Graph Theory Applications

Solution to Problem Set 8

Date: 10.04.2014

Not graded

Problem 1.

- (a) 2
- (b) 2 if n is even, 3 otherwise.
- (c) $\chi'(W_{n+1}) = n \text{ for } n \ge 3.$

Problem 2. Since the edges incident with any single vertex must be assigned different colors,

 $\chi' \geq \Delta$.

This is a property that holds in general for simple graphs.

Assume that $\chi' = \Delta$. We say that color *i* is represented at vertex *v* if some edge incident with *v* has color *i*. Then, every color is represented at every vertex. However, any set of edges of the same color gives a matching and hence covers an even number of vertices. With an odd number of vertices it is not possible that any color covers every vertex, so this contradicts $\chi' = \Delta$. We conclude that $\chi' \ge \Delta + 1$.

Problem 3. Consider a coloring of the edges using the colors 1, 2, ..., q and let E_i denote the set of edges with color *i*. Clearly, each of the E_i 's defines a matching. Then

$$m = |E_1| + |E_2| + \ldots + |E_q| \le qm^*.$$

Since there exists a coloring with χ' distinct colors, the result follows.

Problem 4. Assume w.l.o.g. that $m \ge n$, and therefore $\Delta(K_{m,n}) = m$. As in Problem 2, we have that $\chi' \ge \Delta$. Hence, if we exhibit an edge coloring which uses m colors and s.t. no two edges incident on the same vertex have the same color, we are done.

Let u_0, \ldots, u_{m-1} be the vertices on the left-hand side and v_0, \ldots, v_{n-1} the vertices on the righthand side. Also, let c_0, \ldots, c_{m-1} be *m* distinct colors. In $K_{m,n}$, every vertex on the left-hand side is connected to every vertex on the right-hand side. Let $e_{i,j}$ be the edge connecting vertex u_i to vertex v_j , for all $0 \le i \le m-1$, $0 \le j \le n-1$. Then color edge $e_{i,j}$ by color $c_{(i+j) \mod m}$.

We now need show that this coloring is correct, i.e., no vertex has any incident edges colored by the same color. First consider a vertex u_i . The set of edges incident to u_i is $e_{i,0}, \ldots, e_{i,n-1}$ and these edges are assigned colors $c_{(i+0) \mod m}, \ldots, c_{(i+n-1) \mod m}$. Since $n \le m$, for $0 \le x \le n-1$, it holds that the $(i+x) \mod m$ correspond to n distinct elements of $0, \ldots, m-1$. Therefore our coloring assigned different colors to each of the n edges. On the other hand, consider a vertex v_j . The set of edges incident to v_j is $e_{0,j}, \ldots, e_{m-1,j}$ and is assigned colors $c_{(0+j) \mod m}, \ldots, c_{(m-1+j) \mod m}$. By the same argument, for $0 \le x \le m-1$, we get that the $(x+j) \mod m$ form a permutation of $0, \ldots, m-1$ (in fact, they correspond to a cyclic shift of the latter set j positions to the left) and therefore the colors assigned to the m edges are distinct. We conclude that our edge coloring is valid.

Problem 5. Since G is 3-regular then it must have an even number of vertices. Suppose G is Hamiltonian, then any Hamiltonian cycle of G is even, so we can color its edges properly with 2 colors, say red and blue. Now each vertex is incident with 1 red edge, 1 blue edge and 1 uncolored edge. The uncolored

edges form a matching of G, so we can color all of them with the same color, say green. Thus, $\chi'(G) = 3$, which gives a contradiction.