Problem 1.

(a) Consider the sequence \(a_i = 2^i - 1, \ i = 0, 1, 2, \ldots \) This is a strictly increasing sequence with \(a_0 = 0, a_1 = 1, a_2 = 3, a_3 = 7, \ldots \) consequently any \(M > 0 \) will fall between two unique consecutive terms of this sequence, \(a_k \leq M < a_{k+1}, \) i.e., \(M = a_k + r, \) with \(0 \leq r < a_{k+1} - a_k = 2^k. \) This concludes the existence part.

For the uniqueness part, suppose that there exists another pair of integers \((k', r') \) satisfying \(M = 2^{k'-1} + r' \) and \(0 \leq r' < 2^{k'}. \) This means that \(2^{k'-1} \leq M < 2^{k'+1} - 1. \) Therefore, \(k' = k, \) from which we can easily deduce that \(r = r'. \)

(b) Consider a non-singular code that maximizes the Kraft sum \(K = \sum_i 2^{-i}. \) Let \(L \) be the length of the longest codeword in such a code. If the tree representing the code contains a node at a level \(l < L \) which is not occupied by any codeword, then by deleting any codeword of length \(L \) and replacing it by the unoccupied node at level \(l < L \) we obtain a new code with a higher Kraft sum which is a contradiction. Therefore, all the levels that are below the level \(L \) are completely occupied. This means that the number of codewords of length at most \(L - 1 \) is exactly \(2^L - 1 \) and the number of codewords of length \(L \) is \(N_L \leq 2^L. \) We conclude that \(M = 2^L - 1 + N_L \) and \(1 \leq N_L \leq 2^L. \) We have two cases:

(i) \(N_L = 2^L, \) which means that \(M = 2^{L+1} - 1 \) so that \(k = L + 1 = \log_2(M + 1) = \lfloor \log_2(M + 1) \rfloor \) and \(r = 0. \) In this case we have \(K = \sum_i 2^{-i} = L + 1 = k = k + r2^{k-1} = \lfloor \log_2(M + 1) \rfloor. \)

(ii) \(N_L < 2^L, \) which means that \(k = L \) and \(r = N_L \) (because of (a)). In this case, we have \(K = \sum_i 2^{-i} = k + r2^{k-1} \leq k + 1 = \lfloor \log_2(M + 1) \rfloor. \) In both cases, we have \(\sum_i 2^{-i} = k + r2^{k-1} \leq \lfloor \log_2(M + 1) \rfloor. \) And since the non-singular code was chosen to maximize the Kraft sum, we conclude that any non-singular code satisfies \(\sum_i 2^{-i} \leq k + r2^{k-1} \leq \lfloor \log_2(M + 1) \rfloor. \)

(c) Define \(K = \sum_i 2^{-i} \) and for each symbol \(a_i \) define \(q(a_i) = \frac{2^{-i}}{K}. \) It is clear that \(q \) is a probability distribution over the alphabet \(\{a_1, ..., a_M\}. \) Let \(p \) be the probability distribution of the random variable \(U. \) By the positivity of the kullback-leibler divergence, we have:

\[
D(p||q) = \sum_{i=1}^{M} p(a_i) \log_2 \frac{p(a_i)}{q(a_i)} \geq 0,
\]

from which we conclude that

\[
\sum_{i=1}^{M} p(a_i) \log_2 p(a_i) - \sum_{i=1}^{M} p(a_i) \log_2 \frac{2^{-i}}{K} \geq 0.
\]

By rewriting the last inequality we get \(-H(U) + \bar{l} + \log_2(K) \geq 0,\) and by applying the inequalities of part (b), we conclude:

\[
\bar{l} \geq H(U) - \log_2(K) \geq H(U) - \log_2(k + r2^{-k}) \geq H(U) - \log_2[\log_2(M + 1)].
\]
Problem 2.

