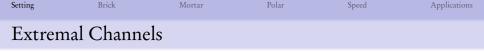
Setting	Brick	Mortar	Polar	Speed	Applications

Polarization and polar codes

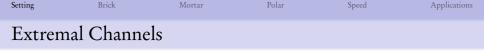
Emre Telatar

EPFL

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

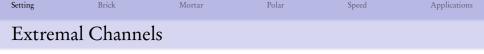


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



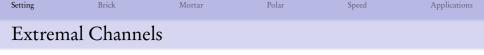
• The perfect channels: the output *Y* determines the input *X*.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで



- The perfect channels: the output *Y* determines the input *X*.
- The useless channels: the output *Y* is independent of the input *X*.

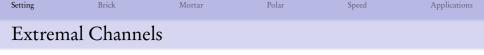
▲□▶▲□▶▲□▶▲□▶ □ のQ@



- The perfect channels: the output *Y* determines the input *X*.
- The useless channels: the output *Y* is independent of the input *X*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

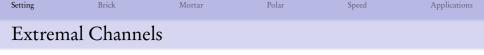
Arıkan's polar coding is a technique to convert any binary-input channel to a mixture of binary-input extremal channels.



- The perfect channels: the output *Y* determines the input *X*.
- The useless channels: the output *Y* is independent of the input *X*.

Arıkan's polar coding is a technique to convert any binary-input channel to a mixture of binary-input extremal channels.

• The technique is information lossless, and of low complexity*.



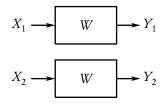
- The perfect channels: the output *Y* determines the input *X*.
- The useless channels: the output *Y* is independent of the input *X*.

Arıkan's polar coding is a technique to convert any binary-input channel to a mixture of binary-input extremal channels.

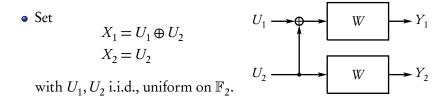
• The technique is information lossless, and of low complexity*.

• I am not the inventor of this technique.

Setting	Brick	Mortar	Polar	Speed	Applications
Buildi	ng block				

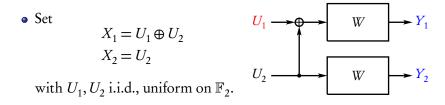


Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

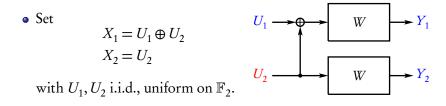
Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

• This induces two synthetic channels $W^-: \mathbb{F}_2 \to \mathscr{Y}^2$

Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

• This induces two synthetic channels $W^-: \mathbb{F}_2 \to \mathscr{Y}^2$ and $W^+: \mathbb{F}_2 \to \mathscr{Y}^2 \times \mathbb{F}_2$.

Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				

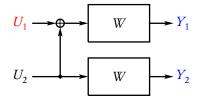
Note that

$$W^{-}(y_{1}, y_{2}|u_{1}) = \sum_{u_{2} \in \mathbb{F}_{2}} \frac{1}{2} W(y_{1}|u_{1} \oplus u_{2}) W(y_{2}|u_{2})$$
$$W^{+}(y_{1}, y_{2}, u_{1}|u_{2}) = \frac{1}{2} W(y_{1}|u_{1} \oplus u_{2}) W(y_{2}|u_{2})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

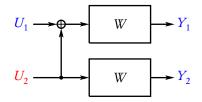
 $I(W^{-}) = I(U_1; Y_1Y_2)$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

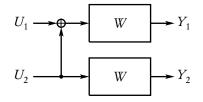
$$\begin{split} &I(W^{-}) = I(U_1; Y_1 Y_2) \\ &I(W^{+}) = I(U_2; Y_1 Y_2 U_1) \end{split}$$



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

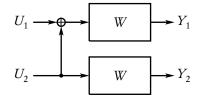
$$\begin{split} I(W^-) &= I(U_1;Y_1Y_2) \\ I(W^+) &= I(U_2;Y_1Y_2U_1) \\ I(W^-) &+ I(W^+) = I(U_1U_2;Y_1Y_2) \end{split}$$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

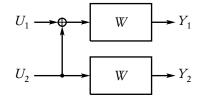
Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

$$\begin{split} I(W^{-}) &= I(U_1; Y_1 Y_2) \\ I(W^{+}) &= I(U_2; Y_1 Y_2 U_1) \\ I(W^{-}) + I(W^{+}) &= I(U_1 U_2; Y_1 Y_2) \\ &= I(X_1 X_2; Y_1 Y_2) \end{split}$$



Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

$$\begin{split} I(W^{-}) &= I(U_1; Y_1 Y_2) \\ I(W^{+}) &= I(U_2; Y_1 Y_2 U_1) \\ I(W^{-}) + I(W^{+}) &= I(U_1 U_2; Y_1 Y_2) \\ &= I(X_1 X_2; Y_1 Y_2) \end{split}$$



•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

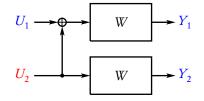
Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

$$I(W^{-}) = I(U_1; Y_1Y_2)$$

$$I(W^{+}) = I(U_2; Y_1Y_2U_1)$$

$$I(W^{-}) + I(W^{+}) = I(U_1U_2; Y_1Y_2)$$

$$= I(X_1X_2; Y_1Y_2)$$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

• $I(W^+) \ge I(W)$

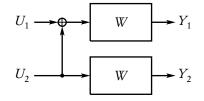
Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

$$I(W^{-}) = I(U_1; Y_1Y_2)$$

$$I(W^{+}) = I(U_2; Y_1Y_2U_1)$$

$$I(W^{-}) + I(W^{+}) = I(U_1U_2; Y_1Y_2)$$

$$= I(X_1X_2; Y_1Y_2)$$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

•
$$I(W^+) \ge I(W) \ge I(W^-)$$
.

Setting	Brick	Mortar	Polar	Speed	Applications
D1.1:					
Buildi	ng block				

Properties of $W \mapsto (W^-, W^+)$:

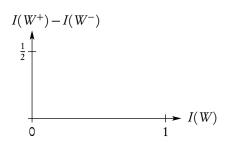
•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

•
$$I(W^+) \ge I(W) \ge I(W^-)$$
.

Setting	Brick	Mortar	Polar	Speed	Applications
Buildi	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

• $I(W^+) \ge I(W) \ge I(W^-)$.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

• $I(W^+) \ge I(W) \ge I(W^-).$

$$I(W^+) - I(W^-)$$

$$\downarrow^{1}$$

$$\downarrow^{-}$$

$$\downarrow^{-}$$

$$I(W)$$

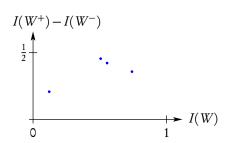
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

• $I(W^+) > I(W) > I(W^-).$

•
$$I(W^+) \ge I(W) \ge I(W^-).$$

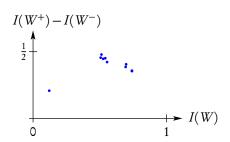


Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

• $I(W^+) > I(W) > I(W^-).$

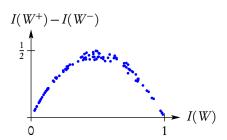
•
$$I(W^+) \ge I(W) \ge I(W^-).$$



Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

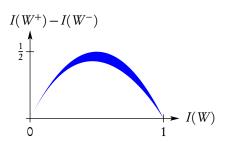
•
$$I(W^+) \ge I(W) \ge I(W^-)$$
.



Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

•
$$I(W^+) \ge I(W) \ge I(W^-)$$
.

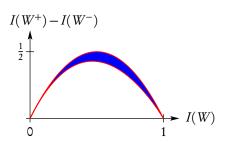


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Setting	Brick	Mortar	Polar	Speed	Applications
Buildir	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

•
$$I(W^+) \ge I(W) \ge I(W^-)$$
.



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

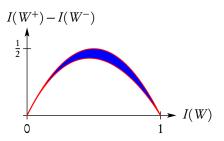
Setting	Brick	Mortar	Polar	Speed	Applications
Buildin	ng block				

•
$$\frac{1}{2}I(W^-) + \frac{1}{2}I(W^+) = I(W).$$

•
$$I(W^+) \ge I(W) \ge I(W^-).$$

 For every ε > 0 there is a δ > 0 such that

$$I(W^+) - I(W^-) < \delta$$
 implies
 $I(W) \notin (\epsilon, 1 - \epsilon).$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

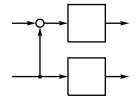
Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation cons	truction			

What we can do once, we can do many times.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation cons	truction			

What we can do once, we can do many times. Given $W: \mathbb{F}_2 \to \mathcal{Y}$,

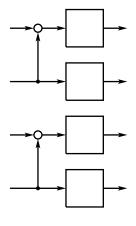
• Duplicate *W* and obtain *W*⁻ and *W*⁺.



