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In the task cryptographers call bit commitment, one party encrypts a prediction in a way that
cannot be decrypted until they supply a key, but has only one valid key. Bit commitment has
many applications, and has been much studied, but completely and provably secure schemes have
remained elusive. Here we report a new development in physics-based cryptography which gives
a completely new way of implementing bit commitment that is perfectly secure. The technique
involves sending a quantum state (for instance one or more photons) at light speed in one of two
or more directions, either along a secure channel or by quantum teleportation. Its security proof
relies on the no-cloning theorem of quantum theory and the no superluminal signalling principle of
special relativity.

I. SUMMARY

We report a new form of cryptography that relies on sending a quantum state at light speed, and show that it
solves a longstanding cryptographic problem.

II. INTRODUCTION

Alice and Bob participate in a stock market that trades at a specific physical site. Alice has a way of generating
market predictions, which she wishes to demonstrate to Bob, in such a way that he can verify the accuracy of her
predictions post hoc, but cannot possibly exploit them before the predicted events occur. Bob needs a guarantee that
Alice’s predictions were genuinely made at or before the point she claims they were, and were not retroactively altered
post hoc. They can solve their dilemma with a suitably secure protocol for bit commitment.
Much attention has been devoted to the problem of bit commitment, which is a basic cryptographic task that is

important per se, and has many applications to other more complex tasks. It also has intriguingly deep connections
to fundamental physics, which have been uncovered in the search for bit commitment schemes whose security is
guaranteed by the laws of physics alone (i.e. without any need for extra computational or technological assumptions).
Initially, work in this area focussed entirely on protocols based on non-relativistic quantum mechanics. Bennett

and Brassard invented the first quantum bit commitment protocol [1], which (as they noted) is secure against both
parties given current technology, but insecure if Alice has a quantum memory. Later attempts at unconditionally
secure non-relativistic protocols (e.g. [2]) were ultimately shown to be futile by the celebrated results of Mayers [3–5]
and of Lo and Chau [6, 7], later further elaborated [8, 9], which show that no unconditionally secure non-relativistic
quantum bit commitment protocol exists.
This picture changes radically when we also exploit the signalling constraints implied by special relativity. The

possibility of using relativistic signalling constraints for bit commitment was briefly discussed by Mayers [3], who
suggested that his version of the no-go theorem should also apply to relativistic protocols. One strategy for bit
commitment based on temporary relativistic signalling constraints was indeed shown to be insecure against quantum
attacks [10]. The discovery [11, 12] that relativistic protocols can evade the Mayers and Lo-Chau no-go theorems
thus came as a surprise. Encouragingly, such protocols are practical (although challenging) to implement with
existing technology: ref. [12] describes a relativistic bit commitment protocol in which the parties can maintain bit
commitments indefinitely, by exchanging classical information at a constant – and presently feasible – rate between
two pairs of separated sites under their respective control. It is provably secure against all classical attacks and against
Mayers and Lo-Chau’s quantum attacks, and is conjectured to be unconditionally secure. However, there is as yet no
complete security proof against general attacks.

Here we introduce a completely new technique for bit commitment, which relies essentially on the properties of
quantum information in relativistic quantum theory – specifically, on the no-summoning theorem [13]. It is provably
unconditionally secure. In its simplest form it requires only one quantum state transmission per commitment. It
illustrates a new way of exploiting cryptographically the control over physical information that special relativity and
quantum theory together allow. This seems likely to find many other applications (e.g. [14]).
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One interesting potential application of the present work is to high-frequency financial trading, in which light
speed signalling constraints are already a significant and potentially disruptive factor [15]. In a financial context,
bit commitment is usually thought of as a technique for making encrypted predictions that can be decrypted and
checked after the event. However, in an appropriately regulated framework, it could also be used to commit parties
to trades without immediately making the trade public, or even without immediately informing one of the trading
parties (who would have to have agreed to a regulatory framework in which the risks and disadvantages of such blind
transactions were appropriately managed and compensated). The techniques described here thus illustrate, inter alia,
that light speed signalling constraints also offer a tool for either traders or regulators to reshape market dynamics
via secure commitments. In a possible future world in which conventional cryptosystems are rendered suspect by
quantum computers or other developments, they may be the only reliably secure techniques.