(a) Let \(l_i = \left\lceil \log_2 \frac{2}{P_1(a_i) + P_2(a_i)} \right\rceil \), and let us compute the Kraft sum associated to \((l_i)_i\):

\[
\sum_{i=1}^{M} 2^{-l_i} \leq \sum_{i=1}^{M} 2^{-\log_2 \frac{2}{P_1(a_i) + P_2(a_i)}} = \sum_{i=1}^{M} \frac{P_1(a_i) + P_2(a_i)}{2} = 1.
\]

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to \(a_i \) is \(l_i \).

(b) Since the code constructed in (a) is prefix free, it must be the case that \(\bar{l} \geq H(U) \). In order to prove the upper bound, let \(P^* \) be the true distribution (which is either \(P_1 \) or \(P_2 \)). It is easy to see that \(P^*(a_i) \leq P_1(a_i) + P_2(a_i) \) for all \(1 \leq i \leq M \). We have:

\[
\bar{l} = \sum_{i=1}^{M} P^*(a_i) \cdot l_i = \sum_{i=1}^{M} P^*(a_i) \cdot \left\lceil \log_2 \frac{2}{P_1(a_i) + P_2(a_i)} \right\rceil
\]

\[
\leq \sum_{i=1}^{M} P^*(a_i) \cdot \left(1 + \log_2 \frac{2}{P_1(a_i) + P_2(a_i)} \right) = \sum_{i=1}^{M} P^*(a_i) \cdot \left(2 + \log_2 \frac{1}{P_1(a_i) + P_2(a_i)} \right)
\]

\[
= 2 + \sum_{i=1}^{M} P^*(a_i) \cdot \log_2 \frac{1}{P_1(a_i) + P_2(a_i)} \leq 2 + \sum_{i=1}^{M} P^*(a_i) \cdot \log_2 \frac{1}{P^*(a_i)} = 2 + H(U),
\]

where the inequality \((*)\) uses the fact that \(P^*(a_i) \leq P_1(a_i) + P_2(a_i) \) for all \(1 \leq i \leq M \).

(c) Now let \(l_i = \left\lceil \log_2 \frac{k}{P_1(a_i) + \ldots + P_k(a_i)} \right\rceil \), and let us compute the Kraft sum associated to \((l_i)_i\):

\[
\sum_{i=1}^{M} 2^{-l_i} \leq \sum_{i=1}^{M} 2^{-\log_2 \frac{k}{P_1(a_i) + \ldots + P_k(a_i)}} = \sum_{i=1}^{M} \frac{P_1(a_i) + \ldots + P_k(a_i)}{k} = 1.
\]

Since the Kraft sum is at most 1, there exists a prefix-free code where the length of the codeword associated to \(a_i \) is \(l_i \). Since the code is prefix free, it must be the case that \(\bar{l} \geq H(U) \). In order to prove the upper bound, let \(P^* \) be the true distribution (which is either \(P_1 \) or \(\ldots \) or \(P_k \)). It is easy to see that \(P^*(a_i) \leq P_1(a_i) + \ldots + P_k(a_i) \) for all \(1 \leq i \leq M \). We have:

\[
\bar{l} = \sum_{i=1}^{M} P^*(a_i) \cdot l_i = \sum_{i=1}^{M} P^*(a_i) \cdot \left\lceil \log_2 \frac{k}{P_1(a_i) + \ldots + P_k(a_i)} \right\rceil
\]

\[
\leq \sum_{i=1}^{M} P^*(a_i) \cdot \left(1 + \log_2 \frac{k}{P_1(a_i) + \ldots + P_k(a_i)} \right)
\]

\[
= \sum_{i=1}^{M} P^*(a_i) \cdot \left(1 + \log_2 k + \log_2 \frac{1}{P_1(a_i) + \ldots + P_k(a_i)} \right)
\]

\[
= 1 + \log_2 k + \sum_{i=1}^{M} P^*(a_i) \cdot \log_2 \frac{1}{P^*(a_i)} \leq 1 + \log_2 k + \sum_{i=1}^{M} P^*(a_i) \cdot \log_2 \frac{1}{P^*(a_i)} = 1 + \log_2 k + H(U),
\]

where the inequality \((*)\) uses the fact that \(P^*(a_i) \leq P_1(a_i) + \ldots + P_k(a_i) \) for all \(1 \leq i \leq M \).
Problem 3.

