
Statistical Physics for
Communications, Signal
Processing, and Computer
Science

EPFL

Nicolas Macris and Rüdiger Urbanke

Contents

Foreword page 1

Part I Models 5

1 Models and Questions: Coding, Compressive Sensing, and Satisfiability 7

1.1 Introduction 7

1.2 Coding 7

1.3 Compressive sensing 11

1.4 Satisfiability 13

1.5 Notes 15

2 Big Picture 17

3 Principles of Statistical Mechanics 18

3.1 Two principles 20

3.2 The Gibbs measure 24

3.3 Free energy, entropy and equivalence of ensembles 26

3.4 Marginals and the thermodynamic limit 27

4 Formulation of Problems as Spin Glass Models 31

4.1 Coding as a spin glass model 31

4.2 Channel symmetry and gauge transformations 36

4.3 Conditional entropy and free energy in coding 38

4.4 Compressive Sensing as a spin glass model 39

4.5 Free energy and conditional entropy in compressive sensing 43

4.6 K-SAT as a spin glass model 44

5 Curie-Weiss Model 46

5.1 Curie-Weiss model 46

5.2 Computation of the free energy 47

5.3 Phase diagram 49

5.4 Average magnetization 52

5.5 Computing the phase diagram – the fixed point equation 54

5.6 Brief review of the Ising model on Zd 58

iv Contents

6 Summary of Part I 64

Part II Analysis of Message Passing 65

7 Marginalization, Factor Graphs, and Belief Propagation 67

7.1 Distributive Law 67

7.2 Graphical Representation of Factorizations 68

7.3 Recursive Determination of Marginals 69

7.4 Marginalization via Message Passing 72

7.5 Coding: Decoding via Message Passing 75

7.6 Compressive Sensing: Finding a Sparse Vector via Message Passing 77

7.7 K-SAT: Counting SAT Solutions via Message Passing 80

7.8 Summary of message passing equations for general models 80

8 Coding: Belief Propagation 83

8.1 Simplification of Message-Passing Rules for Bit-wise MAP Decoding 83

8.2 Regular LDPC ensemble on BEC 85

8.3 Scheduling 86

8.4 (l, r) Regular LDPC Ensemble 87

8.5 Basic Simplifications 87

8.6 Computation Graph 88

8.7 Density Evolution 90

9 Coding: Density Evolution 93

9.1 Density Evolution for the BEC 93

9.2 Exchange of Limits 96

9.3 Density Evolution for General BMS Channels 97

9.4 Channel Degradation 100

10 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model 103

10.1 General Spin Systems with Pairwise Interactions 104

10.2 BP Equations for General Spin Systems 105

10.3 BP Algorithm 106

10.4 From the BP Algorithm to the CW and the TAP Equations 107

10.5 Density evolution for TAP equations 111

10.6 Notes 113

11 The Conditionning Technique 115

11.1 A toy problem and a basic lemma 115

11.2 First iteration in TAP 115

11.3 Main theorem and proof ideas 115

12 Compressive Sensing: Approximate Message Passing 116

12.1 Lasso Estimator 117

Contents v

12.2 Lasso for the Scalar Case 118

12.3 Min-Sum Equations 119

12.4 Quadratic Approximation 120

12.5 Derivation of the AMP Algorithm 123

13 Compressive Sensing: State Evolution 129

13.1 The role of the Onsager term in the TAP and the AMP equations 129

13.2 Heuristic Derivation of State Evolution 130

13.3 Performance of the AMP 133

13.4 Discussion 136

14 K-SAT: Unit Clause Propagation and the Wormald Method 139

14.1 A Brief Overview 140

14.2 The Unit-Clause Propagation Algorithm 145

14.3 The Wormald Method 145

14.4 Analysis of the UC Algorithm 148

15 K-SAT: BP-Guided Decimation 153

15.1 Simple Example 153

15.2 From Counting the Number of Solutions to Finding a Solution 156

15.3 Convenient Re-parametrization 157

16 Maxwell Construction 161

16.1 The Original Maxwell Construction 161

16.2 Curie-Weiss Model 164

16.3 Coding: The Maxwell Construction for the BEC 166

16.4 Compressive Sensing 172

16.5 Random K-SAT 172

16.6 Discussion 172

17 Summary of Part II 175

Part III Advanced Topics 177

18 Spatial Coupling and Nucleation Phenomenon 179

18.1 Coding 180

18.2 Compressive Sensing 188

18.3 K-SAT 193

19 Variational Formulation and the Bethe Free Energy 201

19.1 The Gibbs measure on trees 203

19.2 The free energy on trees 205

19.3 Bethe free energy for general graphical models 207

19.4 Application to coding 209

vi Contents

19.5 Application to compressive sensing 211

19.6 Application to K-SAT 211

20 Replica Symmetric Free Energy Functionals 213

20.1 Coding 214

20.2 Explicit Case of the BEC 216

20.3 Back to the Maxwell Construction 218

20.4 Compressive Sensing 219

20.5 K-SAT 219

20.6 Notes 221

21 Interpolation Method 224

21.1 Guerra bounds for Poissonian degree distributions 224

21.2 RS bound for coding 224

21.3 RS and RSB bounds for K sat 224

21.4 Application to spatially coupled models: invariance of free energy,

entropy ect... 224

22 Cavity Method: Basic Concepts 225

22.1 Notion of Pure State 226

22.2 The Level-One Model 228

22.3 Message passing, Bethe free energy and complexity one level up 229

22.4 Application to K-SAT 235

22.5 Replica Symmetry Broken Analysis for K-SAT 236

22.6 Dynamical and Condensation Thresholds 238

23 Cavity Method: Survey Propagation 241

23.1 Survey propagation equations 241

23.2 Connection with the energetic cavity method 241

23.3 RSB analysis and sat-unsat threshold 241

23.4 Survey propagation guided decimation 241

24 Summary of Part III 242

Notes 243

References 244

Foreword

Statistical physics, over more than a century, has developed powerful techniques

to analyze systems consisting of many interacting “particles.” In the last fif-

teen years, it has become increasingly clear that the very same techniques can

be applied successfully to problems in engineering such communications, signal

processing, or computer science.

Unfortunately there are several hurdles which one encounters when one tries

to make use of these methods.

First, there is the language. Statistical mechanics has developed over the last

150 years with the aim of providing models and deriving predictions for various

physical phenomenon, such as magnetism or the behavior of gases. This long

history, together with the specific areas of their original application, has resulted

in a rich language whose origins and meaning are not always clear to someone

just starting in the field. It therefore takes a considerable effort to learn this

language.

Second, except for extremely simple models, the “calculations” which are nec-

essary are often long and daunting and not seldomly use little tricks and conven-

tions somewhat outside the realm what one usually picks up in a calculus class.

A good way of overcoming this difficulty is to start with a familiar example,

casting it in terms of statistical physics notation, and by then going through

some basic calculations.

Third, and connected to the second point, not all methods and tricks used in

the calculations are mathematically rigorous. Some of the most powerful tech-

niques, such as the cavity method, currently does not have a rigorous mathemat-

ical justification. In the “right hands” they can do miracles and give predictions

which are currently not possible to derive with any classical method. But a new-

comer to the field might quickly despair in trying to figure out what parts are

mathematical rigorous and what parts are “most likely correct” but cannot cur-

rently be justified. Both worlds are valuable. The cavity or replica method give

predictions which would be very difficult to guess. These predictions can then

be used as a starting point for a rigorous proof. Butt it is important to cleanly

separate the two worlds.

Our aim in writing these notes is not to give an exhaustive account of all there

is to know about statistical mechanics ideas applied to engineering problems.

2 Foreword

Indeed, several excellent books which take a much more in-depth look already

exist. We in particular recommend [1, ?].

Our aim was to write the simplest non-trivial account of the most useful sta-

tistical mechanics methods so as to ease the transition for anyone interested in

this strange put powerful world. Therefore, whenever we were faced with an op-

tion between completeness and simplicity, we chose simplicity. On purpose our

language changes progressively throughout the text. Whereas at the beginning

we try to avoid as much jargon as possible, we progressively start talking like a

physicist. Most of the literature uses this language, so better get used to it.

We decided to structure our notes around three important problems, namely

error correcting codes, compressive sensing, and the random K-SAT problem.

Although we will introduce basic versions of each of these problems, we only

introduce what is necessary for our purpose. It goes without saying that there

are myriad of versions and extensions, none of which we discuss. In fact, we

hope that the reader is already somewhat familiar with these topics and accepts

that these are important problems worth studying. Using this familiarity, we can

then explain basic statistical physics concepts and techniques. This allows us to

introduce the necessary terminology step by step, just when it is needed.

The notes are further partitioned into three parts. In the first part, comprised

of Chapters 1-5, we introduce the problems, some of the language, and we rewrite

these problems in the language of statistical physics. In the first chapter of the

second part, namely Chapter 7, we then introduce the main protagonist, a generic

message-passing algorithm which is also know as belief-propagation algorithm.

The remaining chapters of the second part, Chapters 8-15, contain the analysis

of the performance of our three problems under this low-complexity algorithm.

We will see, that in many cases, even this simple combination yields excellent

performance. Finally, in the third part, consisting of Chapters 19-21, we get to

the perhaps most surprising part of our story. Our aim will be to study the

fundamental behavior of these three problems without the restriction to low

complexity algorithms. I.e., how well would these systems work under optimal

processing. The surprise is that the same quantities which appeared in our study

of low-complexity suboptimal message-passing algorithms will play center stage

also for this seemingly completely unrelated question.

Although we follow essentially the same pattern for each of the three problems

we will see that they are not all equally difficult. Error correcting coding is

perhaps easiest, and in principle most of the question one might be interested in

can be answered rigorously.

Compressive sensing follows a similar pattern but introduces a few more wrin-

kles. In particular, the story of compressive sensing is leading to the so-called

AMP algorithm and its analysis is quite long. We will give an outline of the

whole story, but we will not discuss every step in detail. Once the basic idea is

clear, the interested reader should be able to fill in missing details by studying

the pointers to the literature.

Clearly the hardest problem is the random K-SAT problem. We will only

Foreword 3

be able to present a partial picture. Many interesting and very basic questions

remain open.

Many people have helped us in creating these notes. In the Spring of 2011 we

gave a series of lectures on these topics at EPFL to mostly a graduate student

population. We would like to thank Marc Vuffray, Mahdi Jafari, Amin Karbasi,

Masoud Alipour, Marc Desgroseilliers, Vahid Aref, Andrei Giurgiui, Amir Hesam

Salavati for typing up initial notes for some lectures. In addition we would like

to thank Mike Bardet who typed up further material as well as Hamed Hassani

who has since contributed material to several of the chapters.

