Problem 1. We will show a constructive procedure to obtain a path from \(u \) to \(v \), given a walk from \(u \) to \(v \). Let \(V_{rep} \subseteq V(G) \) be the set of vertices that appear in the walk at least two times. If \(V_{rep} = \emptyset \), then each vertex appears in the walk at most once, which means that the walk is already a path. Suppose \(V_{rep} \neq \emptyset \) and pick \(v \in V_{rep} \). Remove from the walk all the vertices and edges which appear between the first and the last occurrence of \(v \), including the first occurrence of \(v \). In this way, we obtain a walk in which the vertex \(v \) appears only once. Repeat the same procedure for all the elements of \(V_{rep} \) to obtain a path from \(u \) to \(v \).

Problem 2. The proof is by induction on the length \(k \) of the walk.

Base step: \(k = 1 \). The number of walks from \(v_i \) to \(v_j \) is 1 if the two vertices are connected, and 0 otherwise. The \((i, j)\)-th entry of \(A \) is 1 if \(v_i \) and \(v_j \) are connected, and 0 otherwise. This suffices to prove the claim for \(k = 1 \).

Induction step. A walk from \(v_i \) to \(v_j \) of length \(k \) is formed by a walk from \(v_i \) to \(v_m \) of length \(k - 1 \) and by a walk from \(v_m \) to \(v_j \) of length 1 for some \(v_m \in V \). Then,

\[
\text{# walks from } v_i \text{ to } v_j = \sum_{v_m \in V} (\text{# walks from } v_i \text{ to } v_m) \cdot (\text{# walks from } v_m \text{ to } v_j).
\]

By the induction hypothesis, the number of walks from \(v_i \) to \(v_m \) of length \(k - 1 \) is the \((i, m)\)-th entry of \(A^{k-1} \), namely \(a_{i,m}^{(k-1)} \), and the number of walks from \(v_m \) to \(v_j \) of length 1 is the \((m, j)\)-th entry of \(A \), namely \(a_{m,j}^{(1)} \). Hence, the number of walks from \(v_i \) to \(v_j \) of length \(k \) is \(\sum_m a_{i,m}^{(k-1)} \cdot a_{m,j}^{(1)} = a_{i,j}^{(k)} \), which is the \((i,j)\)-th entry of \(A^k \).

Problem 3. Suppose that the thesis is false, i.e., there exists two longest paths \(P_1 \) and \(P_2 \) which do not share any vertex. Denote by \(L \) the length of these longest paths and let \(u_1, u_2, \ldots, u_L \) and \(v_1, v_2, \ldots, v_L \) be the vertices of \(P_1 \) and \(P_2 \), respectively. First, note that there exists a path \(\tilde{P} \) from one vertex of \(P_1 \), call it \(u_i \), to one vertex of \(P_2 \), call it \(v_j \), which does not contain any other vertex of \(P_1 \) or \(P_2 \). To see this, let us consider a path from \(u_1 \) to \(v_1 \). Such a path exists because the graph is connected. If this path does not contain any other vertex of \(P_1 \) or \(P_2 \), we are done. Otherwise, starting from \(u_1 \) toward \(v_1 \), let \(u_i \) and \(v_j \) be the last vertex of \(P_1 \) and \(P_2 \), respectively, met on that path.

Suppose that \(i \geq L/2 \) and \(j \geq L/2 \). Consider the path \(P_{\max} \) which goes from \(u_1 \) to \(v_1 \) and is formed by the following three parts:

1. the part of \(P_1 \) which goes from \(u_1 \) to \(u_i \);
2. the path \(\tilde{P} \);
3. the part of \(P_2 \) which goes from \(v_j \) to \(v_1 \).

The length of \(P_{\max} \) is at least \(L/2 + 1 + L/2 = L + 1 \), contradicting the fact that the longest path has length \(L \). If \(i < L/2 \), replace \(u_1 \) with \(u_L \) in the previous construction and, if \(j < L/2 \), replace \(v_1 \) with \(v_L \).

Problem 4. We will use induction on the number of vertices in the graph. Clearly the statement holds for \(n = 2 \). Assume the statement is true for a tournament with \(n \) vertices and consider a tournament on
Let G' be the graph we get from G by taking out one of the vertices, say, v_{k+1} (and all of its adjacent edges). Clearly, G' is also a tournament and by the induction hypothesis, it has a directed Hamiltonian path, say $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$. Now look at G: if there is an edge directed from v_{k+1} to v_1 or from v_k to v_{k+1} we are done (just extend the path in G' to a path in G). Otherwise, there is an edge from v_1 to v_{k+1} and from v_{k+1} to v_k. There are three possibilities:

(a) all edges from v_{k+1} to v_i, $2 \leq i \leq k - 1$ are directed from v_{k+1} to v_i; then the Hamilton path is $v_1 \rightarrow v_{k+1} \rightarrow v_2 \ldots v_k$;

(b) all edges from v_{k+1} to v_i, $2 \leq i \leq k - 1$ are directed from v_i to v_{k+1}; then the Hamilton path is $v_1 \rightarrow v_2 \ldots v_{k-1} \rightarrow v_{k+1} \rightarrow v_k$;

(c) let $1 \leq i \leq k - 1$ be the smallest index such that there is an edge directed from v_i to v_{k+1} and an edge directed from v_{k+1} to v_{i+1}. (There must be such an i otherwise we would be in case (a) or (b)). Then in the path in G', replace $(v_i \rightarrow v_{i+1})$ by $v_i \rightarrow v_{k+1} \rightarrow v_{i+1}$ to get a Hamiltonian path in G.

Problem 5. Let $L = \{v_1, v_2, \ldots, v_l\}$ be the longest path in G (in the given order). First we show that $l \geq k + 1$. If $l \leq k$ then consider all the neighbors of the vertex v_l. By assumption, v_l is of degree k or larger. This means that v_l has a neighbor other than $v_1, v_2, \ldots, v_{l-1}$. But in this case we can extend the path by 1 by including this neighbor, contradicting the maximality of L. Now consider the vertex v_1. By assumption it is connected to at least k vertices. Since L is the longest path in G, all of the neighbors of v_1 belong to this path. Further, since v_1 has degree $\geq k$, one of its neighbors v_l has to be from the set $\{v_{k+1}, \ldots, v_l\}$. Then $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_l \rightarrow v_1$ forms a cycle of length $\geq k + 1$.

2