(a) Consider a maximally branched Huffman code, and for each $1 \leq l \leq l_{\text{max}}$, let N_l be
the number of codewords of length l. Since the Huffman code is maximally branched, we have $N_l \geq 1$ for $1 \leq l < l_{\text{max}}$, and clearly we have $N_l \geq 2$ for $l = l_{\text{max}}$ since any Huffman code contains at least two longest codewords. The Kraft-sum of this code is equal to:

$$\sum_{l=1}^{l_{\text{max}}} N_l 2^{-l} \geq \left(\sum_{l=1}^{l_{\text{max}}-1} 2^{-l} \right) + 2.2^{-l_{\text{max}}} = 2^{-1} \frac{1 - 2^{-l_{\text{max}}+1}}{2^{-1}} + 2^{-l_{\text{max}}+1} = 1,$$

where the equality holds if and only if we have $N_l = 1$ for $1 \leq l < l_{\text{max}}$ and $N_{l_{\text{max}}} = 2$. Now since any Huffman code is a prefix-free code, the Kraft-sum must be at most 1. We conclude that the Kraft-sum is equal to 1, which implies that $N_l = 1$ for $1 \leq l < l_{\text{max}}$ and $N_{l_{\text{max}}} = 2$.

(b) We will prove by induction on $M \geq 3$ the following statement: If we have $P(a_i) \geq i-2 \sum_{j=1}^{i-2} P(a_j)$ for every $3 \leq i \leq M$, there exists a maximally branched Huffman code in which the codewords associated to a_1 and a_2 are the longest two codewords. The statement is trivial for $M = 3$. Now suppose that the statement is true up to alphabets of length $M - 1$, and suppose that we have an alphabet of length $M > 3$

\{a'_1, \ldots, a'_{M-1}\} such that $a'_i = a_{i+1}$ for $2 \leq i \leq M - 1$, and define the probability distribution P' on this alphabet by $P'(a'_i) = P(a_1) + P(a_2)$ and $P'(a'_i) = P(a') = P(a_{i+1})$ for every $2 \leq i \leq M - 1$. It is easy to show that we have $P'(a'_i) \geq i-2 \sum_{j=1}^{i-2} P(a'_j)$

for every $3 \leq i \leq M - 1$. By the induction hypothesis, there exists a maximally branched Huffman code for the new alphabet in which the codewords associated to a'_1 and a'_2 are the longest two words. By deleting the codeword associated to a'_1 and replacing it with its two descendants, and associating the new codewords to a_1 and a_2, we get a maximally branched Huffman code for the original alphabet \{a_1, \ldots, a_M\} in which the codewords associated to a_1 and a_2 are the longest two codewords.

(c) We will prove the statement by induction on $M \geq 3$. The statement is trivial for $M = 3$. Now suppose that it is true for alphabets of length up to $M - 1$, and consider an alphabet of length M satisfying $P(a_i) \geq i-2 \sum_{j=1}^{i-2} P(a_j)$ for every $3 \leq i \leq M$. It is easy to see that a_1 and a_2 are the unique two symbols with smallest probability, and so every Huffman code must begin by combining a_1 and a_2. Now consider the alphabet \{a'_1, \ldots, a'_{M-1}\} such that $a'_i = a_{i+1}$ for $2 \leq i \leq M - 1$, and define the probability distribution P' by $P'(a'_i) = P(a_1) + P(a_2)$ and $P'(a'_i) = P(a'_i) = P(a_{i+1})$

for every $2 \leq i \leq M - 1$. It is easy to show that we have $P'(a'_i) > i-2 \sum_{j=1}^{i-2} P(a'_j)$

