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We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key
distribution. We first give a key distribution protocol based on entanglement purification, which can
be proven secure using methods from Lo and Chau’s proof of security for a similar protocol. We then
show that the security of this protocol implies the security of BB84. The entanglement-purification
based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to
remove the use of quantum computation from the Lo-Chau protocol.

Quantum cryptography differs from conventional cryp-
tography in that the data are kept secret by the proper-
ties of quantum mechanics, rather than by the conjec-
tured difficulty of computing certain functions. The first
quantum key distribution protocol, proposed in 1984 [1],
is called BB84 after its inventors (C. H. Bennett and G.
Brassard). In this protocol, the participants (Alice and
Bob) wish to agree on a secret key about which no eaves-
dropper (Eve) can obtain significant information. Alice
sends each bit of the secret key in one of a set of conjugate
bases which Eve does not know, and this key is protected
by the impossibility of measuring the state of a quantum
system simultaneously in two conjugate bases. The origi-
nal papers proposing quantum key distribution [1] proved
it secure against certain attacks, including those feasi-
ble using current experimental techniques. However, for
many years, it was not rigorously proven secure against
an adversary with the ability to perform any physical
operation permitted by quantum mechanics.

Recently, three proofs of the security of quantum key
distribution protocols have been discovered; however,
none of these is entirely satisfactory. One proof [2], al-
though relatively easy to understand, has the drawback
that the protocol requires a quantum computer. The
other two [3,4] both prove the security of a protocol based
on BB84, and so are applicable to near-practical settings.
However, both proofs are quite complicated and rela-
tively difficult to understand. We give a much simpler
proof by relating the security of BB84 to entanglement
purification protocols [5] and quantum error correcting
codes. This proof also may illuminate some properties of
the previous proofs [3,4], and thus give insight into them.
For example, it elucidates why the rates obtainable from
these proofs are related to rates for CSS codes. The proof
was in fact inspired by the observation that CSS codes
are hidden in the inner workings of the proof given in [3].

We first review CSS codes and associated entangle-
ment purification protocols. Quantum error-correcting
codes are subspaces of the Hilbert space C2n

which are
protected from errors in a small number of these qubits,
so that any such error can be measured and subsequently
corrected without disturbing the encoded state. A quan-
tum CSS code Q on n qubits comes from two binary

codes on n bits, C1 and C2, one contained in the other:

{0} ⊂ C2 ⊂ C1 ⊂ Fn
2 ,

where Fn
2 is the binary vector space on n bits [6].

A set of basis states (which we call codewords) for the
CSS code subspace can be obtained from vectors v ∈ C1

as follows:

v −→ 1
|C2|1/2

∑

w∈C2

| v + w〉 . (1)

If v1 − v2 ∈ C2, then the codewords corresponding to v1

and v2 are the same. Hence these codewords correspond
to cosets of C2 in C1, and this code protects a Hilbert
space of dimension 2dim C1−dim C2 .

The above quantum code is equivalent to the dual code
Q∗ obtained from the two binary codes

{0} ⊂ C⊥
1 ⊂ C⊥

2 ⊂ Fn
2 .

This equivalence can be demonstrated by applying the
Hadamard transform

H =
1√
2

(

1 1
1 −1

)

to each encoding qubit. This transformation interchanges
the bases | 0〉, | 1〉 and |+〉, |−〉, where |+〉 = 1√

2
(| 0〉 +

| 1〉) and |−〉 = 1√
2
(| 0〉 − | 1〉). It also interchanges the

subspace corresponding to the code Q and the subspace
corresponding to Q∗, although the codewords (given by
Eq. 1) of Q and Q∗ are not likewise interchanged.

We now make a brief technical detour to define some
terms. The three Pauli matrices are:

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

.

The matrix σx applies a bit flip error to a qubit, while
σz applies a phase flip error. We denote the Pauli matrix
σa acting on the k’th bit of the CSS code by σa(k) for
a ∈ {x, y, z}. For a binary vector s, we let

σ[s]
a = σs1

a(1) ⊗ σs2
a(2) ⊗ σs3

a(3) ⊗ . . . ⊗ σsn

a(n)

where σ0
a is the identity matrix and si is the i’th bit of s.

