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Problem 1. Frame the problem as a graph with a vertex for each person and an edge between two people
if they have shaken hands. Clearly, there are n vertices in the graph and the number of people vertex i
has shaken hands with corresponds to the degree of the graph. We claim that, the number of different
degrees in the graph can be at most n − 1. If there is a degree 0 vertex, then there cannot be a degree
n− 1 vertex, which makes the number of degrees equal to n− 2. On the other hand, if there is no degree
0 vertex, there are at most n − 1 degrees (1, . . . , n − 1). Since there are n people, by the pigeonhole
principle, there must be at least 2 people with the same degree, which proves the claim.

Problem 2. Consider a fixed color ck, with 1 ≤ k ≤ 8. Since we have 20 balls of ck and they are all
placed in the 6 jars, by the pigeonhole principle there exists at least one jar that contains at least two balls
of color ck. Clearly, this is true for all colors ck, i.e.,

For every 1 ≤ k ≤ 8, there is a jar jk that contains at least 2 balls of color ck.

But there are only 6 jars, so by the pigeonhole principle there is a jar that appears at least twice in the set
{j1, j2, ..., j8}, and therefore contains at least two balls of two different colors.

Problem 3. By the binomial theorem we have that
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Using again the binomial theorem we have that
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By summing up these two equations, we obtain
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which suffices to prove the claim.

Problem 4.

1. Consider the graph G and let vertex i be the vertex with degree di. Let S1 ⊂ V (G) be the set of
vertices which are connected to vertex 1, say S1 = {n1, · · · , nd1

}. Let S∗1 ⊂ V (G) be the set of
vertices with degrees d2, d3, · · · , dd1+1, i.e., S∗1 = {2, · · · , d1 + 1}. From the graph G (which
exists because d is graphical) we want to construct a graph G∗ in which the neighbors of vertex 1
are the vertices in S∗1 .

Suppose that S1 and S∗1 are disjoint. If this is not the case, we just remove the common vertices
from both sets and the proof works the same. Remove from the graph G all the edges departing
from the vertex 1 and add edges that go from vertex 1 to vertices 2, 3, · · · , d1 + 1, respectively.
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This new graph, call it Gint, is s.t. the degree of vertex i is still di if this vertex does not belong
neither to S1 nor to S∗1 . Each of the vertices in S1 loses one edge (and, hence, one degree), while
each of the vertices in S∗1 gains one edge (and, hence, one degree).

Start from vertex 2 and pick one of his neighbors (different from vertex 1), call it v̄, which is not a
neighbor of vertex n1. Note that v̄ exists because d2 ≥ dn1 (the sequence d is nonincreasing) and
in the original graph G the vertex 2 is not connected to vertex 1, while vertex n1 is connected to
vertex 1. Now, remove the edge from 2 to v̄ and add an edge from v̄ to n1. Repeat this procedure
for the couples of vertices (j + 1, nj) for j ∈ {2, · · · , d1} to obtain the graph G∗.

2. If d′ is graphic, then there exists a graph G′ with degree sequence d′. Add a new vertex to G′,
which is connected to the vertices with degrees d2, d3, · · · , dd1+1. This new graph, call it G, has
degree sequence d. Therefore d is graphic.

To prove the other implication we are going to need the result of the previous point. Start from the
graph G with degree sequence d. Build the graph G∗ with the procedure of point 1. Remove from
G∗ the vertex with degree d1 which is connected to the vertices with degrees d2, d3, · · · , dd1+1.
This new graph, call it G′, has degree sequence d′. Therefore, d′ is graphic.

3. Let f be the operator that from d produces d′, i.e., it removes the biggest element of d, call it d1,
and subtracts 1 from the following d1 elements. Then, consider the following recursion:

d0 = d,

di+1 = f(di), i ≥ 0.

Since d is graphic if and only if f(d) is graphic, di is graphic for all i. If d0 is graphic, this
recursion will converge to a sequence with a single element which is 0. Consider the previous
sequence and build a graph with has that degree sequence (it is easy, since this graph has only two
nodes. . . ). Now, we want to go backwards in the recursion. Given a graph with degree sequence
di+1, in order to build a graph with degree sequence di, one simply adds a vertex with degree
given by the first element of di and connects it to the vertices with the highest degrees. We iterate
this procedure until we get a graph with degree sequence d, which is the desired graph.

With some further passages, one can prove that if d fulfils the conditions (1), then the recursion
converges to a sequence with a single element which is 0. This sequence is graphic and, hence, all
the other sequences of the recursion are graphic. In other words, this means that the conditions (1)
are also sufficient for a sequence to be graphic.

Problem 5. First of all, observe that

diam(G) = max
u,v∈V (G)

d(u, v) = max
u∈V (G)

max
v∈V (G)

d(u, v) = max
u∈V (G)

ecc(u).

Since, by definition, rad(G) = minu∈V (G) ecc(u), then

rad(G) ≤ diam(G).

Now, let x∗ ∈ V (G) be the (or one of the) most “central” vertices in G, i.e., such that ecc(x∗) =
rad(G). By definition, ecc(x∗) = max

u∈V
d(x∗, u). Therefore, for every vertex u ∈ V (G),

d(x∗, u) ≤ ecc(x∗).

For every pair of vertices (u, v), the shortest path between u and v cannot be longer than the path that
goes from u to v through x∗ (triangle inequality). Therefore,

d(u, v) ≤ d(u, x∗) + d(x∗, v)
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Combining the above two, we have

d(u, v) ≤ d(u, x∗) + d(x∗, v) ≤ 2 · ecc(x∗).

Let (a, b) be the (or one of the) pair of vertices such that diam(G) = d(a, b). Since the inequality above
holds for every pair of vertices it also holds for (a, b), which proves the second inequality of the problem.

For G = K3, rad(G) = diam(G), and if G is a star, then 2 · rad(G) = diam(G).

Problem 6. Choose a vertex x in V (G) and an edge xy ∈ E(G) and consider the sets Si and their
neighborhoods N(Si) where

S0 = {x, y}, S1 = N(S0)

Si+1 = N(Si) \ (Si−1 ∪ Si) for 1 ≤ i ≤ diam(G)− 2.

Clearly, by the definition of diameter, V (G) = ∪iSi and since the maximum degree is ∆(G),

V (G) ≤ 2
(

1 + (∆(G)− 1) + (∆(G)− 1)2 + . . . + (∆(G)− 1)diam(G)−1
)

= 2
(∆(G)− 1)diam(G) − 1

∆(G)− 2
.
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