III. BIT COMMITMENT WITH FLYING QUDITS

We begin by idealizing to simplify the presentation of the essential idea. We will relax these unphysical idealized
assumptions later. We suppose that space-time is Minkowski and that nature is described by some appropriate
relativistic version of quantum theory. We suppose that both parties, the committer (Alice) and the recipient (Bob),
have arbitrarily efficient technology, limited only by physical principles. We suppose that all their operations and
communications are error-free and that Alice can carry out quantum operations instantaneously. We also suppose they
agree in advance on some space-time point P , to which they have independent secure access, where the commitment
will commence.

We suppose they are independently and securely able to access every point1 in the causal future of P , and instan-
taneously process and exchange information there, and that each is able to keep information everywhere secure from
the other unless and until they choose to disclose it.2 We suppose also that they can securely exchange quantum
states at P , and at other relevant points to which they both have secure access.
We suppose too that Bob can keep a state private somewhere in the past of P and arrange to transfer it to Alice

at P . Alice’s operations on the state can then be kept private unless and until she chooses to return information to
Bob at some point(s) in the future of P . We also suppose that Alice can send any relevant states at light speed in
prescribed directions along secure quantum channels.

They also agree on a fixed inertial reference frame, and two opposite spatial directions within that frame. We
initially simplify further by working in one space and one time dimension; we set c = 1 and take P to be the origin
in the fixed frame coordinates (x, t) and the two spatial directions to be defined by the vectors v0 = (−1, 0) and
v1 = (1, 0).

Before the commitment, Bob generates a random pure qudit state ρ ∈ Cd, chosen from the uniform distribution,
encoded in a physical system which (idealizing again) we take to be pointlike. He keeps it private until P , where he
gives it to Alice. To commit to the bit i ∈ {0, 1}, Alice sends the state ρ along a secure channel at light speed in the
direction vi, i.e. along the line L0 = {(−t, t), t > 0} (for 0) or the line L1 = {(t, t), t > 0} (for 1).
In the simplest implementation of this protocol, Alice’s secure channel may be physically secured – for instance,

a shielded region of free space. In this case, to fit the standard model for mistrustful cryptography, we consider the
relevant channels as lying within Alice’s secure laboratory. Alternatively, if Alice knows in advance the points at
which she wishes to unveil her commitment, she can predistribute entangled states between P and these points, and
implement a secure channel by teleporting the unknown state to a point on the relevant light ray, broadcasting the
classical teleportation signal from P . Security here is guaranteed since the classical teleportation signals carry no
information about either the transmitted state or (more importantly) the direction in which it is teleported.
For simplicity, we consider here the simplest implementation in which the state is directly securely transmitted.

Alice can then unveil her commitment at any point along the transmitted light ray. To unveil a 0, Alice returns ρ
to Bob at some point Q0 on L0; to unveil a 1, Alice returns ρ to Bob at some point Q1 on L1. Bob then carries
out the appropriate projective measurement to verify that the returned qudit is ρ; if he gets the correct answer, he
accepts the commitment as honestly unveiled; if not (given that at this stage of the discussion we make the idealized
assumption of no errors), he has detected Alice cheating.

1 Alice and Bob should be thought of here as agencies – which in the ideal case are represented everywhere in the future light cone of P
– rather than individuals.

2 In a more realistic model, which deviates from our idealized scenario but can still illustrate all the key features of our discussion, Alice
and Bob could both be large independent collaborative groups of people, with each group having its own independent secure network
of quantum devices and channels distributed throughout a region in such a way that the two networks do not overlap but both includes
sites close to any point where quantum states may be exchanged.
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A. Security against Bob

Given our assumptions, the protocol is evidently secure against Bob, who learns nothing about Alice’s choice until
the unveiling.

B. Security against Alice

1. No perfect cheating strategy

Once Alice has carried out quantum operations of her choice at P , her strategy for optimizing the probability of
successfully unveiling 0 is independent of the unveiling point Q0 on L0 (and similarly for 1). Although Alice is free
to choose the points Q0 and Q1, and may vary them depending on other relevant information that reaches her from
the relevant past light cones, we may thus without loss of generality consider Q0 and Q1 as fixed.