Setting	Brick	Mortar	Polar	Speed	Applications	
Polarization construction						
1 01a112						

What we can do once, we can do many times. Given $W: \mathbb{F}_2 \to \mathcal{Y}$,

- Duplicate *W* and obtain *W*⁻ and *W*⁺.
- Duplicate W^- (and W^+),

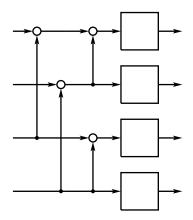


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Setting	Brick	Mortar	Polar	Speed	Applications
Dalaris	zation cons	turation			
Polariz	cation cons	ruction			

What we can do once, we can do many times. Given $W : \mathbb{F}_2 \to \mathcal{Y}$,

- Duplicate *W* and obtain *W*⁻ and *W*⁺.
- Duplicate W^- (and W^+),
- and obtain W⁻⁻ and W⁻⁺ (and W⁺⁻ and W⁺⁺).

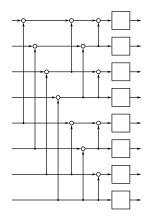


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Setting	Brick	Mortar	Polar	Speed	Applications
Dalani		+			
Polariz	zation cons	truction			

What we can do once, we can do many times. Given $W : \mathbb{F}_2 \to \mathcal{Y}$,

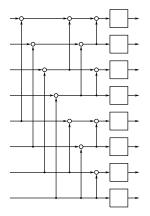
- Duplicate *W* and obtain *W*⁻ and *W*⁺.
- Duplicate W^- (and W^+),
- and obtain W⁻⁻ and W⁻⁺ (and W⁺⁻ and W⁺⁺).
- Duplicate W⁻⁻ (and W⁻⁺, W⁺⁻, W⁺⁺) and obtain W⁻⁻⁻ and W⁻⁻⁺ (and W⁻⁺⁻, W⁻⁺⁺, W⁺⁻⁻, W⁺⁻⁺, W⁺⁺⁻, W⁺⁺⁺).



Setting	Brick	Mortar	Polar	Speed	Applications		
Polarization construction							
I UIALIZ	Lation cons						

What we can do once, we can do many times. Given $W : \mathbb{F}_2 \to \mathcal{Y}$,

- Duplicate *W* and obtain *W*⁻ and *W*⁺.
- Duplicate W^- (and W^+),
- and obtain W⁻⁻ and W⁻⁺ (and W⁺⁻ and W⁺⁺).
- Duplicate W⁻⁻ (and W⁻⁺, W⁺⁻, W⁺⁺) and obtain W⁻⁻⁻ and W⁻⁻⁺ (and W⁻⁺⁻, W⁻⁺⁺, W⁺⁻⁻, W⁺⁻⁺, W⁺⁺⁻, W⁺⁺⁺).



• ...

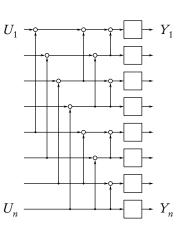
Setting	Brick	Mortar	Polar	Speed	Applications	
Polarization construction						

l levels into this process, we have transformed *n* = 2^l uses of channel *W* to one use each of 2^l channels

$$W^{b_1...,b_\ell}, \quad b_j \in \{+,-\},$$

these are the channels

$$U_i \to Y^n U^{i-1}, \quad i=1,\ldots,n$$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation cons	truction			

ℓ levels into this process, we have transformed *n* = 2^{*ℓ*} uses of channel *W* to one use each of 2^{*ℓ*} channels

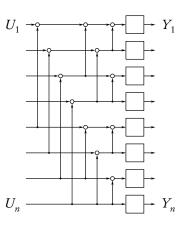
$$W^{b_1...,b_\ell}, \quad b_j \in \{+,-\},$$

these are the channels

$$U_i \to Y^n U^{i-1}, \quad i=1,\ldots,n.$$

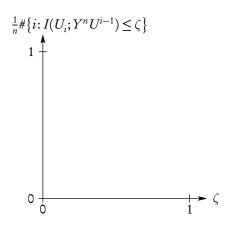
• The quantities {*I*(*W*^{*b*₁...*b*_{*l*})} are exactly the *n* quantities}

$$I(U_i; Y^n U^{i-1}), \quad i=1,\ldots,n$$

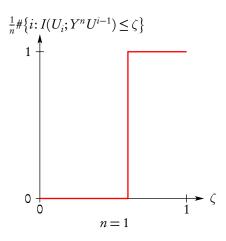


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

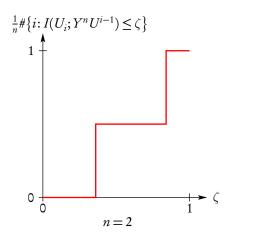
Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			



Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			

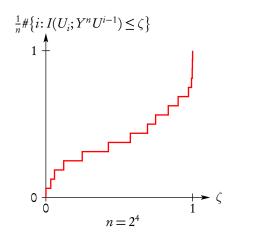


Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			

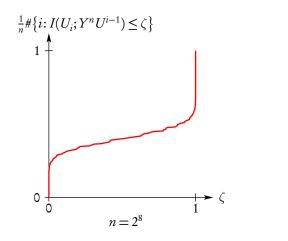


・ロト・四ト・ヨト モー シュウ

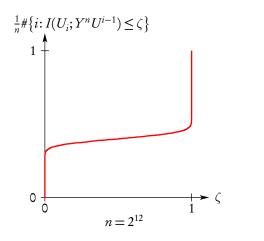
Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			



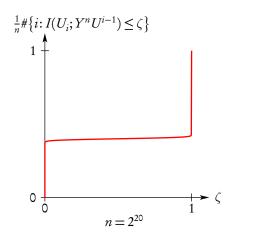
Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			



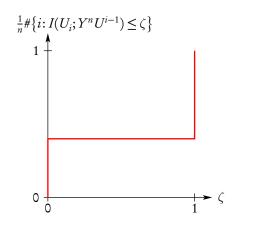
Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			



Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			



Setting	Brick	Mortar	Polar	Speed	Applications
Example W is a binary		nel, $p = 0.4$			



Setting	Brick	Mortar	Polar	Speed	Applications
Polariza	ition				

• Polarization refers to the phenomenon that in the limit, almost all channels are extremal, i.e.,

$$\frac{1}{n} \# \left\{ i \colon I(U_i; Y^n U^{i-1}) \in (\epsilon, 1-\epsilon) \right\} \to 0$$

as
$$n = 2^{\ell}$$
 gets large.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation				

• Polarization refers to the phenomenon that in the limit, almost all channels are extremal, i.e.,

$$\frac{1}{n} \# \left\{ i \colon I(U_i; Y^n U^{i-1}) \in (\epsilon, 1-\epsilon) \right\} \to 0$$

as $n = 2^{\ell}$ gets large.

• *If* this happens, the *good* limiting synthetic channels can be used to transmit uncoded data bits — the inputs to the other channels can be frozen to fixed values. Since the transformation is information lossless, the fraction of good channels (i.e., data rate) must be I(W).

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation				

• Polarization refers to the phenomenon that in the limit, almost all channels are extremal, i.e.,

$$\frac{1}{n} \# \left\{ i \colon I(U_i; Y^n U^{i-1}) \in (\epsilon, 1-\epsilon) \right\} \to 0$$

as $n = 2^{\ell}$ gets large.

- *If* this happens, the *good* limiting synthetic channels can be used to transmit uncoded data bits the inputs to the other channels can be frozen to fixed values. Since the transformation is information lossless, the fraction of good channels (i.e., data rate) must be I(W).
- The decoder can decode U_1, U_2, \ldots, U_n successively.

Setting	Brick	Mortar	Polar	Speed	Applications
On suc	ccessive dec	coding			

The quantities $I(U_i; Y^n U^{i-1})$ are relevant for a genie-aided decoder:

$$\begin{split} \hat{U}_1 &= \phi_1(Y^n) \\ \hat{U}_2 &= \phi_2(Y^n, U_1) \\ \hat{U}_3 &= \phi_3(Y^n, U^2) \\ \dots \end{split}$$

$$\hat{U}_n = \phi_n(Y^n, U^{n-1})$$

Setting	Brick	Mortar	Polar	Speed	Applications
On suc	ccessive dec	coding			

vs

The quantities $I(U_i; Y^n U^{i-1})$ are relevant for a genie-aided decoder:

$$\begin{split} \hat{U}_{1} &= \phi_{1}(Y^{n}) \\ \hat{U}_{2} &= \phi_{2}(Y^{n}, U_{1}) \\ \hat{U}_{3} &= \phi_{3}(Y^{n}, U^{2}) \end{split}$$

 $\hat{U}_n = \phi_n(Y^n, U^{n-1})$

. . .

unaided decoder:

. . .

