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PROBLEM 1.
(a) Consider the sequence a; = 2 — 1,1 = 0,1,2,... This is a strictly increasing sequence
with ag = 0,a; = 1,a9 = 3,a3 = 7, ... consequently any M > 0 will fall between two

unique consecutive terms of this sequence, ay < M < ayyq, i.e., M = a; + r, with
0 <7 < aps — ap = 2F. This concludes the existence part.

For the uniqueness part, suppose that there exists another pair of integers (k’,7”)
satisfying M = 2¥ —147" and 0 < 7/ < 2. This means that 2V —1 < M < 2¥+1 —1.
Therefore, k' = k, from which we can easily deduce that r = 7.

Consider a non-singular code that maximizes the Kraft sum K = >_.27%. Let L
be the length of the longest codeword in such a code. If the tree representing the
code contains a node at a level [ < L which is not occupied by any codeword, then
by deleting any codeword of length L and replacing it by the unoccupied node at
level I < L we obtain a new code with a higher Kraft sum which is a contradiction.
Therefore, all the levels that are below the level L are completely occupied. This
means that the number of codewords of length at most L — 1 is exactly 2¥° — 1 and
the number of codewords of length L is N;, < 2%. We conclude that M = 2¥ —1+ N,
and 1 < N; < 2F. We have two cases:

(i) Np = 2%, which means that M = 25! — 1 so that k = L + 1 = logy(M + 1) =
[logy(M +1)] and 7 = 0. In this case we have K = .27 = L+ 1 =
k+r2k=1 = [logy(M + 1)].

(i) Ny < 2%, which means that k = L and r = N, (because of (a)). In this case,
we have K = >, 270 =k +r281 <k 4+ 1 = [logy(M + 1)].

In both cases, we have >, 27% = k + r2"1 < [log,(M + 1)]. And since the non-
singular code was chosen to maximize the Kraft sum, we conclude that any non-
singular code satisfies >, 27" < k 4+ 2" < [log,(M + 1)].

Define K = ;27" and for each symbol a; define ¢(a;) = % It is clear that ¢
is a probability distribution over the alphabet {a,...,ap}. Let p be the probabil-
ity distribution of the random variable U. By the positivity of the kullback-leibler

divergence, we have:
M

D(pllq) = Zp(ai) log, };EZ; >0,

from which we conclude that
M M -1

> plai)logy pla;) — Y pla;) log, = >0

i=1 i=1

By rewriting the last inequality we get —H (U) + [ 4 log,(K) > 0, and by applying
the inequalities of part (b), we conclude:

1> H(U) —logy(K) > H(U) — logy(k +127%) > H(U) — log, [logy (M + 1)].



PROBLEM 2.

(a) Let I; = [log, mL and let us compute the Kraft sum associated to (I;);:

M M M
Z —l Z —logy m—2 Pi(a;) + Py(a;)

2 l; < 2 log, Pila) i Pala;) — z : 1\Wsg i _ 1
1=1 B i=1 i=1 2

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to a; is ;.

(b) Since the code constructed in (a) is prefix free, it must be the case that [ > H(U).
In order to prove the upper bound, let P* be the true distribution (which is either
Py or Py). It is easy to see that P*(a;) < Py(a;) + Py(a;) for all 1 <i < M. We have:

. X N = * 2
[ = ZP (a;).li = ZP (ai). {logQ Py(a;) + Pz(ai)1

1

i=1 i=1

= ; (@0)- (1 +log, P (a5) +P2<ai)) ; (a0)- (2 + g, Pr(ar) +P2(ai)>
- 1 0 M 1

=2+ P*(a;).lo <2+ P*(a;). lo =2+ H(U),

where the inequality (%) uses the fact that P*(a;) < Pi(a;)+ Py(a;) forall 1 < i < M.

(¢) Now let ; = [log, m], and let us compute the Kraft sum associated to

M M M
L Clogy ok Pi(a;)+ ...+ Pi(a;)
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Since the Kraft sum is at most 1, there exists a prefix-free code where the length of
the codeword associated to a; is [;. Since the code is prefix free, it must be the case
that | > H (U). In order to prove the upper bound, let P* be the true distribution
(which is either P; or ...or Py). It is easy to see that P*(a;) < Pi(a;) + ...+ Py(a;)
for all 1 <7< M. We have:

- & <N k
[ = Z;P (a;).l; = E;P (ai).{logz Pr(a@) +._‘+pk(ai)w
M . k

1

.
Il

M
1
-3 p (1 log, k + 1 )
; (as). {1 +-logz k -+ log, 55 e
- 1
—14logyk+ > P(a).]
08 +; (@:)-1og, By .+ Bela)

(x) M 1
< 1+logyk+ Y P*(a).log, el = 1+1log, k+ H(U),
i=1 i

where the inequality (%) uses the fact that P*(a;) < Pi(a;) + ... 4+ Pr(a;) for all
1<i <M.



PROBLEM 3.