Nicolas Macris, Lausanne, 2013

Rüdiger Urbanke

Part I

Models

1 Models and Questions: Coding,
Compressive Sensing, and
Satisfiability

1.1 Introduction

We start by introducing three problems: error correcting coding, compressive

sensing, as well as constraint satisfaction. Although these three problems are

quite different, we will see that similar tools from statistical physics can be used

to gain insight into their behavior as well as to make quantitative predictions.

These three problems will serve as our running examples.

1.2 Coding

Basic definitions

Codes are used in order to reliably transmit information across a noisy channel.

Let us start with a basic definitions.

definition 1.1 (Binary Block Code) A binary block code C of length n is a

collection of binary n-tuples, C = {x1, . . . , xκ}, where xi, 1 ≤ i ≤ κ, is called a

codeword, and where the components of the codeword are elements of F2, the

binary field.

We will soon talk about various channel models, i.e., various mathematical

models which describe how information is “perturbed” during the transmission

process. In this respect it is good to know that for a large class of such models we

can achieve optimal performance (in terms of the rate we can reliably transmit)

by limiting ourselves to a simple class of codes, called linear codes.

definition 1.2 (Binary Linear Block Code) A binary linear binary block code

is a subspace of Fns . Equivalently, a binary block code C is linear iff for any two

codewords codewdi and xj , xi − xj ∈ C. In particular xi − xi = 0 ∈ C. Since C

is a subspace it has a dimension, call it k, 0 ≤ k ≤ n. Hence, κ = |C| = 2k.

All codes which we consider in this course are binary and linear. Therefore, in

the sequel we sometimes omit these qualifiers.

It will sometimes be convenient to represent C as the kernel of an (n− k)× n
binary matrix of rank n − k. Such a matrix is called a parity-check matrix and

8 Models and Questions: Coding, Compressive Sensing, and Satisfiability

is usually denoted by H. Every binary linear code has such a representation. So

equivalently, we may write

C =
{
x ∈ Fn2 : Hx> = 0>

}
.

The factor graph associated to the parity-check matrix H (of a code C)

Assume that we have a code C defined by the (n − k) × n binary parity-check

matrix H. We can associate to H the following bipartite graph G. The graph

G has vertices V ∪ C, where V = {x1, . . . , xn} is the set of n variable nodes

corresponding to the n bits (and hence to the n columns of H), and where

C = {c1, . . . , cn−k} is the set of n− k check nodes, each node corresponding to

one row of H. There is an edge between xi and cj if and only if Hji = 1.

example 1 (Factor Graph) Consider the following parity-check matrix,

H =

 1 0 0 1

0 1 1 1

0 0 1 1

 .
The factor graph corresponding to H is shown in Fig. 1.1. �

Figure 1.1 The factor graph corresponding to the parity-check matrix of Example 1.

The three main tasks related to the coding problme are encoding, transmission,

and the decoding. Let us briefly discuss each of them.

• Encoding: Given C, a binary linear block code of dimension k, we can encode

k bits of information by our choice of codeword, i.e., by choosing one out of

the 2k possibilities. More precisely, we have an information word u, u ∈ Fk2 ,

and an encoding function g, g : Fk2 → C, which maps each information

word into a codeword.

Although this function is of crucial immportance for real systems, it

only plays a minor role for our purpose. This is true since, as we will

discuss in more detail later one, for “typcial” channels, by symmetry the

performance of the system is independent of the transmitted codeword.

We therefore typically assume that the all-zero codeword was transmitted.

Also, in terms of complexity, the encoding process is not a difficult task.

• Transmission and channel model: We assume that we pick a codeword x

uniformly at random from the code C. We now transmit x over a “channel”.

1.2 Coding 9

The actual channel is a physical device which takes bits as inputs, converts

them into a physical quantity, such as an electric or optical signal, transmits

this signal over a suitable medium, such as a cable or optical fiber, and then

converts the physical signal back into a number which we can processed,

perhaps equal to a voltage which is measured or the number of photons

which were detected. Of course, during the transmission the signal itself is

distorted. This distortion is either due to imperfections of the system or

due to unpredictable processes such as thermal noise.

Instead of considering this very complicated process we make a mathe-

matical model of the end-to-end effect of all these physical processes. This

is the “channel model” which we consider.

Channel Model: Formally, the channel has the input alphabet X =

{0, 1} and an output alphabet Y. We assume that the channel is memo-

ryless, i.e., we assume that it acts on each bit independently. We further

assume that there is no feedback from the output of the channel back to

the input. In this case the channel is uniquely characterized by a transition

probability p(y | x) where y ∈ Yn is the output and where

p(y | x) =

n∏
i=1

p(yi | xi). (1.1)

Note that we get a product form since we assume that the channel is

memoryless (acts bit-wise) and that we have no feedback. The following

three channels are the most important examples, both from a theoretical

perspective, but also because they form the basis of real-world channels:

These are the binary erasure channel (BEC), the binary symmetric channel

(BSC) and the binary additive white Gaussian noise channel (BAWGNC).

We will describe each of them in more detail later one.

One might wonder if these three simple models even scratch the surface of

the rich class of channels that one would assume we encounter in practice.

Fortunately, the answer is yes. The branch of communications theory has

built up a rich theory of how more complicated scenarios can be dealt with

assuming that we know how to deal with these three simple models.

• Decoding: Given the output y we want to map it back to a codeword x.

Let x̂(y) denote the function which corresponds to this decoding operation.

What decoding function shall we use? One option is to first pick a quan-

tity which we are intereste in and then to pick a decoding function which

optimizes the quantity. The most common such criteria are:

– minimize the block error probability: P [x̂(y) 6= x], and

– minimize the bit error probability: 1
n

∑
P [x̂(y)i 6= xi].

In practice, due to complexity constraints, it is not always possible to im-

plement an optimal decoding function. Rather one often implements a low-

complexity algorithm. Of course, the closer we can pick it to optimal the

better.

10 Models and Questions: Coding, Compressive Sensing, and Satisfiability

Gallager’s (l, r)-regular ensemble and the configuration model

A common theme of these notes is that instead of studying specific instances of

a problem we define an ensemble of instances, i.e., a set of instances endowed

with a probability distribution, and then we study the “average” behavior of this

ensemble. Once the average is determined, we know that there must be at least

one element of the ensemble with a performance at least as good as this average.

In fact, in many cases, with a little extra effort one can often show that most

elements in the ensemble behave almost as good as the ensemble average.

For coding, we focus on a specific ensemble of codes called the (l, r)-regular

Gallager ensemble. It was introduced by Gallager in 1961, [?]. Rather than spec-

ifying the codes directly we specify their factor graphs.

The ensemble is characterized by the triple (n, l, r), where n, l, r ∈ N, and also

n lr ∈ N. The parameter n is the length of the code, l is the variable node degree,

and r is the check node degree.

To sample from the ensemble we proceed as follows. Pick n variable nodes and

n lr check nodes. Each variable node has l sockets and each check node has r

sockets. Number the ln variable sockets in an arbitrary but fixed way from 1 till

nl. Do the same with the nl check node sockets. Pick a permutation π uniformly

at random from the set Π of permutations on nl letters. For i from 1 till nl,

insert an edge which connect variable node socket i to check node socket π(i).

If, after construction, we delete sockets then we get a bipartite graph, which we

call the factor graph of the parity check matrix H. Note that in this model there

can be multiple edges between nodes. In practice this is not desirable and more

sophisticated graph generation algorithms are employed. But for our purpose

this will not play a role and we will ignore this issue in the sequel.

This particular ensemble is a special case of what is called a low-density parity-

check (LDPC) ensemble. This name is easily explained. The ensemble is low-

density since the number of edges grows linearly in the block length. This is

distinct from what is typically called the Fano random ensemble where each

entry of the parity-check matrix is chosen uniformly at random from {0, 1}, so

that the number of edges grows like the square of the block length. It is further

a parity-check ensemble since it is defined by describing the parity-check matrix.

We will see that a reasonable decoding algorithm consists of sending messages

along the edges of the graph. So few edges means low complexity and, even more

importantly, we will see that the algorithm works better if the graph is sparse.

For many real systems, LDPC codes are the codes of choice. They have a very

good trade-off between complexity and performance and they are well suited for

implementations. “Real” LDPC codes are often further optimized. I.e., instead

of using regular degrees we might want to choose nodes of different degrees and

the connections are often chosen with care in order to minimize complexity and

to maximize performance. We will ignore these refinements in the sequel. The

most important trade-offs are already apparent for the relatively simple regular

Gallager ensemble.

1.3 Compressive sensing 11

Shannon Capacity

Give a very short overview.

Questions

We have defined codes and introduced the decoding problem. In this context,

there are some questions that we would like to investigate.

• What are good and efficient decoding algorithms?

• If we pick a random such code from the ensemble, how well will it perform?

• In particular, is there going to be a threshold behavior so that for large in-

stances the code works up to some noise level but breaks down above this

level (see Fig. 1.2)? How does this threshold depend on the decoding algo-

rithm?

• Assuming that there is a threshold behavior, how can we compute the thresh-

olds?

• How do these thresholds compare to the Shannon threshold?

P
(s

u
c
c
e
s
s
)

Channel Quality GoodBad

Figure 1.2 The probability of sucess of decoding the transmitted message versus the
channel quality.

We will be able to derive a fairly complete set of answers to all of the above

questions.

1.3 Compressive sensing

Here is the perhaps simplest version of compressive sensing. Let A be an r × n
matrix with real entries, 1 ≤ r < n. Let x ∈ Rn, with ‖x‖0 = s < n. All vectors

are column vectors. Let y ∈ Rr be given by y = Ax. We think of y as the result

of r linear measurements, one corresponding to each row of A. Our aim is to

reconstruct x from y.

Since r < n, and in fact r is typically much smaller, we cannot simply solve

a linear system of equations since there will be many such solutions. But we

12 Models and Questions: Coding, Compressive Sensing, and Satisfiability

know in addition that x is s-sparse, i.e., only s entries, s < n, of x are non-zero.

Therefore, we should look for

{x̂ : Ax̂ = y and ‖x̂‖0 = s}. (1.2)

If this set has cardinality one then we have found our solution x.

A sligthly more realistic version of compressive sensing is the model y = Ax+z,

where z denotes a noise vector, typically assumed to consist of n iid zero-mean

Gaussian random variables with a variance of σ2.

If we ignore the sparsity constraint then it is natural to pick that x̂ which

solves the least-squares problem,

minx̂‖Ax̂− y‖22. (1.3)

This problem is easily solved and the solution is given by x̂ = (ATA)−1AT y.