$$\hat{U}_1 = \phi_1(Y^n)$$
$$\hat{U}_2 = \phi_2(Y^n, \hat{U}_1)$$
$$\hat{U}_3 = \phi_3(Y^n, \hat{U}^2)$$

$$\hat{U}_n = \phi_n(Y^n, \hat{U}^{n-1}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Setting	Brick	Mortar	Polar	Speed	Applications
On suc	ccessive dec	coding			

unaided decoder:

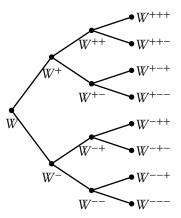
The quantities $I(U_i; Y^n U^{i-1})$ are relevant for a genie-aided decoder:

$$\begin{split} \hat{U}_1 &= \phi_1(Y^n) & \hat{U}_1 &= \phi_1(Y^n) \\ \hat{U}_2 &= \phi_2(Y^n, U_1) & \hat{U}_2 &= \phi_2(Y^n, \hat{U}_1) \\ \hat{U}_3 &= \phi_3(Y^n, U^2) & \text{vs} & \hat{U}_3 &= \phi_3(Y^n, \hat{U}^2) \\ \cdots & \cdots & \ddots \\ \hat{U}_n &= \phi_n(Y^n, U^{n-1}) & \hat{U}_n &= \phi_n(Y^n, \hat{U}^{n-1}). \end{split}$$

If the genie-aided decoder makes no errors, then, the unaided decoder makes no errors.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

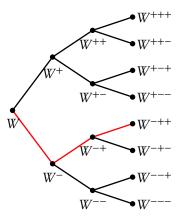
• Let B_1, B_2, \dots be i.i.d., equally likely to be $\{+, -\}, W_0 = W,$ $W_{\ell} = W_{\ell-1}^{B_{\ell}}$.



ヘロト 人間 ト 人 ヨト 人 ヨトー

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

• Let B_1, B_2, \dots be i.i.d., equally likely to be $\{+, -\}, W_0 = W,$ $W_{\ell} = W_{\ell-1}^{B_{\ell}}$.

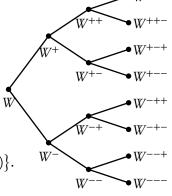


ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

- Let B_1, B_2, \dots be i.i.d., equally likely to be $\{+, -\}, W_0 = W,$ $W_{\ell} = W_{\ell-1}^{B_{\ell}}$.
- Wℓ is uniformly distributed among {W^{-...-},..., W^{+...+}}, and

$$\begin{aligned} \Pr\bigl(I(W_\ell) \in (\epsilon, 1-\epsilon)\bigr) \\ &= \frac{1}{n} \#\bigl\{i: I(U_i; Y^n U^{i-1}) \in (\epsilon, 1-\epsilon)\bigr) \end{aligned}$$



Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	hannan			
rolariz	Lation does	nappen			

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $I_0 = I(W)$ is a constant.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

- $I_0 = I(W)$ is a constant.
- I_{ℓ} lies in [0, 1], so is bounded.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation does	happen			

- $I_0 = I(W)$ is a constant.
- I_{ℓ} lies in [0, 1], so is bounded.
- Conditional on B_1, \ldots, B_ℓ , we know W_ℓ , and $I_{\ell+1}$ is equally likely to be $I(W_\ell^-)$ and $I(W_\ell^+)$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation does	happen			

- $I_0 = I(W)$ is a constant.
- I_{ℓ} lies in [0, 1], so is bounded.
- Conditional on B_1, \ldots, B_ℓ , we know W_ℓ , and $I_{\ell+1}$ is equally likely to be $I(W_\ell^-)$ and $I(W_\ell^+)$,

• so,

$$E[I_{\ell+1}|B_1,\ldots,B_\ell] = \frac{1}{2}[I(W_\ell^-) + I(W_\ell^+)] = I(W_\ell) = I_\ell$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

and we see that $\{I_{\ell}\}$ is a martingale.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation does	happen			

• Bounded martingales converge almost surely.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

- Bounded martingales converge almost surely.
- Convergence of $\{I_{\ell}\}$ implies $|I_{\ell+1} I_{\ell}| \rightarrow 0$.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

- Bounded martingales converge almost surely.
- Convergence of $\{I_{\ell}\}$ implies $|I_{\ell+1} I_{\ell}| \rightarrow 0$.

•
$$|I_{\ell+1} - I_{\ell}| = \frac{1}{2} [I(W_{\ell}^+) - I(W_{\ell}^-)].$$

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

- Bounded martingales converge almost surely.
- Convergence of $\{I_{\ell}\}$ implies $|I_{\ell+1} I_{\ell}| \rightarrow 0$.