Whatever operations and strategies she chooses, Alice cannot guarantee both that she will be able to unveil success-
fully at Q0 if she (at Q0) chooses to, and also that she will be able to unveil successfully at Q1 if she (at Q1) chooses. If
she could, she would be able to guarantee a successful unveiling at both points, by following the appropriate strategies
at both points. This would violate the no-cloning theorem, since she would be able to guarantee producing two copies
of the unknown pure state ρ in the frame in which Q0 and Q1 are contemporaneous. More fundamentally, from an
intrinsically relativistic perspective, she would be violating the no-summoning theorem [13], an intrinsic feature of
relativistic quantum theory that extends the no-cloning theorem [16, 17] and the no-signalling principle. To see this,
note that she would be able to guarantee successfully responding to a summons from another party at Q0, requiring
her to produce the state ρ at Q0, and also to a similar summons at Q1 – and hence to both summonses, which is
impossible.

2. Full security against cheating

Suppose Alice decides, at (or in the past of) P , that she wishes to retain as much freedom as possible in her choice
of which bit to unveil, and is willing to accept that this may entail some risk of being caught cheating. Specifically,
she wants to design a strategy which gives her a probability p0 of successfully unveiling the bit 0 at Q0, should she
(at Q0) decide she wishes to, and a probability p1 of successfully unveiling the bit 1 at Q1, should she (at Q1) decide
she wishes to.

Any quantum bit commitment protocol in which an honest committer can be certain of successful unveiling allows
such strategies, in which the value of the unveiled bit is genuinely undetermined (not merely unknown to Alice) until
the unveiling, for any probabilities p0 and p1 with p0 + p1 = 1. To achieve this, the committer simply has to prepare
a state of the form

√
p0 |0〉A |0〉I +

√
p1 |1〉A |1〉I ,

where the |〉I state is input as the committed bit and the entangled |〉A state is stored until unveiling and then
measured in the computational basis.3 Indeed, even classical bit commitment protocols can achieve a similiar outcome
if the committer chooses their input randomly, without observing the random choice. In this case there is a definite
committed bit value (and this is an important difference in some applications), but from Alice’s perspective the
unveiled bit remains unknown, with subjective probabilities obeying p0 + p1 = 1.

A sensible definition of cheating thus requires that a cheating Alice can at least ensure that p0 + p1 > 1. More
precisely, we say a protocol with a security parameter N is unconditionally secure provided that, for any committing
and unveiling strategies, we have p0 + p1 < 1 + ε(N), where ε(N) → 0 as N → ∞.

In our protocol, the security parameter is the qudit dimension d. Again, we can treat Q0 and Q1 as fixed. Suppose
that Alice carries out some fixed operations at P , with a view to giving herself some chance of successful unveiling at
either Q0 or at Q1. Let ρ0 be the state she generates at Q0 if she subsequently follows the strategy that optimizes her
chances of successfully unveiling there, and ρ1 the corresponding state at Q1. Again, we can treat Alice’s decisions
whether to unveil at Q0 and Q1 as independent, and imagine that she chooses to unveil at both points. She then
produces, at space-like separated points, the states ρ0 and ρ1 (which may and generally will be mixed), which, roughly

3 See e.g. Refs. [18, 19].
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speaking, are intended to be near-copies of the initial pure state ρ that are as faithful as possible. More precisely,
since Bob tests the returned states ρi by measuring the projector Pρ onto the pure state ρ, the probability pi of each
state ρi passing Bob’s test is Tr(ρρi). We thus have

p0 + p1 = Tr(ρρ0) + Tr(ρρ1) .

Effectively, in a reference frame in which Q0 and Q1 have the same time coordinate, Alice is attempting to implement
1 → 2 approximate cloning of the unknown state ρ. The expression on the right hand side, Tr(ρρ0) + Tr(ρρ1), is
a standard measure of fidelity for this task. If Alice’s process ensures that Tr(ρρ0) = Tr(ρρ1), she is implementing
symmetric 1 → 2 cloning; otherwise, her scheme is asymmetric. Optimality bounds on the fidelity have been proved[20–
28] in both cases. The symmetric bound suffices, since any asymmetric scheme can be symmetrized by randomization,

without altering p0 + p1 (or in the 1 → N case, without altering
∑N−1

i=0 pi) , so there must be a symmetric scheme
that is optimal by this measure. However, in the 1 → 2 case it seems a little more satisfying to use the explicit form
for the asymmetric bounds. For 1 → 2 qudit cloning they give

p0 + p1 ≤ 2− d− 1

d
(a2 + b2)

where a2 + b2 + 2ab
d = 1. Optimising via a Lagrange multiplier we find

p0 + p1 = Tr(ρρ0) + Tr(ρρ1) ≤ 1 +
2

d+ 1
.