But in general this solution will not be s-sparse. To enforce the sparsity con-

straint, we can add a second term to our objective function, i.e., we can solve

the following minimization problem,

minx̂‖Ax̂− y‖22 + λ‖x̂‖0,

for a properly defined constant λ. Unfortunately this minimization problem is

hard. A mathematically easier version is to consider the following minimization

problem

minx‖Ax− y‖22 + λ‖x‖1.

This is called the LASSO. This problem can be solved by standard convex opti-

mizaton techniques but in general we have lost something by this reformulation.

The objective of compressive sensing is to minimize the number of measure-

ments while being able to recover the solution with low complexity and high

probability. Our aim will be to analyse the trade-offs which are inherent in this

problem. As for the previous two problems we will investigate the regime where

the dimension n of the problem tends to infinity.

Graphical Representation

Ensembles

As for the coding and the K-SAT problem it is often convenient to define an

ensemble of such problems. One common assumption is that the matrix A has

iid Gaussian entries of zero mean and variance 1√
n

so that each row of A has

an expected L2 norm of 1. Further, we will assume that x is chosen in the

following way. Given s, pick s out of the n positions uniformly at random. In

these positions the entries of x are s iid zero-mean Gaussian random variables

of variance 1. The remaining positions are set to 0. Finally, the noise vector z

consists of n iid zero-mean Gaussian random variables of variance σ2.

1.4 Satisfiability 13

Questions

Consider the regime where n tends to infinity and s/n is constant.

• How many measurements do we need so that with high probability we can

recover x from the measurement y if we have no limitations on complexity?

• If we restrict ourselves to the low-complexity LASSO algorithm, how many

measurements do we need then?

• Are there ways of designing compressive sensing schemes which achieve the

theoretical limits under low-complexity algorithms?

1.4 Satisfiability

Suppose that we are given a set of n Boolean variables {x1, . . . , xn}. Each variable

xi can take on the values 0 and 1, where 0 means “false” and 1 means “true”.

We define a literal to be either a variable xi or its negation x̄i. A clause is a

disjunction of literals, e.g., C = x1 ∨x2 ∨ x̄3 where the operator “∨” denotes the

Boolean “or” operator. An assignment is an assignment of values to the Boolean

variables, e.g., x1 = 0, x2 = 1, and x3 = 0. Such an assignment will either

make a clause satisfy or not satisfy. For example the clause x1 ∨ x2 ∨ x̄3 with

assignment x1 = 0, x2 = 1, and x3 = 0 evaluates to 1 which is satisfied. A SAT

formula is a conjunction of a set of clauses. For example, F which is defined as

F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4) ∧ x3 is a SAT formula.

definition 1.3 (SAT Problem) Given a SAT formula F on the variables

{x1, . . . , xn} determine the satisfiability of F , i.e., determine if there exists an

assignment on {x1, . . . , xn} so that F is satisfied. If such an assignment exists

we might also want to find an explicit instance.

Why on earth would anyone be interested in studying this question? Perhaps

surprisingly, many real-world problems map naturally into a SAT problem. For

example designing circuits, optimizing compilers, verifying programs, or schedul-

ing can be phrased in this way.

The bad news is that Cook proved in 1973 that it is unlikely that there exists

an algorithm which solves all instances of this problem in polynomial time (in

n). More precisely, the problem is NP-complete.

We say that a formula F is K-SAT, K ∈ N, if every clause involves exactly

K literals. E.g., (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) is a 3-SAT formula. Then the

following facts are known:

• 2-SAT formulas are easy to check for satisfiability. Problem!1.1 discussed a

simple algorithm called unit-clause propagation. It solves a 2-SAT formula

in at most 2n steps.

• The K-SAT problem is NP-complete for K ≥ 3.

14 Models and Questions: Coding, Compressive Sensing, and Satisfiability

Graphical representation of SAT formulas (using factor graphs)

Given a SAT formula F , we associate to it a bipartite graph G. The vertices

of the graph are V ∪ C, where V = {x1, . . . , xn} are the Boolean variables and

C = {c1, . . . , cM} are the M clauses. There is an edge between xi and cj if and

only if xi or x̄i is contained in the clause cj . Further we draw a “solid line” if cj
contains xi and a “dashed line” if cj contains x̄i.

example 2 (Factor Graph of SAT Formula) As an example, the graphical

presentation of F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨ x̄4) is shown in Fig. 1.3. �

Figure 1.3 The factor graph corresponding to the SAT formula of Example 2.

Random K-SAT Formulas

We will be interested in the behavior of random K-SAT formulas. So let us define

an ensemble of such formulas. The ensemble F(n,K,M) is characterized by 3

parameters: K is the number of literals per clause, n is the number of Boolean

variables, and M is the number of clauses.

How to sample from F(n,K,M)

We define F(n,K,M) by showing how to sample from it. To this end, pick M

clauses independently, where each clause is chosen uniformly at random from the(
n
k

)
2k possible clauses. Then form F as the conjunction of these M clauses.

Now let us consider the following experiment. Fix K ≥ 3 (e.g., K = 3) and

sample from the F(n,K,M) ensemble. Is such a formula satisfiable with high

probability? It turns out that the most important parameter that effects the

answer is α = M
n .

Fig. 1.4 show the probability of satisfiability as a function of both n and α. As

we see from this figure, as n becomes larger the transition of the probability of

satisfiability becomes sharper and sharper. This is a strong indication that there

exists a threshold behavior, i.e., there exists a real number αK such that

lim
n→∞

P [F(n,K,M = αn) is satisfied] =

{
0, α > αK ,

1, α < αK .

1.5 Notes 15

Questions

Here is a set of questions we are interested in:

• Does this problem exhibit a threshold behavior?

• If so, can we determine this threshold αK?

• Are there low-complexity algorithms which are capable of finding satisfying

assigments, assuming such assignments exist?

• If so, up to what clause density do they work with high probability?

P
(s
a
ti
s
fi
a
b
il
it
y
)

Figure 1.4 The probability that a formula generated from the random K-SAT
ensemble is satisfied versus the clause density α.

1.5 Notes

Here we should put some further historical info as well as reference to the liter-

ature.

Problems

1.1 The aim of this weeks homework is to write programs which can sample

a random bipartite graph and then to test this program for random 3-SAT in-

stances by running a very simple routine called unit clause propagation. You can

use any languages you like.

1.Configuration Model Let l be the variable node degree and r be the check

node degree. Pick n variable nodes and m = nl/r check nodes. Each variable

node has l sockets and each check node has r sockets. Number these sockets in a

fixed but arbitrary order from 1 to nl on both sides. Pick a random permutation

from the set of permutations on nl letters uniformly at random. Construct a

bipartite graph by connecting the variable node socket i to check node socket

π(i). This is called the configuration model.

Your program should take as input the parameters n, m, l and r. It should

check that the input is valid and return a bipartite graph according to this config-

uration model. Think about the data structure. Later on we will run algorithms

on such a graph. It will then be necessary to loop over all nodes, refer to edges

16 Models and Questions: Coding, Compressive Sensing, and Satisfiability

of each node, be able to address the neighbor of a node via a particular edge and

store values associated to nodes and edges.

1.Poisson Model Pick two integers, n and m. As before, there are n variable

nodes and m check nodes. Further, let r be the degree of a check node. For

each check node pick r variables uniformly at random either with or without

repetition and connect this check node to these variable nodes. For each edge

store in addition a binary value chosen according to a Bernoulli(1/2) random

variable.

This is called the Poisson model since the node degree distribution on the

variable nodes converges to a Poisson distribution for large n.

Again, think of the data structure. We will use this model right away to run

some simple algorithm on it.

1.Unit Clause Propagation for Random 3-SAT Instances Generate random in-

stances of the Poisson model. Pick n = 105 and let r = 3. Let α be a non-negative

real number. It will be somewhere in the range [0, 5]. Let m = bαnc.
For a given α generate many random bipartite graphs according to the Poisson

model. Interpret such a bipartite graph as a random instance of a 3-SAT problem.

This means, the variables nodes are the Boolean variables and the check nodes

represent each a clause involving 3 variables. The binary variable associated

to each edge indicates whether in this clause we have the variable itself or its

negation.

For each instance you generate, try now to find a satisfying assignment in the

following greedy manner. This is called the unit clause propagation algorithm.

(i) If there is a check node in the graph of degree one (this corresponds to a unit-

clause), then choose one among such check nodes uniformly at random. Set

the variable to satisfy it. Remove the clause from the graph together with

the connected variable and remove or shorten other clauses connected to

this variable (if the variable satisfies other clauses they are removed while

if not they are shortened).

(ii)If no such check exists, pick a variable node uniformly at random from the

graph and sample a Bernoulli(1/2) random variable, call it X. Remove this

variable node from the graph. For each edge emanating from the variable

node do the following. If X agrees with the variable associated to this edge

then remove not only the edge but the associated check node and all its

outgoing edges. If not, then remove only the edge.

Continue the above procedure until there are no variable nodes left. If, at the

end of the procedure, there are no check nodes left in the graph (by definition

all variable nodes are gone) then we have found a satisfying assignment and we

declare success. If not, then the algorithm failed, although the instance itself

might very well be satisfiable.

Plot now the probability of success for this algorithm as a function of α.

You should observe a threshold behavior. Roughly at what value of α does the

probability of success change from close to 1 to close to 0? Hand in this plot.

2 Big Picture

The objective of these notes is to introduce common and powerful tools from

statistical mechanics by showing how they can help us to answer the questions

we introduced in the preceding chapter. But before we can delve into the details it

might help to consider the bigger picture. Statistical mechanics is an old subject

and as such it has developed its own mysterious language which can be daunting

on a first encounter. It is like in the age old story of a prison where people have

been telling the same set of jokes for such a long time that there is no need to

recount any joke. Some says 11, and everyone laughs – except if you have just

joined the club!

The following pages give a high-level summary of some of the techniques and

how they can be applied. They are not meant to be read and uderstood in a single

reading. Rather, skim over them to familiarize yourself with some important

notions. From time to time reread them. Hopefully – after many paints – the

language and notions will start to become clear and you will have joined the club

– welcome!

In the first chapter we have introduced three problems: codes on sparse graphs,

random K-SAT, and compressive sensing. We will see throughout the course

that there is a coherent set of theoretical tools and concepts that can be used to

analyze these models.

The mathematical formalism that we will develop has its origins in a variety of

intersecting subjects such as statistical mechanics, probability theory, theoretical

computer science, discrete structures, and information theory. At times one may

loose track of the underlying unity of the subject, and it is therefore important

to have a high level view. The goal of this chapter is to give a “road map” across

the tools, methods and concepts that will be encountered through the lectures.

The description given here is necessarily informal and short, the idea being that

you can refer back to this chapter as the material builds up in the next chapters.

TO BE DONE: Rewrite old version of this chapter.