•
$$|I_{\ell+1} - I_{\ell}| = \frac{1}{2} [I(W_{\ell}^+) - I(W_{\ell}^-)].$$

• But
$$I(W_{\ell}^+) - I(W_{\ell}^-) < \delta$$
 implies $I(W_{\ell}) \notin (\epsilon, 1 - \epsilon)$.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation does	happen			

- Bounded martingales converge almost surely.
- Convergence of $\{I_{\ell}\}$ implies $|I_{\ell+1} I_{\ell}| \rightarrow 0$.

•
$$|I_{\ell+1} - I_{\ell}| = \frac{1}{2} [I(W_{\ell}^+) - I(W_{\ell}^-)].$$

- But $I(W_{\ell}^+) I(W_{\ell}^-) < \delta$ implies $I(W_{\ell}) \notin (\epsilon, 1 \epsilon)$.
- Thus $I_{\ell} \rightarrow \{0, 1\}$, and

$$\Pr \bigl(I_\ell \in (\epsilon, 1 - \epsilon) \bigr) \to 0.$$

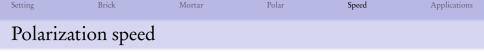
Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation does	happen			
		PP			

- Bounded martingales converge almost surely.
- Convergence of $\{I_{\ell}\}$ implies $|I_{\ell+1} I_{\ell}| \rightarrow 0$.

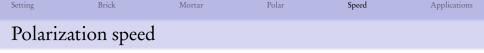
•
$$|I_{\ell+1} - I_{\ell}| = \frac{1}{2} [I(W_{\ell}^+) - I(W_{\ell}^-)].$$

- But $I(W_{\ell}^+) I(W_{\ell}^-) < \delta$ implies $I(W_{\ell}) \notin (\epsilon, 1 \epsilon)$.
- Thus $I_{\ell} \rightarrow \{0, 1\}$, and

$$\Pr(I_{\ell} \in (\epsilon, 1 - \epsilon)) \to 0.$$



• We have seen that polarization takes place.



- We have seen that polarization takes place.
- But how fast? Fast enough to arrest error propagation?

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

- We have seen that polarization takes place.
- But how fast? Fast enough to arrest error propagation?
- Introduce the Bhattacharyya parameter

$$Z(W) = \sum_{y} \sqrt{W(y|0)W(y|1)}$$

as a companion to I(W). Note that this is an upper bound on probability of error for uncoded transmission over W.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

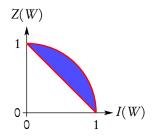
Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

Properties of Z(W):

• $Z(W) \in [0,1].$

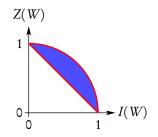
Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	đ			

- $Z(W) \in [0,1].$
- $Z(W) \approx 0$ iff $I(W) \approx 1$.



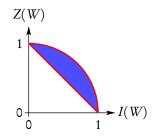
Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	4			

- $Z(W) \in [0,1].$
- $Z(W) \approx 0$ iff $I(W) \approx 1$.
- $Z(W) \approx 1$ iff $I(W) \approx 0$.



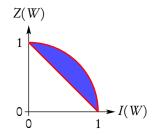
Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	4			

- $Z(W) \in [0,1].$
- $Z(W) \approx 0$ iff $I(W) \approx 1$.
- $Z(W) \approx 1$ iff $I(W) \approx 0$.
- $Z(W^+) = Z(W)^2$.



Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

- $Z(W) \in [0,1].$
- $Z(W) \approx 0$ iff $I(W) \approx 1$.
- $Z(W) \approx 1$ iff $I(W) \approx 0$.
- $Z(W^+) = Z(W)^2$.
- $Z(W^-) \leq 2Z(W)$.

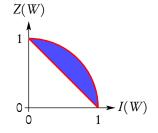


▲□▶▲□▶▲□▶▲□▶ □ のQ@

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

Properties of Z(W):

- $Z(W) \in [0,1].$
- $Z(W) \approx 0$ iff $I(W) \approx 1$.
- $Z(W) \approx 1$ iff $I(W) \approx 0$.
- $Z(W^+) = Z(W)^2$.
- $Z(W^-) \leq 2Z(W)$.



