Graph Theory Applications

Solution to Problem Set 2

Date: 27.02.2014

Not graded

Problem 1. We will show a constructive procedure to obtain a path from u to v, given a walk from u to v. Let $V_{\text{rep}} \subset V(G)$ be the set of vertices that appear in the walk at least two times. If $V_{\text{rep}} = \emptyset$, then each vertex appears in the walk at most once, which means that the walk is already a path. Suppose $V_{\text{rep}} \neq \emptyset$ and pick $\bar{v} \in V_{\text{rep}}$. Remove from the walk all the vertices and edges which appear between the first and the last occurrence of \bar{v} , including the first occurrence of \bar{v} . In this way, we obtain a walk in which the vertex \bar{v} appears only once. Repeat the same procedure for all the elements of V_{rep} to obtain a path from u to v.

Problem 2. The proof is by induction on the length k of the walk.

Base step: k = 1. The number of walks from v_i to v_j is 1 if the two vertices are connected, and 0 otherwise. The (i, j)-th entry of A is 1 if v_i and v_j are connected, and 0 otherwise. This suffices to prove the claim for k = 1.

Induction step. A walk from v_i to v_j of length k is formed by a walk from v_i to v_m of length k-1 and by a walk from v_m to v_j of length 1 for some $v_m \in V$. Then,

walks from
$$v_i$$
 to $v_j = \sum_{v_m \in V} (\#$ walks from v_i to $v_m) \cdot (\#$ walks from v_m to $v_j)$.

By the induction hypothesis, the number of walks from v_i to v_m of length k - 1 is the (i, m)-th entry of A^{k-1} , namely $a_{i,m}^{(k-1)}$, and the number of walks from v_m to v_j of length 1 is the (m, j)-th entry of A, namely $a_{m,j}^{(1)}$. Hence, the number of walks from v_i to v_j of length k is $\sum_m a_{i,m}^{(k-1)} \cdot a_{m,j}^{(1)} = a_{i,j}^{(k)}$, which is the (i, j)-th entry of A^k .

Problem 3. Suppose that the thesis is false, i.e., there exists two longest paths P_1 and P_2 which do not share any vertex. Denote by L the length of these longest paths and let u_1, u_2, \dots, u_L and v_1, v_2, \dots, v_L be the vertices of P_1 and P_2 , respectively. First, note that there exists a path \overline{P} from one vertex of P_1 , call it u_i , to one vertex of P_2 , call it v_j , which does not contain any other vertex of P_1 or P_2 . To see this, let us consider a path from u_1 to v_1 . Such a path exists because the graph is connected. If this path does not contain any other vertex of P_1 or P_2 , we are done. Otherwise, starting from u_1 toward v_1 , let u_i and v_j be the last vertex of P_1 and P_2 , respectively, met on that path.

Suppose that $i \ge L/2$ and $j \ge L/2$. Consider the path P_{max} which goes from u_1 to v_1 and is formed by the following three parts:

- 1. the part of P_1 which goes from u_1 to u_i ;
- 2. the path \overline{P} ;
- 3. the part of P_2 which goes from v_i to v_1 .

The length of P_{max} is at least L/2 + 1 + L/2 = L + 1, contradicting the fact that the longest path has length L. If i < L/2, replace u_1 with u_L in the previous construction and, if j < L/2, replace v_1 with v_L .

Problem 4. We will use induction on the number of vertices in the graph. Clearly the statement holds for n = 2. Assume the statement is true for a tournament with n vertices and consider a tournament on

n + 1 vertices. Let G' be the graph we get from G by taking out one of the vertices, say, v_{k+1} (and all of its adjacent edges). Clearly, G' is also a tournament and by the induction hypothesis, it has a directed Hamiltonian path, say $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$. Now look at G: if there is an edge directed from v_{k+1} to v_1 or from v_k to v_{k+1} we are done (just extend the path in G' to a path in G). Otherwise, there is an edge from v_{k+1} to v_k . There are three possibilities:

(a) all edges from v_{k+1} to v_i , $2 \le i \le k-1$ are directed from v_{k+1} to v_i ; then the Hamilton path is $v_1 \rightarrow v_{k+1} \rightarrow v_2 \dots v_k$;

(b) all edges from v_{k+1} to v_i , $2 \le i \le k-1$ are directed from v_i to v_{k+1} ; then the Hamilton path is $v_1 \rightarrow v_2 \dots v_{k-1} \rightarrow v_{k+1} \rightarrow v_k$;

(c) let $1 \le i \le k-1$ be the smallest index such that there is an edge directed from v_i to v_{k+1} and an edge directed from v_{k+1} to v_{i+1} . (There must be such an *i* otherwise we would be in case (a) or (b)). Then in the path in G', replace $(v_i \to v_{i+1})$ by $v_i \to v_{k+1} \to v_{i+1}$ to get a Hamiltonian path in G.

Problem 5. Let $L = \{v_1, v_2, \dots, v_l\}$ be the longest path in G (in the given order). First we show that $l \ge k + 1$. If $l \le k$ then consider all the neighbors of the vertex v_l . By assumption, v_l is of degree k or larger. This means that v_l has a neighbor other than v_1, v_2, \dots, v_{l-1} . But in this case we can extend the path by 1 by including this neighbor, contradicting the maximality of L. Now consider the vertex v_1 . By assumption it is connected to at least k vertices. Since L is the longest path in G, all of the neighbors of v_1 belong to this path. Further, since v_1 has degree $\ge k$, one of its neighbors v_t has to be from the set $\{v_{k+1}, \dots, v_l\}$. Then $v_1 \to v_2 \to \dots \to v_t \to v_1$ forms a cycle of length $\ge k + 1$.