3 Principles of Statistical Mechanics

Gibbs distributions, and methods to study them, play a fundamental role when

we want to study our three models. On the one hand these distributions can be

viewed as purely mathematical objects. On the other hand, much insight can be

gained by understanding why they are such natural objects. It is the goal of this

chapter to explain some of this insight.

Statistical mechanics describes the behavior of macroscopic systems that are

composed of a large number of degrees of freedom. For example condensed matter

systems are composed of ≈ 1023 atoms, molecules, magnetic moments (or spins)

etc. Similarly, we are interested in the system behavior of our models when the

size of the system becomes large.

A precise knowledge and description of the deterministic microscopic motion

of each molecule in a macroscopic system would be impossible and is in fact

not required for the understanding of the macroscopic properties of the system.

The general approach of statistical mechanics is to replace the full deterministic

microscopic description in terms of laws of motion, by a probabilistic description

based on appropriate probability distributions.1

For most physical systems, the correct probabilistic description is known only

once the so-called thermodynamic equilibrium is reached. A system is said to be

in thermodynamic equilibrium if its temperature is homogeneous so that there

are no heat currents, its pressure is homogeneous so that there are no mechanical

stresses, its chemical potential is homogeneous so that there are no particle cur-

rents and chemical reactions2. The second law of thermodynamics states that an

isolated system will, after a long enough time reach the state of thermodynamic

equilibrium. In this state the macroscopic laws of usual thermodynamics apply.

The probability distributions that are relevant to systems in thermodynamic

equilibrium are called Maxwell-Boltzmann or more generally Gibbs distributions.

In this chapter we will derive Gibbs distributions from two principles which one

may consider as our definition of thermodynamic equilibrium.

Systems that are not in thermodynamic equilibrium are said to be out of

equilibrium. Their fundamental probabilistic description(s) (if there is one) is not

1 At the turn of the 19th to 20th century this statistical description constituted an
important shift of paradigm, which emerged through the works of Maxwell, Boltzmann,

Planck, Gibbs, Einstein and others.
2 It is not possible to give a completely logical a priori definition of thermodynamic

equilibrium that is not void, or circular, or makes no use of other abstract concepts.

Principles of Statistical Mechanics 19

J

Λxi = 1

xi = 0

Figure 3.1 The lattice gas model. At most one particle occupies a lattice site. There is
an energy cost for neighboring particles.

yet elucidated. Such systems range all the way from stationary heat or electric

flows up to the more fancy living systems.

The Gibbs measures that we seek do not depend on the detailed form of the

microscopic dynamics for the degrees of freedom (the equations of motion of

Newton for classical particles or of Heisenberg for a quantum system) but only

on the fact that there exist conserved quantities. In fact even if the dynamics

is unknown, or unspecified, or random, we can write down the Gibbs measures

simply in terms of the conserved quantities.

The prime example of a conserved quantity is the energy. We will stick to the

simple case where there is only one conserved quantity, namely the energy. It

will also be useful to have a concrete working example in mind. The following is

a toy model which turns out to be one of the most important and most studied

models of classical statistical mechanics. We will have more to say about it at a

later point.

example 3 (Lattice gas model) Let us replace the continuum space by a

discrete d-dimensional grid (see Fig. 3.1; naturally, d = 3 is an important case but

other values of d are of also of great relevance both theoretically and practically).

Particles (e.g. atoms) occupy the vertices of this grid and at most one atom can

be present on any single vertex. We will call V the set of vertices and E the set of

edges. The configuration of the system is described by a vector x = (x1, · · · , x|V |)
where xi = 1 if an atom is present at vertex i and xi = 0 if vertex i is empty. We

suppose that only neighboring atoms interact and that the interaction “energy”

is −J (J < 0 corresponds to repulsion and J > 0 to attraction). To describe the

system, let us introduce an energy function. In physics it is usually called the

20 Principles of Statistical Mechanics

Hamiltonian, in computer science it is more common to say cost function. We

define

H(x) = −J
∑
〈i,j〉∈E

xixj − µ
∑
i∈V

xi. (3.1)

Each edge 〈i, j〉 is counted once in the sum.

The real number µ is a cost associated to the presence or absence of a particle

(this might be a chemical affinity or a chemical potential). The detailed dynamics

xi(t), i ∈ V , as a function of time t is not specified here. But we assume in this

model that the dynamics is such that the total energy, call it E, of the system

is conserved. This means that we assume that at any time t we have

H(x(t)) = E. (3.2)

The set of configurations satisfying this equation is called the energy surface and

is denoted ΓE . Note that ΓE ⊂ {0, 1}|V |.

example 4 (Ising model) The Ising model is one of the oldest models and

one of the best studied. We will refer to it frequently. In this model the degrees

of freedoms describe “magnetic moments” localized at the sites of a crystal. For

our case these sites are the vertices of the square lattice. The magnetic moments

are modeled by so-called spins si = ±, i ∈ V , which are binary variables taking

values in {+1,−1}. More precisely, the Hamiltonian is

H(s) = −J
∑
〈i,j〉∈E

sisj − h
∑
i∈V

si. (3.3)

where s = (s1, . . . , s|V |). Mathematically speaking the lattice-gas and Ising mod-

els are equivalent. One can go from one to the other simply by performing the

change of variable xi = 1−si
2 or (−1)xi = si and redefining the interaction con-

stants.

Remark 3.1 Real world systems have continuous degrees of freedom. In clas-

sical particle systems, {0, 1}|V | is replaced by the phase space which is the set

of all positions and velocities, and ΓE really is a hyper-surface in phase space.

For magnetic systems, the spins si = ± are replaced by vector-like quantities.

For quantum systems, the degrees of freedoms such as positions, velocities and

spins are non commuting operators (matrices). Remarkably, despite these signif-

icant differences with the simple systems introduced above, the basic concepts

of statistical mechanics are the same as in the discrete setting.

3.1 Two principles

We will derive the Maxwell-Boltzmann or Gibbs distributions from two basic

principles. In this section we state the principles and the Gibbs distribution is

derived in the next section. There is no unique or canonical way of introducing

3.1 Two principles 21

a new physical law: ultimately it has to be guessed and validated by countless

experiments. This is the case for the Gibbs distribution. This is also why we

do not attempt nor desire to make the discussion in this section more formal.

The two principles of this section should be viewed as way to guess the Gibbs

distribution.

The microcanonical measure

Let [0, T] be the time interval over which we measure an observable quantity

φ(x(t)) and let τ be a characteristic microscopic time scale, for example the

time scale on which a single spin flips or an atom jumps from a position to a

neighboring one. In practice we have T � τ . We assume that a measurement

returns an average over time

1

T

∫ T

0

dt φ(x(t)), (3.4)

and that in the state of thermodynamic equilibrium this average is independent

of T for T � τ , and independent of the origin of time (in other words we can

shift [0, T]→ [s, s+ T] and the average is independent of s).

During the measurement interval the state of the system x(t) will wander

across the energy surface ΓE ⊂ {0, 1}|V |. Let t(x) be the total time it spends

in state x. We assume that when thermodynamic equilibrium is reached, the

ratio t(x)/T is the probability to find the system in state x when it is observed

at a random time in the interval [0, T] (here T � τ). What is this probability

distribution ?

Our first principle states that for an isolated system this probability distribu-

tion is the uniform measure on the energy surface ΓE = {x|H(x) = E}. In other

words for t(x)/T we take,

µmicro(x) =
I(x ∈ ΓE)∑

x∈{0,1}|V | I(x ∈ ΓE)
. (3.5)

This measure is called the microcanonical measure. In words this assumption

states that if the system is isolated it spends an equal time in all states.

A fundamental consequence is that we can replace the time average (3.4) by

a configurational average,

1

T

∫ T

0

dt φ(x(t)) =

∑
x∈{0,1}|V | I(x ∈ ΓE)φ(x)∑
x∈{0,1}|V | I(x ∈ ΓE)

, T � τ (3.6)

Remark 3.2 (Ergodic hypothesis.) Often equ. (3.6) is formalized and called

the ergodic hypothesis. The ergodic hypothesis states that the above equation

is an exact consequence of the microscopic deterministic dynamics, in the limit

T → +∞, for almost all initial conditions x(0) (note that the right hand side does

not depend on the initial condition) and all observables φ(x). This hypothesis

22 Principles of Statistical Mechanics

has led to a deep branch of mathematics called ”ergodic theory”. The ergodic

hypothesis has only been proved for simple systems with a few particles (a finite

number of them) and very simple dynamical laws. The first proof goes back to

Sinai (around 1970) for one particle in a billiard shaped region, whose dynamics

is given by straight lines reflecting at the billiard walls, and has since then been

extended to a finite fixed number of hard spheres in the billiard. Such systems

are not macroscopic and are do not display thermodynamic behavior.

Remark 3.3 (Criticism.) In the context of statistical mechanics which deals

with macroscopic systems, the ergodic hypothesis has never been proven and its

validity has been much debated. The modern point of view is that this hypothesis

is neither sufficient, nor necessary for the foundations of statistical mechanics.

It is not sufficient because we know it is true for model systems with a few de-

grees of freedom (e.g Sinai billiards) which have no thermodynamic behavior.

It is not necessary because it is too strong an hypothesis. It would be enough

that it is only true for a reasonable class of observables (e.g sum functions) and

for a sufficiently large number of degrees of freedom (see Kintchine). One obvi-

ous objection to the relevance of the ergodic hypothesis and the microcanonical

measure is that real systems in thermal equilibrium are never isolated, but in con-

tact with a thermal bath. There are approaches to the foundations of statistical

mechanics that altogether avoid the ergodic hypothesis and the microcanonical

measure (see for example Landau and Lifshitz) but directly “derive” the Gibbs

distribution from other arguments. For one thing, we all know of systems that

are not ergodic, but are still described by the Gibbs distribution that will be

derived in the next section. For example in a ferromagnet that is magnetized,

the typical configurations of spins mostly point in one direction, and do not

uniformly explore the whole configuration space.

Boltzmann principle

Consider the normalization term of the microcanonical measure (3.5). Set

W (E) =
∑

x∈{0,1}|V |
I(x ∈ ΓE). (3.7)

For the systems of interest the above expression has an exponential behavior as

the size of the system grows.∑
x∈{0,1}|V |

I(x ∈ ΓE) ' exp(S(E)), (3.8)

with S(E) = O(|V |). Define the Boltzmann entropy as

SBoltz(E) = lnW (E). (3.9)

A priori, this is a purely mathematical combinatorial quantity.

example 5 Let us consider the lattice gas model introduced in the previous

3.1 Two principles 23

example for the simple case J = 0. Pick E/µ lattice nodes among |V | nodes with

the state +1 and the rest 0. Hence,

W (E) =

(
|V |
E/µ

)
' exp

(
|V |h2(

E

µ|V |
)

)
, (3.10)

where h2(·) is the binary entropy function. In the infinite size limit we have

s(e) = lim
|V |→∞
E/|V |=e

S(E)

|V |
= h2

(
E

µ|V |

)
= h2

(
e

µ

)
, (3.11)

where e = E/|V |. Note that this is a concave function (for physically sensible

Hamiltonians the Boltzmann entropy is a concave function of e; this is not always

the case in computer science and coding problems with hard constraints).