Since Z(W) upper bounds on probability of error for uncoded transmission over W, we can choose the good indices on the basis of the Z's of the synthetic channels. The sum of the Z's of the chosen channels will upper bound the block error probability. This suggests studying the polarization speed of Z.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	4			

Given a binary input channel W,

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Given a binary input channel W,

• just as for I_{ℓ} , define $Z_{\ell} = Z(W^{B_1,...,B_{\ell}})$.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

Given a binary input channel W,

- just as for I_{ℓ} , define $Z_{\ell} = Z(W^{B_1,...,B_{\ell}})$.
- We know that $\Pr(Z_{\ell} \to 0) = I(W)$.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	zation speed	ł			

Given a binary input channel W,

- just as for I_{ℓ} , define $Z_{\ell} = Z(W^{B_1,...,B_{\ell}})$.
- We know that $\Pr(Z_{\ell} \to 0) = I(W)$.
- It turns out that when $Z_{\ell} \rightarrow 0$, it does so fast:

Theorem

For any
$$\beta < 1/2$$
, $\lim_{\ell \to \infty} \Pr(Z_{\ell} < 2^{-2^{\beta \ell}}) = I(W)$.

Setting	Brick	Mortar	Polar	Speed	Applications
Polariz	ation speed	ł			

Given a binary input channel W,

- just as for I_{ℓ} , define $Z_{\ell} = Z(W^{B_1,...,B_{\ell}})$.
- We know that $\Pr(Z_{\ell} \to 0) = I(W)$.
- It turns out that when $Z_{\ell} \rightarrow 0$, it does so fast:

Theorem

For any
$$\beta < 1/2$$
, $\lim_{\ell \to \infty} \Pr(Z_{\ell} < 2^{-2^{\beta \ell}}) = I(W)$.

• This means that for any $\beta < 1/2$, as long as R < I(W) the error probability of polarization codes decays to 0 faster than $2^{-n^{\beta}}$.

Setting	Brick	Mortar	Polar	Speed	Applications
So far					

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Setting	Brick	Mortar	Polar	Speed	Applications
So far					

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

• Polar codes are I(W) achieving,

Setting	Brick	Mortar	Polar	Speed	Applications
So far					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Polar codes are *I*(*W*) achieving,
- encoding complexity is $n \log n$,

Setting	Brick	Mortar	Polar	Speed	Applications
So far					

- Polar codes are *I*(*W*) achieving,
- encoding complexity is $n \log n$,
- with successive decoding, the decoding complexity is $n \log n$,

Setting	Brick	Mortar	Polar	Speed	Applications
So far					

- Polar codes are I(W) achieving,
- encoding complexity is $n \log n$,
- with successive decoding, the decoding complexity is $n \log n$,

• probability of error decays like $2^{-\sqrt{n}}$.

Setting	Brick	Mortar	Polar	Speed	Applications
Moreov	ver				

Setting	Brick	Mortar	Polar	Speed	Applications
Moreo	ver				

• For symmetric channels the construction is deterministic. There is no "choose from this ensemble and verify" step.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Setting	Brick	Mortar	Polar	Speed	Applications
Moreover					

- For symmetric channels the construction is deterministic. There is no "choose from this ensemble and verify" step.
- The error probability guarantees are not based on simulations — interesting for very low error probability applications.

Setting	Brick	Mortar	Polar	Speed	Applications
٦.٢					
Moreov	rer				

- For symmetric channels the construction is deterministic. There is no "choose from this ensemble and verify" step.
- The error probability guarantees are not based on simulations — interesting for very low error probability applications.
- Generalizes to channels with arbitrary discrete input alphabets: a similar 'two-by-two' construction, with same complexity and error probability bounds. This allows one to achieve true capacity C(W) rather than I(W).

Setting	Brick	Mortar	Polar	Speed	Applications
٦.٢					
Moreov	rer				

- For symmetric channels the construction is deterministic. There is no "choose from this ensemble and verify" step.
- The error probability guarantees are not based on simulations — interesting for very low error probability applications.
- Generalizes to channels with arbitrary discrete input alphabets: a similar 'two-by-two' construction, with same complexity and error probability bounds. This allows one to achieve true capacity C(W) rather than I(W).
- With '*k*-by-*k*' constructions the error probability can be made to decay almost exponentially in blocklength.

Setting	Brick	Mortar	Polar	Speed	Applications
Extens	ions				

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Setting	Brick	Mortar	Polar	Speed	Applications
Extens	ions				

• Dual constructions yield vector quantizers that achieve the rate distortion bound.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Setting	Brick	Mortar	Polar	Speed	Applications
Extens	ions				

- Dual constructions yield vector quantizers that achieve the rate distortion bound.
- Yields codes that achieve the secrecy capacity of the Wyner's wiretap channel.