We thus indeed have unconditional security: the expression (p0 + p1 − 1) (Alice’s “wiggle room”) is bounded by a
term that is O(d−1), i.e. O(exp(−Cn)), where n is the number of qubits that Alice and Bob exchange.

C. The non-ideal case

Realistically, the qudits used will not be pointlike physical systems, it will not be possible for Alice and Bob to
have secure access to precisely the same space-time point to exchange a qudit, and Alice may not be able to transmit
qudits at precisely speed c. 4 Realistically, too, Alice’s and Bob’s operations will take nonzero time. All of these
limitations effectively introduce time delays at various stages of the protocol.

These delays can all be allowed for in a realistic definition of the task5, without making the protocols insecure.
However, they do affect the interval over which the commitment is guaranteed to be secure. To see this, suppose
that Alice and Bob attempt to implement a protocol which ideally prescribes that the qudit should be returned at
one of the points Q0, . . . , Qn−1. Let Q′

0, . . . , Q
′
n−1 be the points at which Bob would actually be able to complete

his tests, given a real (non-ideal) implementation of the protocol, which allows Alice to return the qudit in specified
finite regions of space-time to the future of the points Qi. Bob can then only be confident that Alice was committed
at points lying outside the past light-cones of the Q′

i (i.e. that she has no guaranteed successful strategy for changing
her commitment that relies on operations at any such points). In other words, although Alice may need in fact to be
committed at the point P (and hence all points in its causal future) in order to implement her side of the protocol,
the security analysis will only persuade Bob that she was committed by some point (or in some region) that lies in
the future of P .6

If the Q′
i are suitably close to the Q′

i, this need not make any substantial difference, and thus may not be particularly
relevant unless great precision over the place and time at which Alice became committed is required. However, when
– as may be the case in our stock market example – a relatively precise timing of Alice’s commitment is potentially
crucial, it will be desirable to try to minimize the time delays arising in practical implementations.

D. Channel losses and errors

In reality, Alice and Bob’s operations will not be error-free. With some nonzero probability, the qudit state
will be altered somewhere between Bob’s sending it to Alice and Alice returning it to Bob. Also, with some nonzero

4 Even if they are encoded by photons, they may be sent through some medium with lower light speed.
5 Cf. the corresponding discussion for the no-summoning theorem.[13]
6 As with other relativistic protocols, the fact that the local space-time geometry in the vicinity of the Earth is not exactly Minkowski
can also be allowed for.[12]
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probability, the qudit will either be lost somewhere between Bob’s transmitting it at some point P ′ in the (presumably)
near past of P and his receiving it at Q′

0 or Q′
1 (because Bob’s or Alice’s channels are not perfect) or will fail to be

detected when received at Q′
0 or Q′

1 (because Bob’s detectors are not perfect).
The possibility of losses can be countered by running N > 1 copies of the protocol, timed so that they are effectively

run in parallel. Instead of supplying a single random qudit to Alice at P , Bob supplies a labelled sequence of N
independently random qudits ρ1, . . . , ρN , within a time interval short compared to the times and distances separating
P and Q′

i (in lab frame). To commit the bit value i, Alice is required to send all the qudits to the point Qi, and
return them from there, with their original labels, to Bob at Q′

i. Bob accepts the commitment as valid so long as his
tests identify M qudits as those he originally sent, where M is statistically significantly above N/2, in the sense that
the probabilities p′0 and p′1 for Alice being able to satisfy this test at Q′

0 and Q′
1 satisfy p′0 + p′1 ≤ 1 + ε(d,N,M),

where ε(d,N,M) is suitably small (and can be made arbitrarily small by suitable parameter choices).
This strategy of redundant parallel commitment also gives a way of countering channel and detector errors. Standard

(and more efficient) error correction techniques can also be used for this purpose.
The possibility of losses and errors is always an issue in quantum cryptography, and always adds to the practical

challenges in implementing protocols. The protocols considered here are, of course, no exceptions. However, errors
and losses raise no qualitatively new problems of principle for the protocols considered here. It is not the case, for
example, that any nonzero error or loss rate makes it impossible to implement a secure version of the protocol. On
the contrary, provided the loss and error rates are not too large, they can be countered by standard error correction
techniques, reducing the probability of false positives (Alice successfully cheating) and false negatives (Bob being
unable to accept Alice’s honest unveiling) to arbitrarily small agreed levels – which is the best scenario possible in
practical cryptography.

