\phi_i| = \sum_{j \in S} p_{ij}(n) |\phi_j| \leq \sum_{j \in S} p_{ij}(n) |\phi_j| \leq |\phi_i| \sum_{j \in S} p_{ij}(n) \leq |\phi_i|$$

So we have $|\phi_i| \leq \sum_{j \in S} p_{ij}(n) |\phi_j| \leq |\phi_i|$. To have equality, we clearly need to have $|\phi_i| = |\phi_j|, \forall j \in S$ (because $p_{ij}(n) > 0$ for all i, j and $\sum_{j \in S} p_{ij}(n) = 1$ for all $i \in S$). Because (\ast) is satisfied, we also have $\phi_i = \sum_{j \in S} p_{ij}(n) \phi_j$, which in turn implies that $\phi_j = \phi_i$ for all $j \in S$. So the vector ϕ is constant.

2
\(\lambda_{N-1} > -1 : \)

Assume there exists \(\phi \neq 0 \) such that \(P\phi = -\phi \); we will prove that this is impossible, showing therefore that no eigenvalue can take the value \(-1\). Take \(i \) such that \(|\phi_i| \geq |\phi_j|, \forall j \in S \) and let \(n \) odd be such that \(n \geq n_0 \).

Now, as \(P^n\phi = -\phi \), we have \(-\phi_i = \sum_{j \in S} p_{ij}(n) \phi_j \) and \(|\phi_i| \leq \sum_{j \in S} p_{ij}(n) |\phi_j| \leq |\phi_i| \). So, as above, we need to have \(|\phi_j| = |\phi_i| \), for all \(j \in S \) and then, thanks to \((*)\), \(\phi_j = -\phi_i \), for all \(j \in S \). This implies that \(\phi_i = -\phi_i = 0 \), and leads to \(\phi_j = 0 \) for all \(j \in S \), which is impossible. \(\square \)

1.4 Proof of the theorem

We will first use the Cauchy-Schwarz inequality which states that

\[
\left| \sum_{j \in S} a_j b_j \right| \leq \left(\sum_{j \in S} a_j^2 \right)^{1/2} \left(\sum_{j \in S} b_j^2 \right)^{1/2}
\]

so as to obtain

\[
\|P^n - \pi\|_{TV} = \frac{1}{2} \sum_{j \in S} \left| \frac{p_{ij}(n) - \pi_j}{\sqrt{\pi_j}} \right| \sqrt{\pi_j} \leq \frac{1}{2} \left(\sum_{j \in S} \left(\frac{p_{ij}(n)}{\sqrt{\pi_j}} - \sqrt{\pi_j} \right)^2 \right)^{1/2} \left(\sum_{j \in S} \pi_j \right)^{1/2}
\]

\[
= \frac{1}{2} \left(\sum_{j \in S} \left(\frac{p_{ij}(n)}{\sqrt{\pi_j}} - \sqrt{\pi_j} \right)^2 \right)^{1/2}
\]

Lemma 1.4.

\[
\frac{p_{ij}(n)}{\sqrt{\pi_j}} - \sqrt{\pi_j} = \sqrt{\pi_j} \sum_{k=1}^{N-1} \lambda^n_k \phi_i^{(k)} \phi_j^{(k)}
\]

Proof. Remember that \(u^{(0)}, \ldots, u^{(N-1)} \) is an orthonormal basis of \(\mathbb{R}^N \), so we can write for any \(v \in \mathbb{R}^N \)

\(v = \sum_{k=0}^{N-1} (v^T u^{(k)}) u^{(k)} \) i.e. \(v_j = \sum_{k=0}^{N-1} (v^T u^{(k)}) u_j^{(k)} \). For a fixed \(i \in S \), take \(v_j = \frac{p_{ij}(n)}{\sqrt{\pi_j}} \). We obtain

\[
(v^T u^{(k)}) = \sum_{j \in S} \frac{p_{ij}(n)}{\sqrt{\pi_j}} u_j^{(k)} = \sum_{j \in S} p_{ij}(n) \phi_j^{(k)} = (P^n \phi^{(k)})_i = \lambda^n_k \phi_i^{(k)}
\]

which in turn implies

\[
v_j = \frac{p_{ij}(n)}{\sqrt{\pi_j}} = \sum_{k=0}^{N-1} \lambda^n_k \phi_i^{(k)} u_j^{(k)} = \sum_{k=0}^{N-1} \lambda^n_k \phi_i^{(k)} \phi_j^{(k)} \sqrt{\pi_j} = \lambda^n_k \phi_i^{(0)} \phi_j^{(0)} \sqrt{\pi_j} + \sqrt{\pi_j} \sum_{k=1}^{N-1} \lambda^n_k \phi_i^{(k)} \phi_j^{(k)}
\]

\(\square \)
Let us continue with the proof of the theorem using this lemma.