Setting	Brick	Mortar	Polar	Speed	Applications
Extens	ions				

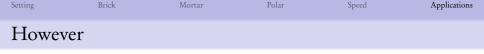
- Dual constructions yield vector quantizers that achieve the rate distortion bound.
- Yields codes that achieve the secrecy capacity of the Wyner's wiretap channel.
- Polarizing each user of a MAC yield sum rate bound achieving codes.

Setting	Brick	Mortar	Polar	Speed	Applications
Extens	ions				

- Dual constructions yield vector quantizers that achieve the rate distortion bound.
- Yields codes that achieve the secrecy capacity of the Wyner's wiretap channel.
- Polarizing each user of a MAC yield sum rate bound achieving codes.

•

Setting	Brick	Mortar	Polar	Speed	Applications
Howeve	er				



• Exactly deciding which ones of the *n* synthetic channels are good and which ones are bad is difficult.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Setting	Brick	Mortar	Polar	Speed	Applications
Howev	er				

• Exactly deciding which ones of the *n* synthetic channels are good and which ones are bad is difficult. But there are methods of low complexity that identify almost all the good channels and never misidentify a bad channel. (A vanishing fraction of good channels may be misidenfied as bad.)

Setting	Brick	Mortar	Polar	Speed	Applications
**					
Howeve	r				

- Exactly deciding which ones of the *n* synthetic channels are good and which ones are bad is difficult. But there are methods of low complexity that identify almost all the good channels and never misidentify a bad channel. (A vanishing fraction of good channels may be misidenfied as bad.)
- For asymptotic results to kick in one needs ℓ to be large ($n = 2^{\ell}$ is really large).

Setting	Brick	Mortar	Polar	Speed	Applications
Howev	er				

- Exactly deciding which ones of the *n* synthetic channels are good and which ones are bad is difficult. But there are methods of low complexity that identify almost all the good channels and never misidentify a bad channel. (A vanishing fraction of good channels may be misidenfied as bad.)
- For asymptotic results to kick in one needs ℓ to be large ($n = 2^{\ell}$ is really large).
- For channel coding applications, the usual suspects (LDPC, Turbo, ...) easily beat the pure polar codes at meaningful block lengths.

Setting	Brick	Mortar	Polar	Speed	Applications
Howeve	er				

- Exactly deciding which ones of the *n* synthetic channels are good and which ones are bad is difficult. But there are methods of low complexity that identify almost all the good channels and never misidentify a bad channel. (A vanishing fraction of good channels may be misidenfied as bad.)
- For asymptotic results to kick in one needs ℓ to be large ($n = 2^{\ell}$ is really large).
- For channel coding applications, the usual suspects (LDPC, Turbo, ...) easily beat the pure polar codes at meaningful block lengths. For quantization they are a lot more competitive.

Setting	Brick	Mortar	Polar	Speed	Applications
Remarks					

• Polar codes are close cousins of Reed–Muller codes. Differ only in the choice of which indices are good.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Setting	Brick	Mortar	Polar	Speed	Applications
Remarks					

• Polar codes are close cousins of Reed–Muller codes. Differ only in the choice of which indices are good.

• One transform $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{\otimes \ell}$ works for all channels.

Setting	Brick	Mortar	Polar	Speed	Applications
Remarks					

- Polar codes are close cousins of Reed–Muller codes. Differ only in the choice of which indices are good.
- One transform $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{\otimes \ell}$ works for all channels.
- The technique treats noise not by eliminating it, but by shifting it to a subspace.

Setting	Brick	Mortar	Polar	Speed	Applications
Remarks					

- Polar codes are close cousins of Reed–Muller codes. Differ only in the choice of which indices are good.
- One transform $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{\otimes \ell}$ works for all channels.
- The technique treats noise not by eliminating it, but by shifting it to a subspace.
- Successive decoding is cheap (*n* log *n*) but too naive. More clever decoding methods should improve error probability at moderate *n*.

Setting	Brick	Mortar	Polar	Speed	Applications
Remarks					

- Polar codes are close cousins of Reed–Muller codes. Differ only in the choice of which indices are good.
- One transform $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{\otimes \ell}$ works for all channels.
- The technique treats noise not by eliminating it, but by shifting it to a subspace.
- Successive decoding is cheap (*n* log *n*) but too naive. More clever decoding methods should improve error probability at moderate *n*.
- While the original motivation was for channel coding, polar codes are good at many settings. ["Polar codes are good for everything S. Korada"]