E. Relation to standard mistrustful cryptography

Note that relaxing our idealized assumptions allows us to fit the task definition into a standard cryptographic model
[12] for mistrustful parties in Minkowski space-time. The non-idealized case allows us to drop the assumption that
Alice and Bob each have independent secure access to every space-time point. Instead, we can adopt the standard
assumption that Alice and Bob control suitably configured disjoint regions of space-time, their “laboratories”. Each
trusts the security of their laboratory and all devices contained within it, but need not trust anything outside their
laboratory.

For example, we can take Alice’s laboratory to be a connected region of space-time that includes, near its boundary,
P and all allowed unveiling points Qi, and includes light ray segments corresponding to the secure channels joining P
to each Qi: this allows Alice to receive a state at P and transmit it securely to any Qi. We can take Bob’s laboratory
to be a disjoint connected region of space-time that includes a point P ′ in the near causal past of P , from which he
sends the unknown state to P , and points Q′

i in the near causal future of each possible unveiling point Qi, to which
Alice is supposed to send the unveiled state if she unveils at Qi. This allows Bob to generate the unknown state
securely, transmit it to P , and then Alice to transmit it securely to some Qi of her choice, and return it to Bob at
Q′

i, where he can test it securely. (See Figure 1.)
As is standard in mistrustful cryptographic scenarios, we assume that Alice and Bob are the only relevant parties

– no one else is trying to interfere with their communications – and that they have classical and quantum channels
(which in principle can be made arbitrarily close to error-free) allowing them to send classical and quantum signals
between the relevant points.
It is perhaps worth stressing here that, as with all such models, the main purpose is to show that the task is well-

defined and implementable according to standard definitions. The model is not meant to prescribe how the protocol
must be implemented in practice: for example, if Alice uses teleportation to transmit the qudit, her labs need not
be connected. The point here is only to note one sensible way of implementing the protocol that uses only standard
cryptographic assumptions.

F. Three dimensions and Committing more Data

We now consider three space dimensions, and suppose that Alice wants to commit to a value in {0, . . . ,m− 1}, for
some integer m ≥ 2. To achieve this we generalize the above protocol. We fix m distinct lightlike directions from the
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FIG. 1: One implementation of the non-ideal protocol in 1 + 1 dimensions. (Not to scale.) Alice and Bob control disjoint
regions of space-time, representing their respective secure laboratories. Bob sends the unknown state to Alice at point P , and
she propagates it at near light speed to one of the points Qi, from where she sends it for Bob to receive at Q′

i. The arrows
within Alice’s lab denote light rays; the separations from P to the Qi are timelike to allow for delays at either end as well
as possible subluminal communication. Note that, while Bob’s laboratories here are disconnected, in more than one spatial
dimension they can be connected without overlapping with Alice’s.

commitment point P , defined by m distinct vectors vi in the agreed fixed inertial frame.7 To commit to the value i,
Alice sends the received qudit from point P at light speed in the direction vi. To unveil her commitment, she returns
the qudit to Bob at some point Qi on the relevant forward light ray from P . By the reverse triangle inequality for
future-oriented timelike and lightlike vectors in Minkowski space, any such point Qi is spacelike separated from any
other such Qj (for j )= i), and so Alice’s decisions about unveiling at Qi cannot be influenced by her communicating
to Qi information she learns at any point Qj on any of the other light rays.

Suppose that Alice carries out some fixed operations at P , with a view to giving herself some chance of successful
unveiling at each of the points Qi. Again, without loss of generality, we can analyse security while treating the Qi

as fixed and (since an unveiling at Qi can be postponed to any future point on the relevant light ray) assuming they
have the same time coordinate in some inertial frame F . Let ρi be the state Alice generates at Qi if she subsequently
follows the strategy that optimizes her chances of successfully unveiling there. Again, we can treat Alice’s decisions
whether to unveil at Qi as independent of her actions at Qj for j )= i, and imagine that she chooses to unveil at all
m points. In the frame F , her actions then become an attempt at 1 → m cloning.