The matrices σ[s]
x (σ[s]

z ) have all eigenvalues ±1.
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In a classical error correcting code, the error correction
proceeds by measuring the syndrome, which is done as
follows. A parity check matrix H of a code C is a basis
of the dual vector space C⊥. Suppose that we transmit a
codeword v, which acquires errors to become w = v + ε.
The k’th row rk of the matrix H determines the k’th
bit of the syndrome for w, namely rk · w (mod 2). The
full syndrome is thus Hw. If the syndrome is 0, then
w ∈ C. Otherwise, the most likely value of the error ε
can be calculated from the syndrome [7]. In our quan-
tum CSS code, we need to correct both bit and phase
errors. Let H1 be a parity check matrix for the code C1,
and H2 one for the code C⊥

2 . To calculate the syndrome
for bit flips, we measure the eigenvalue of σ[r]

z for each
row r ∈ H1 (−1’s and 1’s of the eigenvalue correspond to
1’s and 0’s of the syndrome). To calculate the syndrome
for phase flips, we measure the eigenvalue of σ[r]

x for each
row r ∈ H2. This lets us correct both bit and phase
flips, and if we can correct up to t of each of these types
of errors, we can also correct arbitrary errors on up to t
qubits [6].

The useful property of CSS codes for demonstrating
the security of BB84 is that the error correction for the
phases is decoupled from that for the bit values, as shown
above. General quantum stabilizer codes can similarly be
turned into key distribution protocols, but these appear
to require a quantum computer to implement.

If one requires that a CSS code correct all errors on at
most t = δn qubits, the best codes that we know exist
satisfy the quantum Gilbert-Varshamov bound. As the
block length n goes to infinity, these codes asymptoti-
cally protect against δn bit errors and δn phase errors,
and encode [1 − 2H(2δ)]n qubits, where H is the binary
Shannon entropy H(p) = −p log2(p)− (1−p) log2(1−p).
In practice, it is better to only require that random errors
are corrected with high probability. In this case, codes
exist that correct δn random phase errors and δn random
bit errors, and which encode [1 − 2H(δ)]n qubits.

We also need a description of the Bell basis. These are
the four maximally entangled states

Ψ± =
1√
2
(| 01〉± | 10〉), Φ± =

1√
2
(| 00〉± | 11〉),

which form an orthogonal basis for the quantum state
space of two qubits.

Finally, we introduce a class of quantum error correct-
ing codes equivalent to Q, and parameterized by two n-
bit binary vectors x and z. Suppose that Q is determined
as above by C1 and C2. Then Qx,z has basis vectors in-
dexed by cosets of C2 in C1, and for v ∈ C1, the corre-
sponding codeword is

v −→ 1
|C2|1/2

∑

w∈C2

(−1)z·w |x + v + w〉 . (2)

We can now describe the entanglement purification
protocol corresponding to the CSS code Q described

above. For now, we assume that the codes C1 and C⊥
2

correct up to t errors and that Q encodes m qubits into
n qubits. Suppose Alice and Bob share n pairs of qubits
in a state close to (Φ+)⊗n. For the entanglement purifi-
cation protocol, Alice and Bob separately measure the
eigenvalues of σ[r]

z for each row r ∈ H1 and σ[r′]
x for each

row r′ ∈ H2. Note that for these measurements to be
performable simultaneously, they must all commute; σ[r]

z

and σ[r′]
x commute because the vector spaces C⊥

1 and C2

are orthogonal.
If Alice and Bob start with n perfect EPR pairs, mea-

suring σ[r]
z for r ∈ H1 and σ[r]

x for r ∈ H2 projects each
of their states onto the code subspace Qx,z, where x and
z are any binary vectors with H1x and H2z equal to the
measured bit and phase syndromes, respectively. After
projection, the state is (Φ+)⊗m encoded by Qx,z.

Now, suppose that Alice and Bob start with a state
close to (Φ+)⊗n. To be specific, suppose that all their
EPR pairs are in the Bell basis, with t or fewer bit flips
(Ψ+ or Ψ− pairs) and t or fewer phase flips (Φ− or Ψ−

pairs). From the outcomes of their measurements, Al-
ice and Bob can deduce the locations of the bit and the
phase flips, and then decode Qx,z to obtain m perfect
EPR pairs.

We will show that the following is a secure quantum
key distribution protocol.

Protocol 1: Modified Lo-Chau

1: Alice creates 2n EPR pairs in the state (Φ+)⊗n.
2: Alice selects a random 2n bit string b, and performs

a Hadamard transform on the second half of each
EPR pair for which b is 1.

3: Alice sends the second half of each EPR pair to
Bob.

4: Bob receives the qubits and publicly announces this
fact.

5: Alice selects n of the 2n encoded EPR pairs to serve
as check bits to test for Eve’s interference.

6: Alice announces the bit string b, and which n EPR
pairs are to be check bits.

7: Bob performs Hadamards on the qubits where b
is 1.

8: Alice and Bob each measure their halves of the n
check EPR pairs in the | 0〉, | 1〉 basis and share the
results. If too many of these measurements dis-
agree, they abort the protocol.

