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Problem 1. Let V be the set of vertices, x be the number of leaves in the tree and y the number of all
other vertices. Let e be the number of edges, then e = x + y − 1. Also,

∑
v∈V deg(v) ≥ x + 3y since

every non-leaf vertex has degree ≥ 3. Using these two observations we have:

2(x+ y − 1) = 2e =
∑
v∈V

deg(v) ≥ x+ 3y ≥ x+ 3y − 2,

from which y ≤ x follows.

Problem 2. If G is not a tree then it contains a cycle. There is least one edge (u, v) of this cycle
which is not in G′. Obviously, for these vertices dG(u, v) = 1, while in G′ they are not neighbors, thus
dG′(u, v) > 1.

Problem 3. The “only if” direction is easy. Let T = (V,E) be a tree with n vertices. Since a tree has
exactly n− 1 edges

∑n
i=1 di = 2e = 2(n− 1). For the “if” direction, we will give a construction which

given a degree sequence satisfying the given condition will produce a tree with that degree sequence.
Suppose that d1 ≤ d2 . . . ≤ dn is the given degree sequence. We proceed by induction on the length

of the sequence.
Base step: n = 2. We have 2 nodes connected by an edge: this is a tree.
Induction step. Assume that the claim holds for all degree sequences of length less than n. Now

for a degree sequence of length n, since d1 is the lowest degree, d1 = 1. Indeed, if d1 ≥ 2, then∑n
i=1 di ≥ 2n, which results in a contradiction. Also, since dn is the highest degree, dn ≥ 2. Indeed, if

dn ≤ 1, then
∑n

i=1 di ≤ n, which results in a contradiction.
Consider the degree sequence d2, d3, . . . , dn − 1. These are n − 1 numbers summing to 2(n − 2).

By the induction hypothesis, we have a tree T ′ corresponding to it. Now, construct a new tree T with n
vertices by gluing a single vertex to the vertex of degree dn − 1 in T ′. This completes the proof.

Problem 4. Suppose that G is connected. If not, all his connected components have vertices with degree
≥ 3 and we consider one of those. Let k be the number of edges and n the number of nodes. The proof
is by contradiction, namely, we suppose that there is no cycle of even length. Let us denote by Nc the
number of cycles, which are all of odd length.

First of all, let us show that Nc ≤ k
3 . If two cycles share an edge, then we can build a cycle with even

length and we are done. Hence, all the cycles are disjoint and since their length is at least 3, their number
cannot be > k/3.

Then, let us show that Nc ≥ k − (n − 1). Each connected graph has a spanning tree. Start from
the spanning tree which has n − 1 edges. Every time we add an edge, we create at least one new cycle.
Hence, there are at least k − (n− 1) cycles.

Now, let us conclude. Since k − (n− 1) ≤ Nc ≤ k
3 , we have that k

3 ≥ k − (n− 1), from which we
get that k ≤ 3

2 (n− 1). However, k ≥ 3
2n, because each vertex has degree at least 3. So, we have found

a contradiction and the proof is complete.

Problem 5. In G(n, p) every edge exists independently and with the same probability p. Hence, the
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probability of drawing a graph with m edges is((n
2

)
m

)
pm(1− p)(

n
2)−m,

which gives a binomial distribution. The mean value is given by(
n

2

)
p.

As concerns the last point, what you should observe is the following behavior. Suppose that n is large
enough and let c = pn.

• If c < 1, then a graph in G(n, p) will almost surely have no connected components of size larger
than O(log(n)). This behavior is exemplified by the graph in Figure 1 which is obtained taking
n = 10000 and c = 0.7.

• If c = 1, then a graph in G(n, p) will almost surely have a largest component whose size is of
order n2/3.

• If c > 1, then a graph in G(n, p) will almost surely have a unique giant component containing a
positive fraction of the vertices. No other component will contain more than O(log(n)) vertices.
It is possible to show that the fraction of the vertices contained in the giant component is given by
the non-zero solution to the equation

x+ e−cx = 1. (1)

This situation is schematized in Figure 2, which is obtained taking n = 10000 and c = 1.1.

If you compute the size of the largest connected component divided by the total number of nodes as
a function of c = p/n, you should observe a behavior similar to that obtained in Figure 3.
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Figure 1: Random graph G(n, p) with n = 10000 and p = 0.7. As p < 1/n, there is no giant connected
component.
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Figure 2: Random graph G(n, p) with n = 10000 and p = 1.1. As p > 1/n, the giant component
appears.

4



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

c

 

 

Solution of Eq. (1)

Experimental data

Figure 3: Normalized size of the largest connected component as a function of c with n = 10000. If
c < 1, there is no giant component. If c > 1, the giant component contains a fraction of the nodes of the
graph which is given by the solution to (1).
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