\[
\|P^n_t - \pi\|_{TV} \leq \frac{1}{2} \left(\sum_{j \in S} \frac{(p_{ij}(n) - \sqrt{\pi_j})^2}{\sqrt{\pi_j}} \right)^{1/2} = \frac{1}{2} \left(\sum_{j \in S} \sqrt{\pi_j} \sum_{k=1}^{N-1} \lambda_k \phi_i^{(k)} \phi_j^{(k)} \right)^{1/2} = \frac{1}{2} \left(\sum_{k,l=1}^{N-1} \lambda_k \phi_i^{(k)} \phi_j^{(k)} \sum_{j \in S} \pi_j \phi_j^{(k)} \phi_j^{(l)} \right)^{1/2} = \frac{1}{2} \left(\sum_{k=1}^{N-1} \lambda_k^2 (\phi_i^{(k)})^2 \right)^{1/2}
\]

where we have used the fact that \(\sum_{j \in S} \pi_j \phi_j^{(k)} \phi_j^{(l)} = \sum_{j \in S} u_j^{(k)} u_j^{(l)} = (u^{(k)})^T (u^{(l)}) = \delta_{kl}\). Remembering now that |\(\lambda_k\) ≤ \(\lambda_*\) for every 1 ≤ k ≤ N − 1, we obtain

\[
\|P^n_t - \pi\|_{TV} \leq \frac{1}{2} \lambda_{\max}^n \left(\sum_{k=1}^{N-1} (\phi_i^{(k)})^2 \right)^{1/2}
\]

In order to compute the term in parentheses, remember again that \(v_j = \sum_{k=0}^{N-1} (v^T u^{(k)}) u_j^{(k)}\) for every \(v \in \mathbb{R}^N\), so by choosing \(v = e_i\), i.e., \(v_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}\), we obtain:

\[
v^T u^{(k)} = u_i^{(k)} \quad \text{and} \quad \delta_{ij} = \sum_{k=0}^{N-1} u_i^{(k)} u_j^{(k)}
\]

For \(i = j\), we get \(\delta_{ii} = 1 = \sum_{k=0}^{N-1} (v_i^{(k)})^2 = \sum_{k=0}^{N-1} \pi_i (\phi_i^{(k)})^2\), so

\[
\sum_{k=1}^{N-1} (\phi_i^{(k)})^2 = \sum_{k=0}^{N-1} (\phi_i^{(k)})^2 - (\phi_i^{(0)})^2 = \frac{1}{\pi_i} - 1 \leq \frac{1}{\pi_i}
\]

which finally leads to the inequality

\[
\|P^n_t - \pi\|_{TV} \leq \frac{\lambda_{\max}^n}{2\sqrt{\pi_i}}
\]

and therefore completes the proof.

\[\square\]

1.5 Lazy random walks

Adding self-loops to a Markov chain makes it a priori “lazy”. Surprisingly perhaps, this might in some cases speed up the convergence to equilibrium!

Adding self-loops of weight \(\alpha \in (0, 1)\) to every state has the following impact on the transition matrix: assuming \(P\) is the transition matrix of the initial Markov chain, the new transition matrix \(\tilde{P}\) becomes

\[
\tilde{P} = \alpha I + (1 - \alpha) P
\]

As a consequence:

- The eigenvalues also change from \(\lambda_k\) to \(\tilde{\lambda}_k = \alpha + (1 - \alpha) \lambda_k\), which sometimes reduces the value of \(\lambda_* = \max_{1 \leq k \leq N-1} |\lambda_k|\). The spectral gap being equal to \(\gamma = 1 - \lambda_*\), we obtain that by reducing \(\lambda_*\), we might increase the spectral gap as well as the convergence rate to equilibrium.
Note that λ_0 stays the same: $\tilde{\lambda}_0 = \alpha + (1 - \alpha)\lambda_0 = 1$, as well as the stationary distribution π:

$$\pi\tilde{P} = \pi (\alpha I + (1 - \alpha)P) = \alpha\pi + (1 - \alpha)\pi P = \pi$$

Example 1.5. Random walk on the circle with $N = 3$:

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix} \xrightarrow{\text{add } \alpha} \tilde{P} = \begin{pmatrix} \frac{\alpha}{2} & \frac{1-\alpha}{2} & \frac{1-\alpha}{2} \\ \frac{1-\alpha}{2} & \frac{\alpha}{2} & \frac{1-\alpha}{2} \\ \frac{1-\alpha}{2} & \frac{1-\alpha}{2} & \frac{\alpha}{2} \end{pmatrix}$$

Example 1.6 (PageRank). The principle behind Google’s search engine algorithm is as follows. One can represent the web as a graph with the hyperlinks being the edges and the webpages being the vertices. We define the transition probabilities of a random walk on this graph as

$$p_{ij} = \frac{1}{d_i} \forall j \text{ connected to } i$$

where d_i is the outgoing degree of webpage i.

The principle is that the most popular pages are the webpages visited the most often. If π is the stationary distribution of the above random walk, then π_i is a good indicator of the popularity of page i. We therefore need to solve $\pi = \pi P$. In practice however, due to the size of the state space, solving this linear system takes too long in real time. What PageRank does is to compute instead $\pi^{(0)}P^n$ for some initial distribution $\pi^{(0)}$ and a small value of n, which is meant to give a good approximation of the stationary distribution π. The quality of the approximation is of course directly linked to the rate of convergence to equilibrium. Adding self-loops of weight α to the graph seems to help in this case: the practical value chosen for α is around 15%.

NB: The above analysis unfortunately does not hold for the actual web: its graph being directed, detailed balance cannot hold! But the same phenomenon happens: adding self-loops speeds up convergence.