Problem 1. Construct a network with source s, category node C_1, \ldots, C_{10}, question nodes Q_1, \ldots, Q_{100} and a sink t. Connect s to each C_i with capacity 10 edges. Connect each Q_j to t with capacity 1 edges. Connect question Q_j to C_i if that question has those corresponding categories. One can make a question paper if of 100 questions if and only if there is the maximum flow of the network has value 100. Such a maximum flow can be found, for instance, by means of the Ford-Fulkerson algorithm.

Problem 2.

1. Split the vertex v into two vertices v_{in} and v_{out} and join them with an edge of capacity equal to the node capacity.

2. If the capacity of an edge $e = (u, v)$ is c_e and the lower bound is l_e, then define an equivalent network N' on the same node and edge set such that the capacity of e is $c'_e = c_e - l_e$ and lower bound is 0 (the standard flow problem). Further, we add an extra source s'_e and an extra sink t'_e for each edge, s.t. u is connected to t'_e by a link of capacity l_e and s'_e is connected to v by a link of capacity l_e. This equivalent network has multiple sources and sinks and, therefore, it can be reduced to a new network N'' with a single source and a single sink, as seen in class.

Problem 3.

1. Suppose that there are M people that need to be moved out. First, we provide an algorithm to decide if all people can be moved out in T steps. Given this algorithm, we can do a binary search on T between 1 to $|V|/M/c$ to find the shortest time in which all the people can move out. Our algorithm is as follows: given the graph G, we construct G_T as follows. For each $v \in V$, we make T copies of v: v_1, \ldots, v_T, where copy v_i corresponds to time step i. For each v, we construct an edge from v_i to v_{i+1} with infinite capacity (people can just stay in rooms at a time step). We then construct an edge from v_i to w_{i+1} with capacity c if there exists an edge from v to w with capacity c in G. Suppose everyone is in room a initially, and the exit is room b. Then we set the source $s = a_1$, and the sink $t = b_T$. To test if all the people can get from the source to the sink in T time steps, we check if the max flow in G_T is greater than or equal to the number of people initially at the source. If so, we can move all the people across this graph in T time steps.

2. We can use the same overall idea: construct a graph G_T, and compute its max flow. The construction of G_T is the same, except for the following. We create a source s and sink t. Let S be the start vertices corresponding to the rooms that initially contain all the people, and let U be the sink vertices that correspond to all the exits. We create a link from s to each x_1, for each $x \in S$ with capacity equal to the number of people starting at x. Similarly, we create a link from each x_T (for each $x \in U$) to t with infinite capacity.

3. Again, the overall idea is the same. But when we construct G_T now, we create edges between the layers in a different way: construct the edge linking v_i to $w_{i+1}(v, w)$ with capacity c if there is an edge between v and w in G with transit time $t(v, w)$.

Problem 4. Let us state the vertex version of Menger’s theorem: if u and v are non-adjacent vertices of
a graph, the maximum number of internally disjoint \((u, v)\)-paths in \(G\) is equal to the minimum number of vertices whose deletion destroys all \((u, v)\)-paths.

As \(G\) is \(k\)-connected and \(Y\) contains at least \(k\) vertices, the claim follows by applying the vertex version of Menger’s theorem to \(N(x)\) (the set of neighbors of \(x \in G\)) and \(Y\).