for every $3 \leq i \leq M - 1$. Since every Huffman code for the new alphabet is maximally branched, every Huffman code for the initial alphabet \{a_1, \ldots, a_M\} is maximally branched as well.
(d) Let \(P(a_i) = \frac{\varphi^i}{\sum_{j=1}^{i-1} \varphi^j} = \frac{\varphi^{i-1}(\varphi - 1)}{\varphi^M - 1}. \) It is easy to see that \(P(a_1) \leq \ldots \leq P(a_M). \) We will prove by induction on \(3 \leq i \leq M \) that we have \(\sum_{j=1}^{i-2} P(a_j) < P(a_i). \) The statement is trivial for \(i = 3 \) since \(\varphi^2 = \varphi + 1. \) Now let \(4 \leq i \leq M \) and suppose that we have \(\sum_{j=1}^{i-3} P(a_j) < P(a_{i-1}), \) then:

\[
\sum_{j=1}^{i-2} P(a_j) = P(a_{i-2}) + \sum_{j=1}^{i-3} P(a_j) < P(a_{i-2}) + P(a_{i-1}) = \frac{\varphi^{i-3} + \varphi^{i-2}(\varphi - 1)}{\varphi^M - 1} = \frac{\varphi^{i-3}(1 + \varphi)(\varphi - 1)}{\varphi^M - 1} = \frac{\varphi^{i-1}(\varphi - 1)}{\varphi^M - 1} = P(a_i).
\]

By applying (b), we get the result.

Note that the Huffman code for this distribution has \(l_1 = M - 1, \) where as \(\log_2 \frac{1}{p_i} = M \log_2 \varphi - \text{const} \approx (0.695)M - \text{const}. \) We see that \(l_1 \) and \(\log_2 \frac{1}{p_i} \) can be very different. Therefore, it is not true that \(l_i \) is close to \(\log_2 \frac{1}{p_i} \) for Huffman codes.

Problem 4.

(a) We prove the identity by induction on \(n \geq 1. \) For \(n = 1, \) the identity is trivial. Let \(n > 1 \) and suppose that the identity is true up to \(n - 1. \) We have:

\[
I(Y_1^{n-1}; X_n) = I(Y_1^{n-2}; Y_{n-1}; X_n) \overset{(\epsilon)}{=} I(Y_1^{n-2}; X_n) + I(X_n; Y_{n-1}|Y_1^{n-2}) \overset{(\star \star)}{=} \left(\sum_{i=1}^{n-2} I(X_n; Y_i|Y_1^{i-1}) \right) + I(X_n; Y_{n-1}|X_1^{n-2}) = \sum_{i=1}^{n-1} I(X_n; Y_i|Y_1^{i-1}).
\]

The identity \((\star \star) \) is by the chain rule for mutual information, and the identity \((\star \star \star) \) is by the induction hypothesis.

(b) For every \(0 \leq i \leq n, \) define \(a_i = I(X_{i+1}^n; Y_i^i), \) and for every \(1 \leq i \leq n, \) define \(b_i = I(X_{i+1}^n; Y_1^{i-1}). \) It is easy to see that \(a_0 = a_n = 0. \) We have:

\[
\sum_{i=1}^{n} I(X_{i+1}^n; Y_i|Y_1^{i-1}) \overset{(\star \star)}{=} \sum_{i=1}^{n} \left(I(X_{i+1}^n; Y_i^i) - I(X_{i+1}^n; Y_1^{i-1}) \right) = \left(\sum_{i=1}^{n} a_i \right) - \left(\sum_{i=1}^{n} b_i \right) \overset{(\star \star \star)}{=} \left(\sum_{i=0}^{n-1} a_i \right) - \left(\sum_{i=1}^{n} b_i \right) = \left(\sum_{i=1}^{n-1} a_{i-1} \right) - \left(\sum_{i=1}^{n} b_i \right) \overset{(\star \star \star \star)}{=} n \left(I(X_i^n; Y_1^{i-1}) - I(X_{i+1}^n; Y_1^{i-1}) \right) \overset{(\star \star \star \star)}{=} \sum_{i=1}^{n} I(Y_1^{i-1}; X_i|X_{i+1}^n).
\]

The identities \((\star) \) and \((\star \star \star \star) \) are by the chain rule for mutual information. The identity \((\star \star \star) \) follows from the fact that \(a_0 = a_n = 0, \) which implies that \(\sum_{i=1}^{n} a_i = \sum_{i=0}^{n-1} a_i. \)