There is a purely thermodynamic notion of entropy elucidated in the 19-th

century (along with the notions of heat and work) by Carnot, Clausius, Joule,

Helmholtz, Kelvin and others in their work on heat engines. This is an exper-

imentally measurable quantity. Here we cannot enter into this discussion. We

will just say that for a system at thermodynamic equilibrium with homogeneous

temperature T and pressure p the thermodynamic entropy Sthermo(E, V) is a

function of the total energy E and volume V satisfying

∂Sthermo

∂E
=

1

T
,

∂Sthermo

∂V
=
p

T
. (3.12)

From T and p one can in principle recover Sthermo.

We are now ready to state our second principle, which is due to Boltzmann.

If you visit Boltzmann’s grave in Vienna you will see the inscription S = k lnW .

This formula3 states that the thermodynamic entropy (left hand side) is equal

to the combinatorial entropy (right hand side). The left hand side is a phys-

ical quantity that can in principle be measured and the right hand side is a

mathematical quantity that can in principle be calculated.

More formally, the Boltzmann principle states that

Sthermo = kBSBoltz, (3.13)

Here kB is Boltzmann’s constant that relates temperature units of the thermome-

ter with energy units (one can always measure temperature in units of energy

and set kB = 1, this is not usual practice though).

This principle makes the connection between statistical mechanics and ther-

modynamics. It allows to compute thermodynamic quantities from combinato-

rial/statistical considerations. Besides, as we will see, it is a crucial ingredient in

the derivation of the Gibbs distribution.

3 which was explicitly stated in this form by Planck

24 Principles of Statistical Mechanics

S

Λ

∂S

Figure 3.2 The system S is embedded in a thermal bath V . The total system V is
considered as an isolated system and its total energy E is conserved. We compute the
induced measure on S.

3.2 The Gibbs measure

The microcanonical measure described earlier, only characterizes an isolated sys-

tem. However, real macroscopic systems are not isolated. One should also notice

that in practice, in order to reach thermal equilibrium it is necessary to put sys-

tems in contact with a thermal bath. The measure that is appropriate for such

a setting is the Gibbs measure.

For simplicity, let us again take our lattice gas model where we have a large

isolated system denoted by the graph G = (V,E). We assume that this large

isolated system has reached thermal equilibrium with temperature T . Therefore,

we know that it is described by

µmicro(x) =
I(x ∈ ΓE)∑

x∈{0,1}|V | I(x ∈ ΓE)
. (3.14)

Now, let us consider a much smaller but still macroscopic system S ⊂ V (see

Figure 3.2). The main question we answer in this section is: what is the induced

measure on S? The probability that the configuration of this smaller systems is

x1, . . . , x|S| reads

µind(x1, . . . , x|S|) =
∑

x|S|+1,...,x|V |

µmicro(x1, . . . , x|V |) =

∑
x|S|+1,...,x|V |

I(x ∈ ΓE)∑
x1,...,x|V |

I(x ∈ ΓE)
.

(3.15)

3.2 The Gibbs measure 25

The total energy can be written as,

E = H(x1, . . . , x|V |)

= HS(x1, . . . , x|S|) +HV \S(xS+1, . . . , x|V |) +Hint,

where Hint is the term capturing the interactions between particles in the sets

S and V . Note that in general we have HS = O(|S|), HV \S = O(|V \ S|) and

Hint = O(|∂S|). Since O(|V \ S|) � O(|S|) � O(|∂S|), the term Hint can be

neglected from the above expression for energy. Note however that this is the

term that allowed S to reach thermal equilibrium through the interactions with

the bath. For fixed x1, . . . , x|S| we get

µind(x1, . . . , x|S|) =

∑
x|S|+1,...,x|V |

I((x|S|+1, . . . , x|V |) ∈ ΓE−HS(x1,...,x|S|))∑
x1,...,x|S|

∑
x|S|+1,...,x|V |

I((x|S|+1, . . . , x|V |) ∈ ΓE−HS(x1,...,x|S|))

=
exp(S(E −HS(x1, . . . , x|S|))∑

x1,...,x|S|
exp(S(E −HS(x1, . . . , x|S|))

(a)
=

exp(S(E)−HS(x1, . . . , x|S|)
∂S
∂E + . . .)∑

x1,...,x|S|
exp(S(E)−HS(x1, . . . , x|S|)

∂S
∂E + . . .)

(b)
=

exp
(
−HS(x1,...,x|S|)

kBT

)
∑
x1,...,x|S|

exp
(
−HS(x1,...,x|S|)

kBT

) ,
where in (a) we used the Taylor expansion and in (b) Boltzmann’s principle

(18.9) together with (3.12). The resulting measure is nothing else than the Gibbs

measure.

definition 3.1 (Gibbs measure) We define the Gibbs measure of the system

S at thermal equilibrium with a bath of temperature T as

µGibbs(x1, . . . , x|S|) =
1

Z
exp

(
−
HS(x1, . . . , x|S|)

kBT

)
, (3.16)

where the normalizing factor Z is called the partition function

Z =
∑

x1,...,x|S|

exp

(
−
HS(x1, . . . , x|S|)

kBT

)
Remark 3.4 In this derivation an important assumption was that Hint between

the system and its complement can be neglected. For finite dimensional systems

with local (i.e. finite range, or fast decaying with distance) interactions between

particles this is always true. However if one deals with infinite dimensional sys-

tems (meaning here that d → +∞ or that the graph G cannot be metrically

embedded in a finite dimensional space) or if the interactions are very long

ranged this assumption may be problematic. This is the case for gravitational

interactions for example. Such systems are not described by standard statistical

mechanics and thermodynamics.

26 Principles of Statistical Mechanics

3.3 Free energy, entropy and equivalence of ensembles

The formulation in terms of the Gibbs measure above is also called canonical

ensemble formulation. In practice which ensemble should one choose for the

theoretical description of a large system: the microcanonical or the canonical

? No system is really isolated and conceptually the canonical description is more

natural. However for large systems the energy fluctuations are negligible (of the

order of the surface to be compared to the volume) and the microcanonical can

also be used. It is a matter of convenience which one to choose4 and there are

rules that allow to pass from one ensemble to another.

In the microcanonical ensemble one computes the entropy per unit volume

s(e) = lim
|V |→∞
E/|V |=e

1

|V |
lnW (E). (3.17)

In the canonical ensemble the relevant quantity is the free energy per unit volume

f(T) = −kBT lim
|S|→∞

1

|S|
lnZ. (3.18)

One can show that free energy and entropy are related by a Legendre transfor-

mation,

f(T) = min
e

(e− kBTs(e)). (3.19)

Note that f(T) is a concave function of T . If s(e) is also concave, the Legendre

transform can be inverted, and the entropy recovered from the free energy. This

is what is meant by equivalence of ensembles. We stress that the equivalence of

ensembles does not hold when s(e) is not concave.

Let us sketch the derivation of the last relation. The partition function can be

written as ∑
x1,...,x|S|

exp

(
−
HS(x1, . . . , x|S|)

kBT

)
=
∑
E

W (E) exp(− E

kBT
)

≈ |S|
∫
de e

−|S|(e
kBT
−s(e))

Taking the logarithm on both sides and going to the infinite size limit yields

lim
|S|→+∞

1

|S|
lnZ = −min

e
(
e

kBT
− s(e)) (3.20)

which is equivalent to the relationship between f(T) and s(e).

Remark 3.5 According to the physical situation, other measures or ensembles

may be more convenient or relevant. When there are many conserved quantities

4 In principle. An important condition is locality of interactions.

3.4 Marginals and the thermodynamic limit 27

besides energy, call them Ij(x), j = 1, ..., g, one can take for the statistical

mechanics description of the system the measure (or ensemble),

µ(x) =
1

Z
exp(−

g∑
j=1

µjIj(x)) (3.21)

where the multipliers µj have thermodynamic interpretations. The multiplier

associated to conserved energy is the inverse temperature; the one associated

to conserved particle number is the chemical potential; the one associated to

conserved volume is pressure, etc.... All the Legendre transformations between

relevant thermodynamic quantities can be derived similarly than above.

3.4 Marginals and the thermodynamic limit

Usually the Gibbs measure contains too much information. It is often enough to

calculate the first two marginals. More precisely,

µi(xi) =
∑
∼xi

µGibbs(x1, . . . , x|S|), (3.22)

and

µi,j(xi, xj) =
∑
∼xi∼xj

µGibbs(x1, . . . , x|S|). (3.23)

It is usually enough to know the averages5

〈xi〉 =
∑
xi

xiµi(xi) =
∑

x1,...,x|S|

xi µGibbs(x1, . . . , x|S|), (3.24)

and

〈xixj〉 =
∑
xi,xj

xixjµi,j(xi, xj) =
∑

x1,...,x|S|

xixj µGibbs(x1, . . . , x|S|). (3.25)

Note that for binary variables xi = 0, 1 (or ±1) these averages suffice to recon-

struct the marginals µi and µi,j . The following covariance is usually called a

correlation function

Ci,j = 〈xixj〉 − 〈xi〉〈xj〉. (3.26)

A simple but fundamental fact, is that these quantities can all be computed

once the free energy is known. Let us modify slightly the Gibbs measure6 by

introducing extra ”source” factors (the λi),

µ
λ
Gibbs(x1, . . . , x|S|) =

exp
(
−βHS(x1, . . . , x|S| +

∑|S|
i=1 λixi)

)
Zλ

, (3.27)

5 The bracket 〈−〉 is the standard notation for expectations with respect to Gibbs

distributions.
6 Here we use the standard notation β = 1

kBT
.

28 Principles of Statistical Mechanics

where Zλ is the normalization factor. The reader should check the very important

identities

〈xi〉λ =
∂

∂λi
lnZλ, (3.28)

and

〈xixj〉λ − 〈xi〉λ〈xj〉λ =
∂2

∂λi∂λj
lnZλ. (3.29)

To calculate the original quantities namely, 〈xi〉 and 〈xixj〉, we only need to

compute lnZλ near λ = 0. Let us warn the reader that although it sometimes

happens that lnZ is known at λ = 0, for λ 6= 0 small the problem is orders of

magnitude harder.

Statistical mechanics describes macroscopic systems. This regime is captured

by computing the free energy and marginals in the infinite size limit,

lim
|S|→+∞

1

|S|
lnZ, lim

|S|→+∞
〈xi〉, lim

|S|→+∞
〈xixj〉. (3.30)

This limit is called the thermodynamic limit.