(a)

Consider a maximally branched Huffman code, and for each 1 <11 < [,.«, let N; be
the number of codewords of length [. Since the Huffman code is maximally branched,
we have N; > 1 for 1 < | < lyax, and clearly we have N; > 2 for [ = [, since any
Huffman code contains at least two longest codewords. The Kraft-sum of this code
is equal to:

lmax lmax_1 1 _ 2_lmax+l

SNtz (Y 2 w22t — a4 — 1,
=1

=1

where the equality holds if and only if we have Ny =1 for 1 <[ < l,ax and N, = 2.
Now since any Huffman code is a prefix-free code, the Kraft-sum must be at most
1. We conclude that the Kraft-sum is equal to 1, which implies that N; = 1 for
1 <1l <lpax and N;, = 2.

We will prove by induction on M > 3 the following statement: If we have P(a;) >
i—2

Z P(a;) for every 3 < i < M, there exists a maximally branched Huffman code in

j=1
which the codewords associated to a; and as are the longest two codewords. The

statement is trivial for M = 3. Now suppose that the statement is true up to

alphabets of length M — 1, and suppose that we have an alphabet of length M > 3
1—2

such that P(a;) ZP a;) for every 3 < i < M. Now consider the alphabet
7j=1

{a},...,d;_ 1} such that a} = a;4; for 2 < i < M — 1, and define the probability
distribution P’ on this alphabet by P’'(a}) = P(ay) + P(as) and P'(a}) = P(a’-) =

(3

P(a;yq) for every 2 <i < M — 1. It is easy to show that we have P'(a}) > Z P(a

for every 3 < ¢ < M — 1. By the induction hypothesis, there exists a maxnnally
branched Huffman code for the new alphabet in which the codewords associated to
a} and aj are the longest two words. By deleting the codeword associated to a) and
replacing it with its two descendants, and associating the new codewords to a; and
az, we get a maximally branched Huffman code for the original alphabet {ay, ..., an}
in which the codewords associated to a; and ay are the longest two codewords.

We will prove the statement by induction on M > 3. The statement is trivial for

M = 3. Now suppose that it is true for alphabets of length up to M — 1, and consider
i—2

an alphabet of length M satisfying P(a;) ZP a;) for every 3 < i < M. It is

7j=1
easy to see that a; and ay are the unique two symbols with smallest probability,

and so every Huffman code must begin by combining a; and as. Now consider the
alphabet {af,...,a),_;} such that a} = a;41 for 2 < i < M — 1, and define the
probability distribution P’ by P'(a}) = P(a1) + P(az2) and P'(a}) = P(a’) P(a;y1)

1

for every 2 < i < M — 1. It is easy to show that we have P'(a Z P(a’)" for

every 3 < i < M — 1. Since every Huffman code for the new alphabet is max1ma11y
branched, every Huffman code for the initial alphabet {ai,...,ap} is maximally
branched as well.



(d) Let P(a;) = =2— = e llM( Y Tt is easy to see that P(a;) < ... < P(ay). We will

Zj\ll@] ¥
i—2
prove by induction on 3 < ¢ < M that we have Z P(a;) < P(a;). The statement
j=1
is trivial for 7 = 3 since ¢? = ¢ + 1. Now let 4 < i < M and suppose that we have
i—3
ZP(GJ‘) < P(ai_l), then:
=1
— (P + (e - 1)
;P(aj)zp(azg Z CLJ <P<CL,L 2)+P<CL,L 1) QOM—]_

_ & (1+90( —D _ ¢l - _ e p
1 T oM — 1 i)

By applying (b), we get the result.
Note that the Huffman code for this distribution has [y = M — 1, where as log, pil =

M log, ¢ — const ~ (0.695) M — const. We see that [; and log, p% can be very different.

Therefore, it is not true that [; is close to log, 1% for Huffman codes.
PROBLEM 4.

(a) We prove the identity by induction on n > 1. For n = 1, the identity is trivial. Let
n > 1 and suppose that the identity is true up to n — 1. We have:

YR 5 X)) = [P, Yo 1 Xo) & 1Y% X)) + I( X Yot [YI2)
n—1

= (ZI XYY (XYY = Y 1 vy,
=1

The identity (x) is by the chain rule for mutual information, and the identity (**) is
by the induction hypothesis.

(b) For every 0 < i < n, define a; = I(X[;Y}), and for every 1 < i < n, define
by = I(XP;Y{ ™). Tt is easy to see that ag = a, = 0. We have:

iI(X;LHSK"KiU 2 i ([(inﬂﬁyl) I(X7 Y™ 1)> - (Z ) <Zb>

<z><z><z><2>2<>

<I (X Yz 1 I(in-khyl 1 ) (rxx) Z]Yz 1. - X | H—l)

i=1 =1

Mi

The identities (*) and (%) are by the chain rule for mutual information. The identity

(#x) follows from the fact that ag = a,, = 0, which implies that Z a; = Z a;.

i=1