The optimality bound [20–23] for symmetric 1 → m qudit cloning implies, via the symmetrization argument
mentioned earlier, that

∑

i

pi =
∑

i

Tr(ρρi) ≤ 1 +O(2md−1) .

We thus have unconditional security in this case also: the expression (
∑

i pi− 1) is again bounded by a term that (for
fixed m) is O(d−1), i.e. exponentially small in the number of qubits used.
In principle, this strategy of direction-dependent commitment allows an arbitrary amount of data to be securely

committed and unveiled, using a single qudit, and within a fixed finite space-time volume. However, there are two

7 For efficiency, if no other relevant constraints apply, the vectors should be roughly equally separated.
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important caveats here.
First, security requires that 2md−1 is small, meaning that the dimension d needs to scale at least8 linearly in m.

Second, Alice needs to be able to transmit from P in m distinct directions, and Bob needs to be able to distinguish
m distinct unveiling points on the relevant light rays. Alice thus needs to be able to specify transmission directions
to within a solid angle9 small compared to m−1, and Bob needs to be able to distinguish separations small compared
to the distances between the corresponding unveiling points. These precisions are thus exponential in the number of
bits committed, log2 m. In realistic implementations, attaining such precisions should be considered as consuming
resources that also scale at least exponentially in log2 m for large m.

IV. DISCUSSION

The new bit commitment protocols described here are theoretically interesting in that they make use of a property
of relativistic quantum theory – which seems most fundamentally characterised by the no-summoning principle [13]
– that has not previously been exploited cryptographically, and which looks likely to find many other applications.
Working out in full generality precisely which applications of bit commitment can be implemented using sequences of
these protocols poses some interesting theoretical and practical challenges.

To implement the protocol efficiently and reliably requires transmitting qudits efficiently and reliably (by teleporta-
tion, or within cryptographically secure regions of space), at near light speed along pre-determined alternative paths.
If one takes an optimistic view, common among quantum information scientists, technological barriers that currently
prevent near-ideal implementation of quantum information processing and communication will ultimately be over-
come. At some point, the transition to practical quantum information processing and communication will take place
– and at that point the practicality of quantum computing motivates a transition from (newly vulnerable) classical
cryptographic protocols to secure quantum protocols. This is sufficient motivation for the protocols described here: if
and when practical and reliable quantum information processing technology emerges, they will be both practical and
practically relevant.

That said, it is worth reviewing how practical the protocols already are with present technology. For a proof that
the basic concept can be implemented, Alice needs only be able to route photons at near light speed along alternative
paths – which may be through free space – in regions which we can assume lie within her laboratory (and thus are
secure), and return the photons to Bob’s detectors. Moreover, for a partial proof of concept, one might initially accept
an unreliable implementation, in which Alice’s commitments are sometimes verified by Bob but sometimes (because of
losses or errors) unverified. One might too accept implementations in which the photons travel at significantly lower
than light speed (along optical fibres of high refractive index): such implementations still guarantee a finite (though
shorter) duration commitment, so long as the allowed unveiling points are space-like separated. Under some or all
of these relaxed assumptions, the protocol seems well within the scope of current technology. How reliably it can
presently be implemented, over what ranges, with what levels of security, and how small the transmission and other
delays can be made compared to the ideal protocol, are open questions, which we offer as challenges to the ingenuity
of experimentalist colleagues.

Returning to the optimistic long term view of quantum information technology, it seems to us that a plausible
future cryptographic environment will require unconditional security for bit commitments of short duration, and that
these protocols may turn out to be the most efficient and easiest solutions. For example, one can imagine short term
commitments relating to a stock market being made and unveiled by two parties exchanging photon signals that are
transmitted along independently secure links. For such applications, it will be particularly interesting to explore and
analyse the security and efficiency of chaining protocols and redundant encoding (discussed in the Appendix).