One of the ambitions mathematical statistical mechanics is to make sense

of the thermodynamic limit for the Gibbs distribution itself. The reader can

appreciate that this is not an obvious problem simply by the fact that an infinite

number of variables will be involved and that the limits of the numerator and

denominator (taken separately) do not make sense. The idea is to reconstruct

the full measure from the limiting marginals. It turns out that the limits of

marginals depend on boundary conditions or added infinitesimal perturbations

(such as the λ → 0 terms) and as a result the limiting Gibbs measures are not

necessarily unique. This is the case precisely when phase transitions are present:

a unique microscopic Hamiltonian can lead to many possible phases of matter

(water-ice-gas) each being described by one of the limiting Gibbs measures. This

fundamental feature of Gibbs distributions gained recognition only in the 1940-

50’s through the works of Bethe, Peierls, Onsager. The mathematical theory of

phase transitions developed in the late 1960’s and is still a very active subject.

Problems

3.1 In the following problems you will solve the Ising model in one dimension:

this is the simplest model for the interaction of magnetic moments of atoms

in a crystal. We assume N even for simplicity and let i ∈ {−N2 , · · · ,
N
2 } label

the N + 1 vertices of a one dimensional chain of atoms. We attach spin variables

si ∈ {−1,+1} to each site of the chain (these are the magnetic moments of atoms

sitting at positions i). The Hamiltonian (or energy function, or cost function) of

the one-dimensional Ising model is

HN = −J
N
2 −1∑
i=−N2

sisi+1 −H
N
2∑

i=−N2

si (3.31)

3.4 Marginals and the thermodynamic limit 29

Here J > 0 is the interaction constant between spins (ferromagnetic case) and

H ∈ R an external magnetic field. When the system is at thermal equilibrium

at temperature T , the probability of a configuration {si} is given by the Gibbs

distribution (k is Boltzmann’s constant defined such that kT has units of energy)

µ({si}) =
1

ZN
e−
H
kT , where ZN =

∑
{si=±1}

e−
HN
kT (3.32)

is the partition function (in German “Zustandssumme” which means “sum over

states”). The following notation is standard: 1
kT = β, βJ = K, βH = h.

The first problem introduces the transfer matrix method, which is a general

way of solving one-dimensional models. The second problem is concerned with

boundary conditions. In the third one you will solve the same model thanks to

the message passing approach which we will develop further in the course.

3.2 Transfer matrix method In this problem we take a periodic boundary

condition which leads to simpler calculations. This means that the sites i ∈
{−N2 , · · · ,

N
2 } are arranged on a circle, and that there is an extra interaction

term in (5.27), namely −Js−N2 sN2 (since the two extremities of the chain have

been brought next to each other). Consider the transfer matrix

T =

(
eK+h e−K

e−K eK−h

)
(3.33)

A. Show that the partition function can be expressed as

ZN = tr (TN). (3.34)

where tr is the sum over eigenvalues.

B. Find the eigenvalues of T and show that the free energy per spin is in the

thermodynamic limit

f(h) ≡ − lim
N→+∞

1

βN
lnZN = −β−1 ln[eK coshh+ (e2K sinh2 h+ e−2K)1/2].

(3.35)

C. Compute the magnetization from the thermodynamic definition:m = − ∂
∂H f(h)

and plot the curve m as a function of H for various values of β. Convince your-

self both on the plot and from the analytic formula that there is no sharp phase

transition for any temperature T > 07.

D. Now we want to compute the local magnetization at a fixed site i, and the

7 In his 1925 PhD thesis, under Lenz’s guidance, Ising mistakenly concluded from this
calculation that the model would not exhibit any phase transition even when formulated

on two or three dimensional square grids. It was only in 1936 that Peierls proved the

existence of a phase transition at a finite temperature for dimensions greater or equal to 2.

30 Principles of Statistical Mechanics

correlation between two spins at sites i and j, namely

〈si〉 =

∑
{sk=±1} sie

− HkT

ZN
, 〈sisj〉 =

∑
{sk=±1} sisje

− HkT

ZN
(3.36)

Introduce a matrix S =

(
1 0

0 −1

)
and express these two quantities in terms

of traces involving S and T . Noting that T can be diagonalized by an orthogonal

rotation of angle φ, deduce that

lim
N→+∞

〈si〉 = cos 2φ, lim
N→+∞

〈sisj〉 = cos2 2φ+ sin2 2φ

(
λ−
λ+

)|j−i|
(3.37)

were λ− < λ+ are the eigenvalues of T . Check that the first formula above agrees

with m found in 1.c. Interpret the second formula.

3.3 Message passing method Consider the model on the open chain with free

boundary conditions (no constraint on the end spins). we want to compute 〈si〉
for a fixed i, in the infinite size limit N → +∞, by an iterative method. For sim-

plicity consider the middle spin 〈s0〉. You can convince yourself that the method

works for any fixed i.

A. In the expression for 〈si〉 perform the sums over the end spins s−N2
and

sN
2

. Show that this leads to a spin system with the new hamiltonian

βH(1)
N = −K

N
2 −2∑

i=−N2 +1

sisi+1−h
N
2 −2∑

i=−N2 +2

si−(h+tanh−1(tanhK tanhh))(s−N2 +1+s−N2 −1)

(3.38)

B. Iterate to show that

lim
N→+∞

〈s0〉 = tanh(h+ 2 tanh−1(tanhK tanhu)) (3.39)

where u is the solution of the fixed point equation

u = h+ tanh−1(tanhK tanhu) (3.40)

Incidentally, show that the solution of this fixed point equation is unique so that

there is no ambiguity in this result. For this point it is useful to note that if a

mapping is a contraction i.e, supu |g′(u)| < 1, then the sequence ut+1 = g(ut) is

Cauchy.

C. Check that the result agrees with the expression for m found in the first

problem. Calculations are maybe simpler if you use the identity

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
(3.41)

4 Formulation of Problems as Spin
Glass Models

Let us now reformulate all three problems in a statistical physics language. We

will work out the reformulation for coding and compressive sensing in detail. The

reformulation for the K-SAT problem is the topic of the homework this week.

Note that both the coding as well as the compressive sensing problem are

inference problems. Therefore in principle both reformulations are straightfor-

ward. Start by writing down the a postior distribution. By taking the logarithm

we can rewrite this posterior in an exponential form, i.e., in the form of a Gibbs

measure. This in itself is not surprising and also not terribly helpful. But we will

see that in both cases the rewriting results in a quite natural formulation.

4.1 Coding as a spin glass model

Let C be a code from the Gallager Ensemble LDPC(l, r, n). Recall that l is the

degree of variable nodes, and that r is the degree of check nodes. Further, n

is the length of the codewords, and ln = rm where m is the number of parity

checks. Assume that we transmit the codeword x = (x1, . . . , xn) through a bi-

nary, memoryless symmetric channel without feedback, and let y = (y1, . . . , yn)

be the received word. We will always assume that the codeword is selected uni-

formly at random. We will use the spin variable notation for the codebits. This

means that we write si = (−1)xi . The channel is memoryless and described by

transition probabilities

q(y|s) =

n∏
i=1

q(yi|si) (4.1)

The two examples which we will refer most often are the binary symmetric chan-

nel (BSC) and the binary additive white Gaussian noise channel (BAWGNC).

MAP decoding

Let p(s|y) be the posterior probability distribution of s given the received word

y. The bit-MAP estimator is defined as

ŝi(y) = argmaxsi p(si|y) (4.2)

32 Formulation of Problems as Spin Glass Models

where p(si|y) is the marginal of the posterior p(s|y).1 This estimator is optimal in

the sense that it minimizes the probability of error. Suppose that the transmitted

word sin
i is picked uniformly at random from the code C. Denote by EY |sin the

expectation over the channel outputs when sin is sent. The average over all n

bits of the bit-probability of error is

P[error] =
1

n

n∑
i=1

1

|C|
∑
sin∈C

P[ŝi(Y) 6= sin
i]

=
1

n

n∑
i=1

1

|C|
∑
sin∈C

EY |sin [1(ŝi(Y) 6= sin
i)]

=
1

n

n∑
i=1

1

|C|
∑
sin∈C

1

2

(
1− EY |sin

[
sin
i ŝi(Y)

])
(4.3)

We will shortly see that bit-MAP decoding has a very natural statistical me-

chanical interpretation in terms of the magnetization of a spin model.

The MAP estimate of a whole block is ŝB(y) = argmaxs p(s|y), and associated

the block probability of error is PB [error] = 1
|C|
∑
sin∈C P[ŝB(Y) 6= sin]. We will

see below that block-MAP decoding is equivalent to finding the minimum energy

states of a Hamiltonian.

The MAP decoder as a spin glass model

We now show that the posterior distribution p(s|y) is a random Gibbs measure.

The randomness comes from both the channel as well as the choice of code. Let

us start with a few preliminary observations.

A code word x has to satisfy all parity check constraints
∑
i∈∂a xi = 0, which

in spin language is equivalent to
∏
i∈∂a si = 1. Thus the prior distribution over

codewords can be written as

p0(s) =
1

|C|

m∏
a=1

1(s satisfies a) =
1

|C|

m∏
a=1

1

2
(1 +

∏
i∈∂a

si). (4.4)

Channel outputs can be expressed in terms of their half-loglikelihoods

hi =
1

2
ln
q(yi|+ 1)

q(yi| − 1)
. (4.5)

It equivalent to describe the channel outputs by h or y, therefore we will some-

times freely interchange them in our notations.

1 MAP stands for ”maximum a posteriori”.

4.1 Coding as a spin glass model 33

Using the Bayes law, the channel law (4.1), and (4.4), (4.5) we obtain

p(s|y) =
q(y|s)p0(s)

p(y)

=
p0(s)

∏n
i=1 q(yi|si)p(s)∑

s p0(s)
∏n
i=1 q(yi|si)

=
1

Z

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi . (4.6)

where the denominator is

Z =
∑
s

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi . (4.7)

To get the last equality in (4.6) p(yi|si) = p(yi|si = +1)e−hiehisi and that the

terms p(yi|+ 1)e−hi in the numerator and denominator cancel.

The posterior p(s|y) is a random Gibbs distribution. By this we mean that for

each channel realization h and each code C picked from the Gallager ensemble

we have a measure over the spins s ∈ {−1,+1}n. An important feature of the

Gibbs distribution is the factorization into a product of “local” terms, i.e., terms

which depend on a finite number of spins.

Another name for random Gibbs distribution over a set of spins is “spin-

glass model”. Let us very briefly point out where this terminology comes from.

