**Graph Theory Applications** 

## **Solution to Graded Problem Set 4**

Date: 13.03.2014

Due by 18:00 – 20.03.2014

**Problem 1.** Let V be the set of vertices, x be the number of leaves in the tree and y the number of all other vertices. Let e be the number of edges, then e = x + y - 1. Also,  $\sum_{v \in V} deg(v) \ge x + 3y$  since every non-leaf vertex has degree  $\ge 3$ . Using these two observations we have:

$$2(x+y-1) = 2e = \sum_{v \in V} deg(v) \ge x + 3y \ge x + 3y - 2,$$

from which  $y \leq x$  follows.

**Problem 2.** If G is not a tree then it contains a cycle. There is least one edge (u, v) of this cycle which is not in G'. Obviously, for these vertices  $d_G(u, v) = 1$ , while in G' they are not neighbors, thus  $d_{G'}(u, v) > 1$ .

**Problem 3.** The "only if" direction is easy. Let T = (V, E) be a tree with n vertices. Since a tree has exactly n - 1 edges  $\sum_{i=1}^{n} d_i = 2e = 2(n-1)$ . For the "if" direction, we will give a construction which given a degree sequence satisfying the given condition will produce a tree with that degree sequence.

Suppose that  $d_1 \leq d_2 \ldots \leq d_n$  is the given degree sequence. We proceed by induction on the length of the sequence.

*Base step:* n = 2. We have 2 nodes connected by an edge: this is a tree.

Induction step. Assume that the claim holds for all degree sequences of length less than n. Now for a degree sequence of length n, since  $d_1$  is the lowest degree,  $d_1 = 1$ . Indeed, if  $d_1 \ge 2$ , then  $\sum_{i=1}^{n} d_i \ge 2n$ , which results in a contradiction. Also, since  $d_n$  is the highest degree,  $d_n \ge 2$ . Indeed, if  $d_n \le 1$ , then  $\sum_{i=1}^{n} d_i \le n$ , which results in a contradiction.

Consider the degree sequence  $d_2, d_3, \ldots, d_n - 1$ . These are n - 1 numbers summing to 2(n - 2). By the induction hypothesis, we have a tree T' corresponding to it. Now, construct a new tree T with n vertices by gluing a single vertex to the vertex of degree  $d_n - 1$  in T'. This completes the proof.

**Problem 4.** Suppose that G is connected. If not, all his connected components have vertices with degree  $\geq 3$  and we consider one of those. Let k be the number of edges and n the number of nodes. The proof is by contradiction, namely, we suppose that there is no cycle of even length. Let us denote by  $N_c$  the number of cycles, which are all of odd length.

First of all, let us show that  $N_c \leq \frac{k}{3}$ . If two cycles share an edge, then we can build a cycle with even length and we are done. Hence, all the cycles are disjoint and since their length is at least 3, their number cannot be > k/3.

Then, let us show that  $N_c \ge k - (n - 1)$ . Each connected graph has a spanning tree. Start from the spanning tree which has n - 1 edges. Every time we add an edge, we create at least one new cycle. Hence, there are at least k - (n - 1) cycles.

Now, let us conclude. Since  $k - (n-1) \le N_c \le \frac{k}{3}$ , we have that  $\frac{k}{3} \ge k - (n-1)$ , from which we get that  $k \le \frac{3}{2}(n-1)$ . However,  $k \ge \frac{3}{2}n$ , because each vertex has degree at least 3. So, we have found a contradiction and the proof is complete.

**Problem 5.** In G(n, p) every edge exists independently and with the same probability p. Hence, the

probability of drawing a graph with m edges is

$$\binom{\binom{n}{2}}{m}p^m(1-p)^{\binom{n}{2}-m},$$

which gives a binomial distribution. The mean value is given by

$$\binom{n}{2}p.$$

As concerns the last point, what you should observe is the following behavior. Suppose that n is large enough and let c = pn.

- If c < 1, then a graph in G(n, p) will almost surely have no connected components of size larger than  $O(\log(n))$ . This behavior is exemplified by the graph in Figure 1 which is obtained taking n = 10000 and c = 0.7.
- If c = 1, then a graph in G(n, p) will almost surely have a largest component whose size is of order  $n^{2/3}$ .
- If c > 1, then a graph in G(n, p) will almost surely have a unique giant component containing a positive fraction of the vertices. No other component will contain more than  $O(\log(n))$  vertices. It is possible to show that the fraction of the vertices contained in the giant component is given by the non-zero solution to the equation

$$x + e^{-cx} = 1.$$
 (1)

This situation is schematized in Figure 2, which is obtained taking n = 10000 and c = 1.1.

If you compute the size of the largest connected component divided by the total number of nodes as a function of c = p/n, you should observe a behavior similar to that obtained in Figure 3.



Figure 1: Random graph G(n, p) with n = 10000 and p = 0.7. As p < 1/n, there is no giant connected component.



Figure 2: Random graph G(n,p) with n = 10000 and p = 1.1. As p > 1/n, the giant component appears.



Figure 3: Normalized size of the largest connected component as a function of c with n = 10000. If c < 1, there is no giant component. If c > 1, the giant component contains a fraction of the nodes of the graph which is given by the solution to (1).