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Problem 1. Let R = BBT and let di denote the i-the diagonal entry of matrix D. We need to show
(R)i,i = di for 1 ≤ i ≤ n, and (R)i,j = (A)i,j for 1 ≤ i, j ≤ n and i 6= j. Let’s start by looking at the
diagonal entries of R. We have

(R)i,i =

m∑
k=1

(B)i,k(B)i,k =

m∑
k=1

(B)2i,k

Since (B)i,k = 1, iff vertex i neighbors edge k, we have that (B)2i,k = 1 iff vertex i neighbors edge
k. Hence

∑m
k=1(B)2i,k counts the number of edges incident to vertex i, which is just di. Since (A)i,i = 0

for 1 ≤ i ≤ n in simple graphs, we conclude

(R)i,i = (D)i,i + (A)i,i.

We now move to entries (R)i,j , with i 6= j. We have

(R)i,j =

m∑
k=1

(B)i,k(B)k,j

Again by definition (B)i,k = 1 iff vertex i neighbors edge k, and (B)Tk,j = 1 iff edge k neighbors
vertex j. Therefore (B)i,k(B)Tk,j = 1 iff edge k neighbors vertices i and j. Hence

∑m
k=1(B)i,k(B)Tk,j

counts the number of edges that join vertices i and j, which by definition equals entry (A)i,j of the
adjacency matrix (for simple graphs, this number can either be 0 or 1). The problem statement follows.

Problem 2. No. The sum of the degrees is odd.

Problem 3. A tree with 100 vertices has 99 edges. Let x be the number of nodes with degree 10. All
other nodes have at least degree one, so for the sum of degrees we have

2 · 99 ≥ 10x+ 100− x = 100 + 9x.

From this x ≤ 10. It remains to show that x = 10 is possible. From Problem 3 of the previous set we
know that it is enough to find a degree distribution with all positive degrees for which

∑n
i=1 di = 2(n−1).

E.g. the following distribution works: 10 vertices with degree 10 and 82 vertices with degree 1 and 8
vertices with degree 2.

Problem 4. Cut Property: To see the first claim, let S ⊂ V be subset and let e be the edge with the
given property. Assume that e is not already contained in the MST. We will show that this leads to a
contradiction.

Add this edge to the spanning tree, hence creating a unique cycle. We can now drop from this cycle
exactly the second edge which connects S to the outside, creating again a spanning tree. If e has, as given
by assumption, strictly smaller weight, then the newly created spanning tree has strictly smaller weight,
leading to the promised contradiction.

Cycle Property: Again we proceed by contradiction. Assume a MST does contain this edge. Then
remove this edge from the spanning tree, so that we now get two components, let the vertices of these
two components be called S and U and note that S ∪ U = V . Note that the edge e has one end in S
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and the other end in U . Let C be the cycle containing edge e. We claim that then C must contain at
least one more edge, call it e′ which has one end in S and one end in U . By definition the edge e′ has
smaller weight. Hence by adding it to the the two components we get a new spanning tree, but this tree
has strictly smaller weight.

Problem 5.

1) The commune of Lausanne has to solve a minimum weight spanning tree problem, which can be
done with Kruskal’s algorithm (as seen in class).

2) Rudiger has to solve a maximum weight spanning tree problem. Indeed, Marco will check that
there are no cycles, so Rudiger has to build a tree. In order to maximize the income of the telecom-
munications company, the tree needs to have the maximum possible weight. To solve the maximum
spanning tree problem, Rudiger multiplies the edge weights by -1 and solves the minimum span-
ning tree problem on the new graph with Kruskal’s algorithm.
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