9: Alice and Bob make the measurements on their
code qubits of σ[r]

z for each row r ∈ H1 and σ[r]
x

for each row r ∈ H2. Alice and Bob share the re-
sults, and transform their state so as to obtain m
nearly perfect EPR pairs.

10: Alice and Bob measure the EPR pairs in the | 0〉,
| 1〉 basis to obtain a shared secret key.
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We now show that this protocol works. Namely, we
show that the probability is exponentially small that Al-
ice and Bob agree on a key about which Eve can obtain
more than an exponentially small amount of information.
We need a result of Lo and Chau [2] that if Alice and
Bob share a state having fidelity 1 − 2−s with (Φ+)⊗m,
then Eve’s mutual information with the key is at most
2−c + 2O(−2s) where c = s − log2(2m + s + 1/ loge 2).

For the proof, we use an argument based on one from
Lo and Chau [2]. In this argument, we need to be careful
about which variables commute and which do not. Let
us consider measuring all the EPR pairs in the Bell basis.
This measurement commutes neither with the protocol’s
measurements on the code bits nor with its measurements
on the check bits. Nevertheless, it lets us calculate the
probability that the test on the check bits succeeds while
the entanglement purification on the code bits fails.

We first consider the check bits. Note that for the EPR
pairs where b = 1, Alice and Bob are effectively measur-
ing them in the |+〉, |−〉 basis rather than the | 0〉, | 1〉
basis. Now, observe that
∣

∣Ψ+
〉 〈

Ψ+
∣

∣ +
∣

∣Ψ−〉 〈

Ψ− ∣

∣ = | 01 〉 〈 01 |+ | 10 〉 〈 10 | ,
∣

∣Φ−〉 〈

Φ− ∣

∣ +
∣

∣Ψ−〉 〈

Ψ− ∣

∣ = |+−〉 〈+− |+ |−+〉 〈−+ | .

These relations show that the rates of bit flip errors and
of phase flip errors that Alice and Bob estimate from
their measurements on check bits are the same as they
would have estimated using the Bell basis measurement.

We next consider the measurements on the code bits.
Although the Bell basis measurements do not commute
with either Alice’s or Bob’s measurement σ[r]

z (or σ[r]
x ),

they do commute with the joint measurement σ[r]
z [Alice]⊗

σ[r]
z [Bob]. This shows that if t or fewer bit flip errors and

t or fewer phase flip errors would be measured in the Bell
basis, then the original quantum state is indeed taken to
(Φ+)m by the protocol.

Now, when Eve has access to the qubits, she does not
yet know which qubits are check qubits and which are
code qubits, so she cannot treat them differently. The
check qubits that Alice and Bob measure thus behave
like a classical random sample of the qubits. We are
then able to use the measured error rates in a classical
probability estimate; we find that probability of obtain-
ing more than δn bit (phase) errors on the code bits and
fewer than (δ− ε)n errors on the check bits is asymptoti-
cally less than exp[− 1

4ε2n/(δ − δ2)]. We conclude that if
Alice and Bob have greater than an exponentially small
probability of passing the test, then the fidelity of Alice
and Bob’s state with (Φ+)m is exponentially close to 1.

We now show how to turn this Lo-Chau type protocol
into a quantum error-correcting code protocol. Observe
first that it does not matter whether Alice measures her
check bits before or after she transmits half of each EPR
pair to Bob, and similarly that it does not matter whether

she measures the syndrome before or after this transmis-
sion. If she measures the check bits first, this is the same
as choosing a random one of | 0〉, | 1〉. If she also measures
the syndrome first, this is equivalent to transmitting m
EPR pairs encoded by the CSS code Qx,z for two ran-
dom vectors x, z ∈ Fn

2 . The vector x is determined by
the syndrome measurements σ[r]

z for rows r ∈ H1, and
similarly for z. Alice can also measure her half of the
encoded EPR pairs before or after transmission. If she
measures them first, this is the same as choosing a ran-
dom key k and encoding k using Qx,z. We thus obtain
the following equivalent protocol.

Protocol 2: CSS Codes

1: Alice creates n random check bits, a random m-bit
key k, and a random 2n-bit string b.

2: Alice chooses n-bit strings x and z at random.
3: Alice encodes her key | k〉 using the CSS code Qx,z

4: Alice chooses n positions (out of 2n) and puts the
check bits in these positions and the code bits in
the remaining positions.

5: Alice applies a Hadamard transform to those qubits
in the positions having 1 in b.

6: Alice sends the resulting state to Bob. Bob ac-
knowledges receipt of the qubits.

7: Alice announces b, the positions of the check bits,
the values of the check bits, and the x and z deter-
mining the code Qx,z.

8: Bob performs Hadamards on the qubits where b is
1.

9: Bob checks whether too many of the check bits have
been corrupted, and aborts the protocol if so.