Chemical (window) glass is an amorphous material where atoms have a random

spatial ordering, unlike crystals such as quartz. There are also magnetic materi-

als with frustrated or randomly distributed ferromagnetic and antiferromagnetic

interactions that induce magnetic disorder. These are called spin-glasses. While

chemical glass is very important to our daily life, magnetic glasses have virtually

no applications. The generic property that is believed to be common to glassy

materials is the existence of microscopic degrees of freedom with vastly different

time scales, the so called “annealed or dynamical” and “quenched or frozen” de-

grees of freedom. Spin-glass models were introduced in the 1970’s to model glassy

behavior. These are “toy models” where the dynamical degrees of freedoms are

the spins which are distributed according to a Gibbs measure depending on ran-

dom variables, the quenched degrees of freedom, whose realizations are fixed.

Although the direct applicability of spin-glass models to real glassy materials is

unclear, the study of these models has allowed great conceptual advances related

to the glass problem in general. From our perspective here these models naturally

arise in many engineering problems, coding, compressive sensing and constraint

satisfaction being three paradigms. In the language of spin-glass physics, the

channel outputs and the code or Tanner graph are the quenched or frozen vari-

ables. Once they are fixed we do not change them. The spins are the dynamical

variables which adjust themselves in the environment of the quenched variables.

The bit-MAP decoder has a natural relation to the magnetization of the spin

34 Formulation of Problems as Spin Glass Models

system. To see this, note

ŝi(y) = sign(p(si = 1|y)− p(si = −1|y))

= sign(
∑
si

sip(si|y)), (4.8)

The bit-MAP estimate is given by the sign of the average of si with respect to

the posterior p(s|y). This average is nothing else than the magnetization

〈si〉 =
1

Z(h)

∑
s

si

m∏
a=1

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi (4.9)

To summarize,

ŝi(y) = sign(〈si〉) (4.10)

and the average probability of error (4.3) is directly related to the magnetization,

P[error] =
1

n

n∑
i=1

1

|C|
∑
s∈C

1

2

(
1− EY |sin

[
sin
i sign(〈si〉)

])
. (4.11)

In the expectation the Y dependence is implicit in 〈si〉.2 The magnetization is a

very natural quantity to handle in the context of Gibbs measures. The presence

of the sign unfortunately makes this quantity harder to deal with. However as

we will see in coding theory also one can measure the performance with more

tractable quantities that do not involve the awkward sign function. The impor-

tant point is that these quantities have the same threshold behavior than the

average probability of error.

Hamitonian interpretation

In Chapter 3 we defined the Gibbs measures in the more traditional way through

Hamiltonians. What is the Hamiltonian associated to the MAP decoder? One

way to identify it is to write

p(s|y) = lim
Ka→+∞

∏m
a=1(1 + tanhKa

∏
i∈∂a si)

∏n
i=1 e

hisi∑
s

∏m
a=1(1 + tanhKa

∏
i∈∂a si)

∏n
i=1 e

hisi
. (4.12)

Using the identity (use
∏
i∈∂a si = ±1)

eKa
∏
i∈∂a si = coshKa + sinhKa

∏
i∈a

si

= coshKa(1 + tanhKa

∏
i∈∂a

si),

2 In the statistical mechanics notations one often omits such dependencies, but if emphasis

is needed one writes 〈si〉Y or 〈si〉(Y).

4.1 Coding as a spin glass model 35

we get

p(s|y) =
e−H(s|h,C)∑
s e
−H(s|h,C,) , (4.13)

for the Hamiltonian

H(s|y, C) = lim
Ka→+∞

{
−

m∑
a=1

Ka(
∏
i∈∂a

si − 1)−
n∑
i=1

hisi

}
. (4.14)

The limit takes values in the extended real line R̄ = R∪0. If the spin assignement

satisfies all parity checks a the limit is equal to −
∑n
i=1 hisi, while if one parity

check is violated it is equal to +∞. This is the Hamiltonian of a spin system. The

parity-check constraints appear as interactions or couplings between spins. Their

strength is infinite Ka → +∞ because the parity checks are hard constraints.

The channel output hi biases the spin si in a particular direction. In statistical

physics language we say that the channel realization acts like a magnetic field hi
which biases the spins. The temperature in this spin system is kBT = 1.

Finite temperature decoder

It is sometimes useful to take a broader view and look at a slightly more gen-

eral Gibbs measures defined for any temperature. We will adopt the standard

notation β = (kBT)−1 for the inverse temperature. Consider

pβ(s|y) =
e−βH(s|h,C)∑
s e
−βH(s|h,C,) . (4.15)

One can define a “finite temperature decoder“ by

ŝi,β(y) = sign〈si〉β (4.16)

where 〈−〉β is the Gibbs bracket corresponding to (4.15). The average bit proba-

bility of error is given by the same formula than in (4.3) where the magnetization

is replaced by the one at inverse temperature β.

The finite temperature decoder interpolates between the bit-MAP and block-

MAP decoders as the inverse temperature β varies from 1 to +∞ (the tempera-

ture varies from one down to to zero). Of course, setting β = 1 we get back the

bit-MAP decoder. As we will see in the next section for β = 1 there are remark-

able symmetry properties, that are absent for other values of β, and make the

analysis of the bit-MAP decoder much easier. For β → +∞ the Gibbs measure

(4.15) concentrates on the spin configurations that minimize the Hamiltonian.

It is not hard to see that

lim
β→+∞

〈si〉β = argminsin H(s|h, C) = ŝB(y) (4.17)

Therefore block MAP decoding is equivalent to finding the lowest energy state

of the Hamiltonian. It is also equivalent to computing the magnetization at zero

temperature.

36 Formulation of Problems as Spin Glass Models

4.2 Channel symmetry and gauge transformations

For “symmetric” channels remarkable simplifications apply when β = 1 (bit-

MAP decoding). The BEC, the BSC, as well as the BAWNGC belong to this

class.

definition 4.2.1 A binary input channel is said to be (output) symmetric if

p(yi|s1) = p(−yi| − si).

It is useful to see how this property translates in terms of the half-loglikelihood

distribution. Note that c(hi)dhi = p(yi|+1)dyi. It follows that 4.2.1 is equivalent

to

definition 4.2.2 A binary input channel is said to be (output) symmetric if

c(−h) = c(h)e−2h.

For our main examples of symmetric channels this property can be explicitly

checked on the expressions:

c(h) = (1− ε)δ+∞(h) + εδ(h), BEC(ε)

c(h) = (1− p)δ(h− ln
1− p
p

) + pδ(h− ln
p

1− p
), BSC(p)

c(h) =
1√

2πσ−2
e−(h− 1

σ2
)2/ 2

σ2 , BAWGNC(σ2)

Let τ = (τ1, . . . , τn) be a codeword in C. It is immediate to see that p(s|h) is

invariant under the transformation si 7→ τisi, hi 7→ τihi. Note that this works

because τ is a codeword so that
∏
i∈∂a τi = 1 for all a. Since codewords form a

group, the set of such transformations also form a group. Moreover the transfor-

mations are local in the sense that each variable gets multiplied by a different

sign. In physics, transformations with these two properties are called “gauge

transformations” and when they leave a Hamiltonian invariant one says that the

system has a “gauge symmetry”3.

Channel symmetry and linearity of the code therefore induces a gauge symme-

try of the spin glass model. Let us now explore the most important consequences

of this symmetry.

Independence of input codeword

In this paragraph and the next one it is convenient to use the notation v ? u

for the ”Hadamard product” of two vectors (viui, i = 1, . . . n), and also Eh|sin
for EY |sin The invariance of the Gibbs distribution under a gauge transformation

3 The prototypical gauge symmetry of physics is an invariance of the Maxwell equations
under a group of local transformations. Gauge symmetry is a fundamental principle

underlying the four fundamental forces that are known: elctromagnetic, weak, strong,

gravitational.

4.2 Channel symmetry and gauge transformations 37

implies 〈si〉 → τi〈si〉, where 〈−〉 is the same expectation on both sides. Therefore

Eh|sin [sgn〈si〉] = Eτ?h|sin [τisgn〈si〉]
= τiEh|...τ?sin [sgn〈si〉] (4.18)

Using τ = sin for the gauge, we get

Eh|sin [sgn〈si〉] = sin
i Eh|+1[sgn〈si〉] (4.19)

and so equation (4.3) simplifies to

P[error] =
1

n

n∑
i=1

1

2
(1− Eh|1[sgn〈si〉]) (4.20)

Thus, for symmetric channels we can assume without loss of generality that the

input word is the all +1 word (note that in the 0/1 language this is the all 0

codeword). From now on we denote Eh|1 or EY |1 as Eh or EY .

Nishimori identities

Gauge symmetry of spin glass models implies a host of useful identities between

averages of Gibbs brackets. These identities are often called Nishimori identities.

Here we only prove the simplest possible such identity for the Gibbs distribution

associated to a symmetric channel and any linear code.

Proposition 4.2.3 (Simplest Nishimori Identity for Coding) For a binary input,

output symmetric, memoryless without feedback channel, and any linear code

Eh[〈si〉] = Eh[〈si〉2].

Proof Using a gauge transformation, sj → τjsj , hj → τjhj for τ ∈ C, together

with channel symmetry (definition 4.2.2), we have,

Eh[〈si〉] = Eτ?h[τi〈si〉]

= Eh
[
τi〈si〉

n∏
j=1

ehjτj−hj
]

(4.21)

Summing this identity over all the codewords τ ∈ C

Eh[〈si〉] =
1

|C|
Eh
[
Z〈τi〉〈si〉

n∏
j=1

e−hj
]

=
1

|C|
∑
η∈C

Eh
[
〈τi〉〈si〉

n∏
j=1

ehjηj
n∏
j=1

e−hj
]

(4.22)

The last equality has been obtained by spelling out the partition function Z as

a sum over η ∈ C. Now, for each term in this sum, we do a gauge transformation

38 Formulation of Problems as Spin Glass Models

sj → ηjsj , τj → ηjτj , hj → ηjhj . This sum becomes

1

|C|
∑
η∈C

Eη?h
[
〈τi〉〈si〉η2

i

n∏
j=1

ehjη
2
j

n∏
j=1

e−hjηj
]

=
1

|C|
∑
η∈C

Eh[〈τi〉〈si〉]

= Eh[〈si〉2] (4.23)

The first equality follows from channel symmetry 4.2.2, and the second one is

trivial because τ and s are dummy variables i.e., so 〈τ〉 = 〈s〉.

4.3 Conditional entropy and free energy in coding

Recall from Chapter 3 that the free energy − lnZ/n plays an important role. For

example differentiating it with respect to hi yields the magnetization 〈si〉. For

spin glass models this quantity is random, but almost always concentrates in the

thermodynamic limit. This may be quite hard to prove but we have examples

where such a proof exists. Therefore it is relevant to consider the average free

energy over channel realizations: −EY [lnZ]/n.

