Graph Theory Applications

Solution to Problem Set 10

Date: 08.05.2014

Not graded

Problem 1. Construct a network with source s, category node C_1, \ldots, C_{10} , question nodes Q_1, \ldots, Q_{100} and a sink t. Connect s to each C_i with capacity 10 edges. Connect each Q_i to t with capacity 1 edges. Connect question Q_j to C_{i_1}, \ldots, C_{i_k} if that question has those corresponding categories. One can make a question paper if of 100 questions if and only if there is the maximum flow of the network has value 100. Such a maximum flow can be found, for instance, by means of the Ford-Fulkerson algorithm.

Problem 2.

- 1. Split the vertex v into two vertices v_{in} and v_{out} and join them with an edge of capacity equal to the node capacity.
- 2. If the capacity of an edge e = (u, v) is c_e and the lower bound is l_e , then define an equivalent network N' on the same node and edge set such that the capacity of e is $c'_e = c_e l_e$ and lower bound is 0 (the standard flow problem). Further, we add an extra source s'_e and an extra sink t'_e for each edge, s.t. u is connected to t'_e by a link of capacity l_e and s'_e is connected to v by a link of capacity l_e . This equivalent network has multiple sources and sinks and, therefore, it can be reduced to a new network N'' with a single source and a single sink, as seen in class.

Problem 3.

- 1. Suppose that there are M people that need to be moved out. First, we provide an algorithm to decide if all people can be moved out in T steps. Given this algorithm, we can do a binary search on T between 1 to |V|M/c to find the shortest time in which all the people can move out. Our algorithm is as follows: given the graph G, we construct G_T as follows. For each $v \in V$, we make T copies of $v : v_1, \ldots, v_T$, where copy v_i corresponds to time step i. For each i, we construct an edge from v_i to v_{i+1} with infinite capacity (people can just stay in rooms at a time step). We then construct an edge from v_i to w_{i+1} with capacity c if there exists an edge from v to w with capacity c in G. Suppose everyone is in room a initially, and the exit is room b. Then we set the source $s = a_1$, and the sink $t = b_T$. To test if all the people can get from the source to the sink in T time steps, we check if the max flow in G_T is greater than or equal to the number of people initially at the source. If so, we can move all the people across this graph in T time steps.
- 2. We can use the same overall idea: construct a graph G_T , and compute its max flow. The construction of G_T is the same, except for the following. We create a source s and sink t. Let S be the start vertices corresponding to the rooms that initially contain all the people, and let U be the sink vertices that correspond to all the exits. We create a link from s to each x_1 , for each $x \in S$ with capacity equal to the number of people starting at x. Similarly, we create a link from each x_T (for each $x \in U$) to t with infinite capacity.
- 3. Again, the overall idea is the same. But when we construct G_T now, we create edges between the layers in a different way: construct the edge linking v_i to $w_{i+t(v,w)}$ with capacity c if there is an edge between v and w in G with transit time t(v, w).

Problem 4. Let us state the vertex version of Menger's theorem: if u and v are non-adjacent vertices of

a graph, the maximum number of internally disjoint (u, v)-paths in G is equal to the minimum number of vertices whose deletion destroys all (u, v)-paths.

As G is k-connected and Y contains at least k vertices, the claim follows by applying the vertex version of Menger's theorem to N(x) (the set of neighbors of $x \in G$) and Y.