Previous protocols [11, 12] that make use of the Minkowski causal structure to implement secure bit commitment
rely on the fact that data introduced at one site is not available to an agent at a space-like separated site. As noted
earlier, these protocols are immune to Mayers’ and Lo-Chau’s cheating strategies. The MLC strategies do, in principle,
define an operation that the committer could carry out in order to cheat the protocols of Refs. [11, 12] by altering
their commitment. However, this operation always depends on data introduced at a space-like separated site, and so
is never knowable by the committer.

The protocols introduced here highlight another significant limitation of Mayers’ and Lo-Chau’s no-go theorems that
appears to have previously gone unnoticed. Namely, in relativistic quantum theory, the unitary operation required
for a MLC attack can be known to both parties but impossible to implement physically, as it represents a spacelike

8 One might choose tighter security criteria in this case.
9 Or angle, if the relevant directions lie in a plane.
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translation that would violate causality. This reinforces the point – if any reinforcement were needed – that these
celebrated and fundamental theorems are correctly understood as applying specifically to protocols that rely only
on non-relativistic quantum mechanics. They can be extended to some important classes of relativistic protocols –
for example those in which the unveiling point takes place at a fixed point in the causal future of all the operations
carried out in the commitment phase – but do not apply to general protocols based on relativistic quantum theory.

Like all intrinsically quantum bit commitment protocols [18, 19], the protocols considered here allow the committer
to commit a bit in quantum superposition, which is “collapsed” to a classical bit value only when unveiled. For
some important applications of bit commitment, this feature makes no essential difference. For example, if the bit
commitment encodes a prediction, allowing the committer to make a superposition of predictions merely gives them
the freedom to add a random element to their prediction – which is also possible with any classical bit commitment
scheme, since the committer can always randomize their input. Indeed, for some intrinsically quantum applications,
in which the ultimate aim is to unveil a quantum state, it may be a positive advantage that the scheme allows
commitment of a qubit rather than a bit. On the other hand, our scheme cannot be securely used in applications of
bit commitment in which it is crucial that the committed bit takes a classical value fixed at (or before) commitment.
It bears reemphasizing that this is a quite general feature of intrinsically quantum bit commitment schemes, and quite
separate from the cheating possibilities pointed out by Mayers and Lo-Chau.10

The protocols we have described are unconditionally secure, but not necessarily optimally efficient, in the sense
that they achieve optimal security for given resources. It will be interesting to investigate the range of possible
strategies and their efficiencies. One particularly interesting possibility is to consider protocols based on summoning
an entangled state. For example, Bob could generate a randomly chosen maximally entangled pair of qudits, and
initiate the commitment protocol by giving one of them to Alice – who must later return it as above – while he keeps
the other. To verify the unveiled commitment in this case, he needs to recombine his stored qudit with the returned
qudit at a single site using secure quantum channels, or else carry out a non-local measurement. Either way, he cannot
generally verify with certainty at the point of unveiling, but can do so at a future point.11
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V. APPENDIX: CHAINING COMMITMENTS

A. Determining viable unveiling locations: some scenarios

These protocols have the advantage of simplicity: they require only acting on a qudit with a simple quantum
operation to determine its transmission direction, and then transmitting it. The fact that the unveiling location
needs to be on a light ray from the commitment point, in a direction depending on the committed bit, is, however,
potentially a disadvantage. Whether it is problematic, and if so how much so, very much depends on the scenario in
which the bit commitment is being used.

For example, if the trading centre of a stock market is physically localized around the point P , and Alice wants
to commit at time 0 predictions of prices at a pre-agreed time t > 0, which she is happy to unveil as soon as the
data cannot be exploited by Bob, the protocol may be perfectly adequate, so long as they can securely exchange
information at suitable points distance (t/2) from P in stock market rest frame (i.e. so long as t is not too large).

On the other hand, if Alice makes some prediction at time 0 which she may or may not wish to unveil, depending
on details of the market’s behaviour after t = 0 – perhaps, for example, because the prediction is of some future
events conditioned on others, and she wishes to give away no information about her predictive abilities unless the
conditioning events take place – then these protocols alone do not suffice. Alice’s decision to unveil on any light ray
from P must necessarily be made in ignorance of events at the location of P at later times.

