ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 29
Information Theory and Coding
Solutions to Final Exam

Problem 1.

(a) Since the events are independent $\operatorname{Pr}\left(\cap_{i} E_{i}\right)=\prod_{i} \operatorname{Pr}\left(E_{i}\right)=(1-p)^{M}$. From the hint $1-p \leq e^{-p}$; thus $(1-p)^{M} \leq \exp (-p M)$.
(b) The decoder output is not equal to encoder input if all the events $E_{i}=\{\mathbf{U}(i) \neq \mathbf{u}\}$ happen. Since $\mathbf{U}(i)$ are chosen independently these events are independent and each has probability $1-p_{U^{n}}(\mathbf{u})$. The claim now follows from part (a) with $p=p_{U^{n}}(\mathbf{u})$.
(c) If \mathbf{u} is ϵ-typical

$$
p_{U^{n}}(\mathbf{u})=\prod_{a} p_{U}(a)^{\#\left\{i: u_{i}=a\right\}} \geq \prod_{a} p_{U}(a)^{n(1+\epsilon) p_{U}(a)}=2^{-n(1+\epsilon) H(U)} .
$$

The claim now follows from part (c).
(d) Given $R>H(U)$ we can pick $\epsilon>0$ such that $(1+\epsilon) H(U)<R$. Let T_{ϵ}^{n} denote the ϵ-typical sequences. The probability of error can be written as

$$
\begin{aligned}
&\left.\operatorname{Pr}(\operatorname{Dec} \operatorname{Enc}(\mathbf{U})) \neq \mathbf{U})=\operatorname{Pr}(\operatorname{Dec} \operatorname{Enc}(\mathbf{U})) \neq \mathbf{U} \mid \mathbf{U} \in T_{\epsilon}^{n}\right) \operatorname{Pr}\left(\mathbf{U} \in T_{\epsilon}^{n}\right) \\
&\left.+\operatorname{Pr}(\operatorname{Dec} \operatorname{Enc}(\mathbf{U})) \neq \mathbf{U} \mid \mathbf{U} \notin T_{\epsilon}^{n}\right) \operatorname{Pr}\left(\mathbf{U} \notin T_{\epsilon}^{n}\right)
\end{aligned}
$$

The first term is less than $\operatorname{Pr}\left(\operatorname{Dec} \operatorname{Enc}(\mathbf{U}) \neq \mathbf{U} \mid \mathbf{U} \in T_{\epsilon}^{n}\right)$, which, in turn, is less than $\exp \left(-2^{n[R-(1+\epsilon) H(U)]}\right)$ by part (c). The second term is less than $\operatorname{Pr}\left(\mathbf{U} \notin T_{\epsilon}^{n}\right)$. Both of these go to zero as n gets large.

Problem 2.

(a) Taking the hint, if $0<\beta_{1}<\beta_{2}$ we can write $\beta_{1}=(1-\lambda) 0+\lambda \beta_{1}$ with $\lambda=\beta_{1} / \beta_{2}$. Since $\lambda \in(0,1)$ and since f is concave

$$
f\left(\beta_{1}\right) \geq(1-\lambda) f(0)+\lambda f\left(\beta_{2}\right)=\beta_{1} f\left(\beta_{2}\right) \beta_{1}
$$

thus $f\left(\beta_{1}\right) / \beta_{1} \geq f\left(\beta_{2}\right) / \beta_{2}$.
(b) Recall that $C(\beta)=\max _{p_{X}: E[X] \leq \beta} I(X ; Y)$. Since $E[X]=\operatorname{Pr}(X=1)$, we see that $C(\beta)=\max _{\alpha \leq \beta} I(\alpha)$.
Furthermore, since $I(\cdot)$ is concave, by denoting by β_{0} the value of β that maximizes $I(\beta)$, we see that $I(\cdot)$ is increasing on $\left[0, \beta_{0}\right]$ and decreasing on $\left[\beta_{0}, 1\right]$. Consequently, we can write

$$
C(\beta)= \begin{cases}I(\beta) & \beta \leq \beta_{0} \\ I\left(\beta_{0}\right) & \beta \geq \beta_{0}\end{cases}
$$

(c) From part (b)

$$
C(\beta) / \beta= \begin{cases}I(\beta) / \beta & \beta \leq \beta_{0} \\ I\left(\beta_{0}\right) / \beta & \beta \geq \beta_{0}\end{cases}
$$

