Problem 1.
(a) 2
(b) 2 if \(n \) is even, 3 otherwise.
(c) \(\chi'(W_{n+1}) = n \) for \(n \geq 3 \).

Problem 2. Since the edges incident with any single vertex must be assigned different colors,
\[\chi' \geq \Delta. \]
This is a property that holds in general for simple graphs.
Assume that \(\chi' = \Delta \). We say that color \(i \) is represented at vertex \(v \) if some edge incident with \(v \) has color \(i \). Then, every color is represented at every vertex. However, any set of edges of the same color gives a matching and hence covers an even number of vertices. With an odd number of vertices it is not possible that any color covers every vertex, so this contradicts \(\chi' = \Delta \). We conclude that \(\chi' \geq \Delta + 1 \).

Problem 3. Consider a coloring of the edges using the colors \(1, 2, \ldots, q \) and let \(E_i \) denote the set of edges with color \(i \). Clearly, each of the \(E_i \)'s defines a matching. Then
\[m = |E_1| + |E_2| + \ldots + |E_q| \leq q m^*. \]
Since there exists a coloring with \(\chi' \) distinct colors, the result follows.

Problem 4. Assume w.l.o.g. that \(m \geq n \), and therefore \(\Delta(K_{m,n}) = m \). As in Problem 2, we have that \(\chi' \geq \Delta \). Hence, if we exhibit an edge coloring which uses \(m \) colors and s.t. no two edges incident on the same vertex have the same color, we are done.
Let \(u_0, \ldots, u_{m-1} \) be the vertices on the left-hand side and \(v_0, \ldots, v_{n-1} \) the vertices on the right-hand side. Also, let \(c_0, \ldots, c_{m-1} \) be \(m \) distinct colors. In \(K_{m,n} \), every vertex on the left-hand side is connected to every vertex on the right-hand side. Let \(e_{i,j} \) be the edge connecting vertex \(u_i \) to vertex \(v_j \), for all \(0 \leq i \leq m-1, 0 \leq j \leq n-1 \). Then color edge \(e_{i,j} \) by color \(c_{(i+j) \mod m} \).

We now need show that this coloring is correct, i.e., no vertex has any incident edges colored by the same color. First consider a vertex \(u_i \). The set of edges incident to \(u_i \) is \(e_{i,0}, \ldots, e_{i,n-1} \) and these edges are assigned colors \(c_{(i+0) \mod m}, \ldots, c_{(i+n-1) \mod m} \). Since \(n \leq m \), for \(0 \leq x \leq n-1 \), it holds that the \((i+x) \mod m \) correspond to \(n \) distinct elements of \(0, \ldots, m-1 \). Therefore our coloring assigned different colors to each of the \(n \) edges. On the other hand, consider a vertex \(v_j \). The set of edges incident to \(v_j \) is \(e_{0,j}, \ldots, e_{m-1,j} \) and is assigned colors \(c_{(0+j) \mod m}, \ldots, c_{(m-1+j) \mod m} \). By the same argument, for \(0 \leq x \leq m-1 \), we get that the \((x+j) \mod m \) form a permutation of \(0, \ldots, m-1 \) (in fact, they correspond to a cyclic shift of the latter set \(j \) positions to the left) and therefore the colors assigned to the \(m \) edges are distinct. We conclude that our edge coloring is valid.

Problem 5. Since \(G \) is 3-regular then it must have an even number of vertices. Suppose \(G \) is Hamiltonian, then any Hamiltonian cycle of \(G \) is even, so we can color its edges properly with 2 colors, say red and blue. Now each vertex is incident with 1 red edge, 1 blue edge and 1 uncolored edge. The uncolored
edges form a matching of G, so we can color all of them with the same color, say green. Thus, $\chi'(G) = 3$, which gives a contradiction.