10: Bob decodes the key bits and uses them for the key.

Intuitively, the security of the protocol depends on the
fact that for a sufficiently low error rate, a CSS code
transmits the information encoded by it with very high
fidelity, so that by the no-cloning principle very little in-
formation can leak to Eve.

We now give the final argument that turns the above
protocol into BB84. First note that, since all Bob cares
about are the bit values of the encoded key, and the string
z is only used to correct the phase of the encoded qubits,
Bob does not need z. This is why we use CSS codes:
they decouple the phase correction from the bit correc-
tion. Since Alice need not send z, we can consider the
protocol averaged over z, keeping everything else fixed.
Let k′ ∈ Fn

2 be a binary vector that is mapped by Eq. (2)
to the encoded key. By averaging over all z’s, Alice sends
the mixed state

1
2n|C2|

∑

z

[

∑

w1,w2∈C2

(−1)(w1+w2)·z | k′ + w1 + x〉 〈k′ + w2 + x |
]

=
1

|C2|
∑

w∈C2

| k′ + w + x〉 〈k′ + w + x | ,
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which is equivalently the mixture of states | k′ + x + w〉
with w chosen randomly in C2. Let us now look at the
protocol as a whole. The error correction information Al-
ice gives Bob is x, and Alice sends | k′ + x + w〉 over the
quantum channel. Over many iterations of the algorithm,
these are random variables chosen uniformly in Fn

2 with
the constraint that their difference k′ +w is in C1. After
Bob receives k′ + w + x + ε, he subtracts x, and corrects
the result to a codeword in C1, which is almost certain
to be k′ + w. The key is the coset of k′ + w over C2.

In the BB84 protocol given below, Alice sends | v〉 to
Bob, with error correction information u + v. These are
again two random variables uniform in Fn

2 , with the con-
straint that u ∈ C1. Bob obtains v + ε, subtracts u + v,
and corrects the result to a codeword in C1, which with
high probability is u. The key is then the coset u + C2.
Thus, the two protocols are completely equivalent.

Protocol 3: BB84

1: Alice creates (4 + δ)n random bits.
2: Alice chooses a random (4 + δ)n-bit string b. For

each bit, she creates a state in the | 0〉, | 1〉 basis
(if the corresponding bit of b is 0) or the |+〉, |−〉
basis (if the bit of b is 1).

3: Alice sends the resulting qubits to Bob.
4: Bob receives the (4+ δ)n qubits, measuring each in

the | 0〉,| 1〉 or the |+〉,|−〉 basis at random.
5: Alice announces b.
6: Bob discards any results where he measured a dif-

ferent basis than Alice prepared. With high prob-
ability, there are at least 2n bits left (if not, abort
the protocol). Alice decides randomly on a set of 2n
bits to use for the protocol, and chooses at random
n of these to be check bits.

7: Alice and Bob announce the values of their check
bits. If too few of these values agree, they abort
the protocol.

8: Alice announces u + v, where v is the string con-
sisting of the remaining non-check bits, and u is a
random codeword in C1.

9: Bob subtracts u+v from his code qubits, v+ε, and
corrects the result, u + ε, to a codeword in C1.

10: Alice and Bob use the coset of u + C2 as the key.

There are a few loose ends that need to be tied up.
The protocol given above uses binary codes C1 and C⊥

2

with large minimum distance, and thus can obtain rates
given by the quantum Gilbert-Varshamov bound for CSS
codes [6]. To reach the better Shannon bound for CSS
codes, we need to use codes for which a random small set
of phase errors and bit errors can almost always be cor-
rected. To prove that the protocol works in this case, we
need to ensure that the errors are indeed random. We do
this by adding a step where Alice scrambles the qubits
using a random permutation π before sending them to

Bob, and a step after Bob acknowledges receiving the
qubits where Alice sends π to Bob and he unscrambles
the qubits. This gives a maximum error rate of 11%, the
point at which the Shannon rate 1 − 2H(δ) hits 0.

For a practical key distribution protocol we need the
classical code C1 to be efficiently decodeable. As is shown
in [3], we can let C2 be a random subcode of an efficiently
decodeable code C1, and with high probability obtain a
good code C⊥

2 . While known efficiently decodeable codes
do not meet the Shannon bound, they come fairly close.

A weakness in both the proof given in this paper and
the proofs in [3,4] is that they do not apply to imper-
fect sources; the sources must be perfect single-photon
sources. A proof avoiding this difficulty was recently dis-
covered by Michael Ben-Or [8]; it shows that any source
sufficiently close to a single-photon source is still secure.
However, most experimental quantum key distribution
systems use weak coherent sources, and no currently
known proof covers this case.
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