B. Chaining commitments

Some flexibility in the location of the unveiling point, relative to the commitment point, can be achieved by chaining
a number of our commitment protocols in sequence. For example, consider the following extended protocol. Alice
and Bob fix P , as above, and a time interval T in their fixed inertial frame; they also fix the qudit dimension d.
At P , Bob initiates the protocol by giving Alice an unknown qudit, and she commits a bit by sending it along the
appropriate light ray to points Q0 or Q1, which have time coordinate T . Suppose, for example, she commits to 0. At
Q0, she returns the qudit to Bob, after acting on it with a randomly chosen d-dimensional teleportation operation.
This operation is specified by an integer j in {0, . . . , d2 − 1}. Bob initiates a new data commitment protocol at Q0,
giving an Alice a qudit of pre-agreed dimension d′ (here d′ > d), which is used to commit to the value j. At Q1, Alice
and Bob go through the same operations, but here Alice simply returns a randomly chosen dummy qudit to Bob, and
commits to a randomly chosen value j′. This procedure can be iterated any number of times.

To unveil, Alice returns the qudits from the final commitment without any randomization operation, allowing Bob
to infer the operations necessary to derandomize the qudits returned earlier, and hence the originally committed bit.

http://arxiv.org/abs/quant-ph/9806031
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This procedure has the advantage that Alice’s final unveiling location (although randomly determined) will generally
be timelike rather than lightlike separated from P . By varying the parameters of the chained protocol the distribution
of separations can be optimized (within the space of possible distributions) for any given task. Of course, chaining the
protocol requires extra quantum operations and communications from both parties, which moreover grow exponentially
in the number of iterations. It may perhaps be possible to mitigate this by adapting techniques used [12] to eliminate
exponential blow-ups for classical relativistic bit commitment protocols [11], which allow one to truncate successive
linked commitments after a fixed number of iterations and replace them by newly started commitments, while retaining
security.

This strategy remains to be fully explored. We mention chained protocols here to note that the strategy of making
bit commitments by appropriate light speed transmission — or indeed using similar techniques for other cryptographic
applications — is not as inflexible as it may initially seem from considering the simplest (unchained) protocols. We
leave the analyses of resource optimization, practicality and security for chained protocols for a future discussion.

C. Redundant encoding

Another valuable strategy is to run two or more implementations of the protocol in parallel, using different bit
codings. For example, in the basic one-dimensional protocol, Bob can give Alice two independently randomly generated
unknown pure states, ρ0 and ρ1, at the same point P . She follows the protocol described above with ρ0, sending it
along the line Li to commit to bit value i; she follows the protocol with reversed conventions for ρ1, sending it along
the line Li+1 (where i + 1 is defined modulo 2) to commit to bit value i. This allows her to unveil the commitment
at any point Q0 on L0 or any point Q1 on L1, regardless of the committed bit value. To prevent her cheating, she
must also be required to unveil at some point on the opposite line.

Giving Alice this freedom ensures that the bit can be unveiled on an agreed light ray – or indeed, if the parties
wish, at a pre-agreed point on that light ray. Note that if Bob accepts such an unveiling immediately Alice has scope
for a form of temporary cheating.12 For example, she could cheat by sending both ρ0 and ρ1 along the agreed light
ray L0 and then decide which to return to Bob at the unveiling point Q0. However, any such cheating will not allow
her to produce a consistent unveiling at Q1. Her deception will thus eventually become evident to Bob.13

In many scenarios – for example when individual commitments are part of an ongoing series of transactions of value
to both parties – the opportunity to deceive Bob temporarily is of little value to Alice. Of course, in scenarios where
Bob can suffer significant loss through temporary deception, and cannot recover it once the cheating is exposed, he
should not accept Alice’s unveiling until (i.e. at spacetime points where) he can combine all the relevant unveiling
data.
Note that – with the above caveats about temporary cheating – redundant encoding can be combined with the

chaining strategy described above, allowing Alice and Bob to ensure that the original commitment is unveiled at
any point they wish in the causal future of P . In our stock market example, for instance, they can ensure that the
commitment is unveiled at the market location at any agreed future time.

12 “Temporary” in the sense that at any spatial coordinate in any given inertial frame it will be at most temporarily effective.
13 “Eventually” in the sense that, by broadcasting the results of his measurements on the states returned at Q0 and Q1, and comparing

the results when they arrive at the same point, he can ensure that he will be aware of cheating at any or all points in the intersection
of the causal futures of Q0 and Q1.


