Exercise 1. Let \(d \geq 1 \) and \(m > 2 \) be integers, and let us consider the following process on \(S = \{0, \ldots, m-1\}^d \): at each step, from state \(x \in S \), pick a component of \(x \) uniformly at random and change it to another number in \(\{0, \ldots, m-1\} \), chosen again uniformly at random.

a) Write down the transition matrix \(P \) of this chain. Is this chain is ergodic? What is its stationary distribution? Is the detailed balance equation satisfied?

It turns out that the eigenvectors of \(P \) are given by \((\phi(z), \ z \in S)\), where
\[
\phi_x(z) = \exp(2\pi ix \cdot z/m), \quad x \in S,
\]
and \(x \cdot z = \sum_{j=1}^{d} x_j z_j \).

b) Compute the corresponding eigenvalues \((\lambda_z, \ z \in S)\) of \(P \).

Hint: Express these in terms of \(|z| = \sharp\{ \text{ non-zero components of } z \}\).

c) Deduce the value of the spectral gap for \(d > 2 \), as well as a corresponding upper bound on \(\| P^m_0 - \pi \|_{TV} \).

d) Compare this upper bound to the general lower bound found in class. Do these two bounds match for large \(m \) and \(d \)?

e) Through a more careful analysis, find a tighter upper bound on \(\| P^m_0 - \pi \|_{TV} \) for large \(m \) and \(d \).

Exercise 2. Regarding the lazy random walk on \(\{0, 1\}^d \), we saw in class that \(\| P^m_0 - \pi \|_{TV} \) is arbitrarily close to 1 for
\[
n = \frac{d+1}{4} (\log d - c)
\]
and \(c > 0 \) arbitrarily large. Following the reasoning made in class (but the technique is simpler here!), show that the following distance:
\[
\| P^m_0 - \pi \|_2 = \left(\sum_{y \in \{0,1\}^d} \left(\frac{p_{0y}(n)}{\sqrt{\pi_y}} - \sqrt{\pi_y} \right)^2 \right)^{1/2}
\]
can be made arbitrarily large by taking again \(n = \frac{d+1}{4} (\log d - c) \) and \(c > 0 \) arbitrarily large.

NB: The above distance is the \(\ell^2 \)-distance between \(P^m_0 \) and \(\pi \); it has been shown in class to be an upper bound on \(\| P^m_0 - \pi \|_{TV} \) (with an extra factor 2).