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Problem 1.

(a) For all x, y ∈ R, choosing α ∈ [0, 1], we use the convexity of each fi, 1 ≤ i ≤ n, to get

f(αx+ (1− α)y) =
n∑
i=1

cifi(αx+ (1− α)y)

≤
n∑
i=1

ci (αfi(x) + (1− α)fi(y))

= α

n∑
i=1

cifi(x) + (1− α)
n∑
i=1

cifi(y)

= αf(x) + (1− α)f(y).

(b) For all x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn, choosing α ∈ [0, 1],
observe first that αx+(1−α)y = (αx1+(1−α)y1, αx2+(1−α)y2, . . . , αxn+(1−α)yn).
We then use the convexity of each fi, 1 ≤ i ≤ n, to get

g(αx+ (1− α)y) =
n∑
i=1

cifi(αxi + (1− α)yi)

≤
n∑
i=1

ci (αfi(xi) + (1− α)fi(yi))

= α
n∑
i=1

cifi(xi) + (1− α)
n∑
i=1

cifi(yi)

= αg(x) + (1− α)g(y).

Problem 2. For all x̃ ∈ D, f(x̃) = supi∈I fi(x) iff (i) f(x̃) ≥ fi(x̃) for all i ∈ I and (ii)
any s ∈ R satisfying s < f(x̃) is such that there exists i ∈ I satisfying s < fi(x̃).

Choose x, y ∈ D and α ∈ [0, 1].
First, pick i ∈ I. With the definition of f (point (i)) and the convexity of each fi, i ∈ I,

we get
fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi(y) ≤ αf(x) + (1− α)f(y).

Second, since the inequality fi(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y) holds for all i ∈ I,
we use the definition of f (point (ii)) to claim

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

To see this, observe that, if it was not the case, then s = αf(x) + (1 − α)f(y) < f(αx +
(1− α)y) would give the contradiction s < fi(x̃) with x̃ = αx+ (1− α)y.



Problem 3. Choose x, y ∈ U and α ∈ [0, 1]. The convexity if f associated to the fact that
h is an increasing function over [a, b] shows

g(αx+ (1− α)y) = h
(
f (αx+ (1− α)y)

)
≤ h

(
αf(x) + (1− α)f(y)

)
.

The convexity of h gives finally

g(αx+ (1− α)y) ≤ αh(f(x)) + (1− α)h(f(y)) = αg(x) + (1− α)g(y).

Problem 4. Let us show that the function g : λ 7→ f(λv1 + (1 − λ)v2) is convex (in λ).
Choosing λx, λy ∈ [0, 1] and α ∈ [0, 1], we use the convexity of f in v to write

g(αλx + (1− α)λy) = f
(
(αλx + (1− α)λy)v1 + (1− (αλx + (1− α)λy))v2

)
= f

(
αλxv1 + (1− α)λyv1 + v2 − αλxv2 − (1− α)λyv2

)
= f

(
αλxv1 + (1− α)λyv1 +

(
α + (1− α)

)
v2 − αλxv2 − (1− α)λyv2

)
= f

(
α(λxv1 + (1− λx)v2) + (1− α)(λyv1 + (1− λy)v2)

)
≤ αf(λxv1 + (1− λx)v2) + (1− α)f(λyv1 + (1− λy)v2)
= αg(λx) + (1− α)g(λy).

Problem 5. Let X = {xi}1≤i≤n and Y = {yj}1≤j≤m be the input alphabet and output
alphabet. Let p = (p1, p2, . . . , pn) = (P (x1), P (x2), . . . , P (xn)) denote the input probability
vector. The channel is given by the probability law {Wi,j = P (yj|xi)}i,j.

(a) Let us denote qj = P (yj) =
∑

iWi,jpi and observe that the output vector q =
(q1, q2, . . . , qm) is a linear (convex and concave) function of p. Let w : p 7→ q denote
this linear mapping. Observe also that H(Y ) = −

∑
j qj log qj is of function of q,

i.e., H(Y ) = g(q). To keep this in mind, let us write H(Y ) = h(q). We see that
H(Y ) = h(q) = (h ◦ w)(p), i.e., g = h ◦ w. We want to show the concavity of g.

The concavity of t 7→ −t log t and Problem 1 (b) show h(q) is concave in q. Choose
now two input probability vectors p = (p1, p2, . . . , pn), p̃ = (p̃1, p̃2, . . . , p̃n) and α ∈
[0, 1]. We get

g(αp+ (1− α)p̃) = h(w((αp+ (1− α)p̃))

= h((αw(p) + (1− α)w(p̃)) since w is linear

≥ αh(w(p)) + (1− α)h(w(p̃)) since h is concave

= αg(p) + (1− α)g(p̃)

proving the concavity of g.

(b) Many examples might be found. A trivial one is the case when X = {0, 1} and
Y = {0, 1} such that PY |X(0|0) = PY |X(0|1) = 1 for which H(Y ) = 0 for all input
distributions.

(c) Observe that −H(Y |X) =
∑

i,jWi,jpi logWi,j is a function, call it ξ(p). Clearly,
ξ(αp+ p̃)− αξ(p) + ξ(p̃) showing the linearity of the function.

(d) By definition I(X;Y ) = H(Y ) − H(Y |X). The quantity I(X;Y ) is therefore a
function of p, call it ι(p) = g(p) − ξ(p). By (c), ξ is linear therefore −ξ is concave.
By (a) g is concave. By linear combination of concave function (Problem 2 (a)), we
claim that I(X;Y ) is a concave function of the input probability vector.
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Problem 6. Define

Qi =
a
1/λ
i∑n

i=1 a
1/λ
i

and

Pi =
b
1/(1−λ)
i∑n

i=1 b
1/(1−λ)
i

and observe that they are non-negative numbers which sum to one.
Observe that φ : λ 7→ Qλ

i P
1−λ
i is a convex function for all i. To see this, note that

φ′′(λ) = Pi

[
log
(
Qi

Pi

)]2
exp
[
λ log

(
Qi

Pi

)]
≥ 0 with equality iff, for all i ∈ {1, 2, . . . , n}, Pi =

Qi. Therefore so is λ 7→
∑n

i=1Q
λ
i P

1−λ
i by Problem 2 (a). The maximum of this function

can therefore only be near the boundary λ = 0 or λ = 1. Therefore
∑n

i=1Q
λ
i P

1−λ
i < 1

because of λ ∈ (0, 1) and the strict convexity when Pi 6= Qi. Moreover
∑n

i=1Q
λ
i P

1−λ
i = 1

iff, for all i ∈ {1, 2, . . . , n}, Pi = Qi.
By replacing the Qis and Pis in the inequality

∑n
i=1Q

λ
i P

1−λ
i ≤ 1, we get Holder’s

inequality, i.e.,
n∑
i=1

aibi ≤

(
n∑
i=1

a
1/λ
i

)λ( n∑
i=1

b
1/(1−λ)
i

)1−λ

with equality iff there exists some c that satisfies a1−λi = bλi c for all i ∈ {1, 2, . . . , n}. For
the special case λ = 1

2
, this inequality is also known as the Cauchy-Schwarz inequality.

3


