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PROBLEM 1.

(a) For all z,y € R, choosing « € [0, 1], we use the convexity of each f;, 1 < i < n, to get

n

flaz+(1—a)y) =S afiaz + (1 - a)y)

=1

< Zcz' (afi(z) + (1 —a)fi(y))

= az cifilz) + (1 —a) Zcifi(y)

i=1

= af(z)+ (1 -a)f(y).

(b) For all x = (z1,29,...,2,) € R" and y = (y1,%2,-..,Yn) € R™, choosing a € [0, 1],
observe first that az+(1—a)y = (az1+(1—a)y1, axe+(1—a)ys, . . ., ax,+(1—a)yy,).
We then use the convexity of each f;, 1 <7 <mn, to get

n

glax + (1 - a)y) = Zcifi(@xi + (1= )y)

i=1

< Z ci (afi(zs) + (1 — ) fi(yi))
= azcz‘fz(xi) +(1—-a) Z cifi(ys)
=ag(z) + (1 — a)g(y).

PROBLEM 2. For all € D, f(Z) = sup,¢; fi(x) iff (i) f(Z) > fi(z) for all ¢ € I and (ii)
any s € R satisfying s < f(Z) is such that there exists i € I satisfying s < f;(Z).

Choose z,y € D and « € [0, 1].

First, pick ¢ € I. With the definition of f (point (i)) and the convexity of each f;, i € I,

we get
filax + (1 —a)y) <afi(x) + (1 —a)fily) < af(z)+ (1 —a)f(y).

Second, since the inequality f;(az + (1 —a)y) < af(z)+ (1 —«a)f(y) holds for all i € I,
we use the definition of f (point (ii)) to claim

flax+ (1 —a)y) < af(x)+ (1 —a)f(y).

To see this, observe that, if it was not the case, then s = af(z) + (1 — a)f(y) < f(azx +
(1 — a)y) would give the contradiction s < f;(Z) with Z = ax + (1 — a)y.



PROBLEM 3. Choose x,y € U and « € [0, 1]. The convexity if f associated to the fact that
h is an increasing function over [a, b] shows

glaz + (1 —a)y) = h(f (az + (1 —a)y)) < h(af(z) + (1 - a)f(y)).

The convexity of h gives finally

glaz + (1 = a)y) < ah(f(x)) + (1 = )h(f(y)) = ag(z) + (1 — a)g(y).

PROBLEM 4. Let us show that the function g : A — f(Av; + (1 — A)vy) is convex (in \).
Choosing A;, A, € [0,1] and « € [0, 1], we use the convexity of f in v to write

glade + (1= a)hy) = F((@hs + (1= ) Joy + (1= (ks + (1= @), )un)

= f((x)\mvl + (1 — ) \yv1 + v — adve — (1 — a))\yvg)

= f((x)\mvl + (1 — )\ + (04 + (1 - a))v2 —alvg — (1 — a)Ayvg)
= fa(Av1 + (1= Xp)va) + (1 — a)(Ayvr + (1= Ay)v2))
<af(Avr+ (1= X)ve) + (1 —a)f(Ayvr + (1 — Ay)ve)

=ag(A:) + (1 —a)g(ry).

PrROBLEM 5. Let & = {z;}1<i<, and Y = {y,}1<j<m be the input alphabet and output
alphabet. Let p = (p1,p2,...,pn) = (P(x1), P(x2), ..., P(x,)) denote the input probability
vector. The channel is given by the probability law {W; ; = P(y;|z;)}i ;-

(a)

Let us denote ¢; = P(y;) = >, W;;p; and observe that the output vector ¢ =
(q1,92,--.,qn) is a linear (convex and concave) function of p. Let w : p — ¢ denote
this linear mapping. Observe also that H(Y) = —3_,¢;logg; is of function of ¢,
ie., H(YY) = g(q). To keep this in mind, let us write H(Y) = h(q). We see that
H(Y)="h(q) = (how)(p), i.e., g = how. We want to show the concavity of g.

The concavity of t — —tlogt and Problem 1 (b) show h(q) is concave in q. Choose
now two input probability vectors p = (p1,p2,...,0n), D = (P1,D2,---,Pn) and « €
[0,1]. We get

glap+ (1 — a)p) = hw((ap + (1 - a)f)
= h((aw(p) + (1 — a)w(p)) since w is linear
> ah(w(p)) + (1 — a)h(w(p)) since h is concave
= ag(p) + (1 —a)g(p)

proving the concavity of g.

Many examples might be found. A trivial one is the case when X = {0,1} and
Y = {0,1} such that Pyx(0|0) = Pyx(0]1) = 1 for which H(Y) = 0 for all input
distributions.

Observe that —H(Y[X) = >, Wi p;logW;; is a function, call it {(p). Clearly,
E(ap + p) — a&(p) + £(p) showing the linearity of the function.

By definition I(X;Y) = H(Y) — H(Y|X). The quantity I(X;Y) is therefore a
function of p, call it «(p) = g(p) — £(p). By (c), £ is linear therefore —¢ is concave.
By (a) g is concave. By linear combination of concave function (Problem 2 (a)), we
claim that I(X;Y) is a concave function of the input probability vector.



PROBLEM 6. Define

i
Q= s
Z?:l ag/)‘
and
pl/A=2)
Z?:1 bi/(l_A)

and observe that they are non-negative numbers which sum to one.
Observe that ¢ : A — Q}P'™ is a convex function for all i. To see this, note that

¢"(\) =P [log (%)}Qexp [)\ log (%)} > 0 with equality iff, for all i € {1,2,...,n}, P, =
Qi. Therefore so is A — > Q?P!~* by Problem 2 (a). The maximum of this function
can therefore only be near the boundary A = 0 or A = 1. Therefore Y Q}P/* < 1
because of A € (0,1) and the strict convexity when P; # @;. Moreover > QP/™* =1
iff, for all e € {1,2,...,n}, P, = Q;.

By replacing the @;s and Pjs in the inequality Y, Q,?Pil_A < 1, we get Holder’s

inequality, i.e.,
n n P 1-A
Z a;b; < (Z a;/x) (Z b}/(l—”)
i=1

i=1 i=1
with equality iff there exists some c¢ that satisfies a; * = b}c for all i € {1,2,...,n}. For
the special case \ = %, this inequality is also known as the Cauchy-Schwarz inequality.