By part (a) we see that $C(\beta) / \beta$ is decreasing on $\left[0, \beta_{0}\right]$ and continues to decrease for $\beta>\beta_{0}$. Consequently its supremum is achieved as β approches 0 from above,

$$
\sup _{\beta>0} \frac{C(\beta)}{\beta}=\lim _{\beta \searrow 0} \frac{I(\beta)}{\beta} .
$$

(d) Note that

$$
\begin{aligned}
& I(\beta)=\beta \sum_{y} p(y \mid 1) \log \frac{p(y \mid 1)}{\beta p(y \mid 1)+}(1-\beta) p(y \mid 0) \\
& \quad+(1-\beta) \sum_{y} p(y \mid 0) \log \frac{p(y \mid 0)}{\beta p(y \mid 1)+(1-\beta) p(y \mid 0)}
\end{aligned}
$$

and thus

$$
\begin{aligned}
& I(\beta) / \beta=\sum_{y} p(y \mid 1) \log \frac{p(y \mid 1)}{\beta p(y \mid 1)+(1-\beta) p(y \mid 0)} \\
& \quad+(1-\beta) \frac{1}{\beta} \sum_{y} p(y \mid 0) \log \frac{p(y \mid 0)}{\beta p(y \mid 1)+(1-\beta) p(y \mid 0)}
\end{aligned}
$$

As $\beta \rightarrow 0$, the first term approaches $\sum_{y} p(y \mid 1) \log \frac{p(y \mid 1)}{p(y \mid 0)}$. So we only need to show that the second term approaches zero to reach the desired conclusion. To that end, observe that the second term, being in the form of a divergence, is non-negative. Furthermore, using $\ln z \leq z-1$,

$$
\begin{array}{rl}
0 \leq \frac{1-\beta}{\beta} \sum_{y} & p(y \mid 0) \ln \frac{p(y \mid 0)}{\beta p(y \mid 1)+(1-\beta) p(y \mid 0)} \\
& =\frac{1-\beta}{\beta} \sum_{y} p(y \mid 0)\left[\frac{p(y \mid 0)}{\beta p(y \mid 1)+(1-\beta) p(y \mid 0)}-1\right] \\
& =(1-\beta) \sum_{y} p(y \mid 0) \frac{p(y \mid 0)-p(y \mid 1)}{\beta p(y \mid 1)+(1-\beta) p(y \mid 0)} \\
& \rightarrow \sum_{y}[p(y \mid 0)-p(y \mid 1)]=0 \quad \text { as } \beta \rightarrow 0 .
\end{array}
$$

(e) Using $[p(0 \mid 0), p(1 \mid 0)]=[1-p, p]$ and $[p(0 \mid 1), p(1 \mid 1)]=[p, 1-p]$ we see that the formula of (d) gives the capacity per cost as $(1-2 p) \log [(1-p) / p]$.

Problem 3.

(a) The blocklength is $n=4$. The number of codewords is 9 : we can choose any $x_{3} \in \mathbb{F}_{3}$ and $x_{4} \in \mathbb{F}_{3}$ and the parity check equations determine $\left(x_{1}, x_{2}\right)$. The rate is $R=$ $(1 / 4) \log 9=(1 / 2) \log 3$.
(b) The received word \mathbf{y} is of the form $\mathbf{x}+\mathbf{z}$ where \mathbf{z} is either the zero vector or it contains an single non-zero entry. Thus $H \mathbf{y}$ is either zero or is a multiple of a column of H. Since all these cases are distinct the decoder can discover if \mathbf{x} was changed during transmission and how.
(c) Augmenting the matrix will increse the blocklength to $n=5$ and increase the number of codewords to 27 : now $\left(x_{3}, x_{4}, x_{5}\right)$ can be freely chosen. The rate thus becomes $(3 / 5) \log 3$ and is increased from (1/2) $\log 3$.
(d) None of them, since each is a multiple of an existing column on H.
(e) In this case the received word is of the form $\mathbf{y}=\mathbf{x}+\mathbf{z}$ where \mathbf{z} is either 0 or contains a single 1. To ensure $H \mathbf{y}$ is distinct in all the cases all we need to ensure is that the columns of H are non-zero and distinct (but not necessarily their multiples). Thus, $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ are valid augmentations.