The following important result gives the connection between the free energy

and the conditional entropy.

Proposition 4.3.1 For transmission over a symmetric channel and any fixed

linear code we have the following relation

H(X|Y) = EY [lnZ]− n
∫
dh c(h)h. (4.24)

The last term depends only on the underlying channel: thus one may say that

the average over channel outputs of the free energy and Shannon’s conditional

entropy are essentially one and the same thing.

In part III we will develop powerful methods to compute the free energy. This

will automatically allow us to compute the conditional entropy and in particular

the MAP threshold.

Proof in the case of a Gaussian channel There are various ways to prove this

relation. Here we show one that is valid for the BIAWGNC not because it is the

simplest, but because it illustrates a nice use of Nishimori identities. The proof

for general channels can be found in the literature.

4.4 Compressive Sensing as a spin glass model 39

First note that for the BAWGNC the last term is equal to σ−2.

H(X|Y) = −EY
[∑

s

p(s|y) ln p(s|y)

]

= EY [lnZ(y)]− EY
[∑

s

p(s|y) ln
∏
c∈C

1

2
(1 +

∏
i∈c

si)

]

− EY
[∑

s

p(s|y)

n∑
i=1

hisi

]

= EY [lnZ(y)]−
n∑
i=1

EY [hi〈si〉] (4.25)

It remains to show EY [hi〈si〉] = σ−2, an identity that does not seems trivial at

first sight. First we consider the average over hi only. For a BAWGNC we check

by explicit calculation that σ2c(h)h = − ∂
∂hc(h) + c(h) and use integration by

parts to obtain

σ2

∫
dhi c(hi)hi〈si〉 =

∫ (
− ∂

∂hi
c(hi) + c(hi)

)
〈si〉

=

∫
dhi c(hi)

(
∂

∂hi
〈si〉+ 〈si〉

)
=

∫
dhi c(hi)

(
〈s2
i 〉 − 〈si〉2 + 〈si〉

)
= 1−

∫
dhi c(hi)〈si〉2 +

∫
dhi c(hi)〈si〉

Averaging over all other hj ’s and using the Nishimori identity we find EY [hi〈si〉] =

σ−2 as required.

4.4 Compressive Sensing as a spin glass model

Recall that we are considering the model

y = Ax+ z, (4.26)

where the measurement matrix A is an m × n real valued matrix with iid zero

mean Gaussian entries with variance 1/m, the noise Z consists of r iid zero-mean

Gaussian entries of variance σ2, and where the signal X consists also of n iid

entries distributed with the prior p0(x). We will assume this prior belongs to the

ε-sparse class, p0 ∈ Fε, that is

p0(x) = (1− ε)δ(x) + εφ0(x) (4.27)

40 Formulation of Problems as Spin Glass Models

where φ0 is a continuous positive and normalized density. The conditional prob-

ability of observing y given x is

q(y | x) =
1

(2πσ2)
n
2
e−

1
2σ2
‖y−Ax‖22 , (4.28)

and the joint distribution, taking the prior into account, has the form

p(x, y) =
1

(2πσ2)
n
2
e−

1
2σ2
‖y−Ax‖22

n∏
i=1

p0(xi). (4.29)

One can distinguish two scenarios. In the first one φ0 is known, in which case

a reasonable way to estimate the signal is to use the minimum mean square

estimator (MMSE). This estimator is optimal in the sense that it minimizes the

mean square error (MSE). In the second scenario which is more realistic one only

knows that the prior belongs to Fε. In other words ε is assumed to be known

but not φ0. As explained in Chapter ?? in this case a popular choice for the

estimator is the Lasso. The justification for choosing this estimator somehow

comes a posteriori. We will see in Chapter 13 that in a sense this estimator is as

good as pure l1 minimization for the noiseless problem, over the whole region of

parameters were l0 − l1 equivalence holds. This is enough justification to define

these two estimators.

MMSE estimator

Given an observation y the minimum mean square estimator is defined as4

x̂σ(y) = EX|y[X] =

∫
dnxx p(x | y), (4.30)

This estimator involves the posterior p(x | y), which analogously to the case of

coding, we will interpret as a Gibbs distribution. This is an optimal estimator

in the sense that it minimizes the mean squared error. On the downside, this

estimator is in general hard to compute, an it requires the knowledge of the

prior distribution which is often not a very realistic assumption.

We recall the proof that (4.30) is the unique minimizer of the MSE. The MSE

is the functional over the space of estimators x̂(y) : Rr → Rn

MSE[x̂] = E[(x̂(Y)−X)2] (4.31)

Here the expectation is with respect to the joint distribution (4.29) and the i.i.d

gaussian entries of A. For any variation x̂(y)→ x̂(y) + η(y) we have

MSE[x̂+ η]−MSE[x̂] = E[(x̂(Y) + η(Y)−X)2 − (x̂(Y)−X)2]

= 2E[ηT (Y)(x̂(Y)−X)] + E[‖η(Y)‖22] (4.32)

For the estimator (4.30) the first variation vanishes for all η(y), while the second

4 We adopt the notation dx =
∏n
i=1 dxi.

4.4 Compressive Sensing as a spin glass model 41

variation is positive for arbitrary η(y). Thus estimator (4.30) indeed gives the

minimum mean square error (and hence is called the MMSE).

Lasso estimator

The Lasso estimator is defined as

x̂λ(y) = argminx

{
1

2
‖y −Ax‖22 + λ‖xi‖1

}
. (4.33)

where the real parameter λ has to be chosen suitably. Since the prior is unknown

it is natural to choose the best possible λ for the worse possible prior. Formally

we solve a minimax problem,

inf
λ∈R

sup
p0∈Fε

E[(x̂λ(Y)−X)2] (4.34)

In this expression the expectation is over the joint distribution (4.29) and the

random matrix ensemble.

It is not easy to unambiguously justify a priori the choice of this estimator.

We will be able to solve exactly this problem in Chapter 13 and we will find

that the minimax-MSE is finite in the same region of parameters for which

l1− l0 equivalence holds. In the region were l1− l0 equivalence does not hold the

minimax-MSE diverges. In this sense Lasso is as good as pure l1 minimization for

the noiseless problem. This justifies the use of Lasso a posteriori. In paragraph

4.4 we give a somewhat more phenomenological justification which does not

require to develop the whole theory. We will see that the Lasso estimator can be

considered as a zero temperature limit of the MMSE estimator when a Laplacian

prior is assumed for the unknown distribution p0.

MMSE estimation as a spin glass problem

Let us discuss the posterior measure that is needed in the MMSE (4.30). From

4.29

p(x | y) =
1

Z
e−

1
2σ2
‖y−Ax‖22

n∏
i=1

p0(xi)

=
1

Z

m∏
a=1

e−
1

2σ2
(ya−ATa x)2

n∏
i=1

p0(xi), (4.35)

where ATa is the a-th row of the matrix A. The explicit expression of the nor-

malisation factor is

Z =

∫ n∏
i=1

dxip0(xi)

m∏
a=1

e−
1

2σ2
(ya−ATa x)2 (4.36)

This formulation is of course in the spirit of factor graphs since all components

in (4.35) are factorized.

42 Formulation of Problems as Spin Glass Models

The connections with statistical mechanics of spin glasses are analogous to

the case of coding. The posterior (4.35) can be though of as a random Gibbs

distribution and (4.36) as a partion function. The dynamical variables xi ∈ R
belong to a continuous alphabet, and one often speaks of “continuous spins”. The

measure is random because the measurement matrix A and the observations y

are r.v. In the language of spin glasses these are the “frozen” or “quenched” r.v.

The MMSE estimator is nothing else than a “magnetization” for the “contin-

uous spins”. In statistical mechanics notation for each component (4.30) reads

x̂i(y) = 〈xi〉 =

∫
dxxi p(x | y) =

∫
dxixi p(xi | y), (4.37)

Hamiltonian interpretation and Lasso estimator

One may ask, what is the hamiltonian associated to the Gibbs measure (4.35)?

The answer is simple. For given A and y it is

H(x|y,A) =
1

2σ2
‖y −Ax‖22 −

n∑
i=1

ln p0(xi)

=
1

2σ2

n∑
i,j=1

(ATA)ijxixj −
n∑
i=1

{
p(xi) +

1

2σ2
(

m∑
a=1

yaAai)xi
}

+
1

σ2
‖y‖22

(4.38)

We have expanded the norm in order to interpret more explicitely this Hamilto-

nian. The first term is an interaction between pairs of “continuous spins” with

random interaction strengths (ATA)ij . The second term is analogous to a ”mag-

netic field” term in the sense that it does not involve interactions between con-

tinuous spins.

Notice that if we formally replaced − ln p0(xi) by λ|xi| the minimizer of the

Hamiltonian would yield the Lasso estimate. But why should we make this choice

for p0 and why should we consider the minimum of the Hamiltonian? In coding

we briefly discussed the finite temperature decoder. One can proceed similarly

here and look at a generalized estimator based on the Gibbs measure at inverse

temperature β,

pβ(x|y) =
e−βH(x|y,A)∫
dnx e−βH(x|y,A)

.

The generalized estimator is

x̂i,β(y) = 〈xi〉β =

∫
dxxi pβ(x | y) =

∫
dxixi pβ(xi | y),

Of course for β = 1 we get back the usual MMSE. In the zero temperature limit

β → +∞ the configurations that dominate the integral are those that minimize

the Hamiltonian. One can show that

lim
β→+∞

= argminxH(x|y,A)

4.5 Free energy and conditional entropy in compressive sensing 43

Now, when the prior is not known one may decide to take p0(xi) = e−λ|xi| on

”phenomenological grounds”. In the generalized estimator p0(xi)
β = e−βλ|xi|

and as β → +∞ this choice of p0 gives most of the weight to signal components

that vanish. The parameter λ is left open, and its optimal value as a function of

ε is determined by the minimax problem (4.34).

4.5 Free energy and conditional entropy in compressive sensing

In this paragraph we assume that the prior is known. We derive a relation be-

tween the conditionnal entropy and the average free energy that is perfectly

analogous to the one for coding in section 4.3. In fact the derivation is easier

than in coding and is a matter of simple algebra.

We expect that in the large size limit n → ∞ the free energy 1
n lnZ concen-

trates. It is therefore relevant to consider the average free energy (over A and y).

In fact, the following discussion holds if we just look at the average free energy

over y only −EY [1
n lnZ] and A is fixed.

Proposition 4.5.1 For any fixed A we have the following relation

H(X)−H(X|Y) = −EY [lnZ(y]− n

2
(4.39)

Note H(X) = nH(X). It is pleasing to see that the left hand side is the mutual

information I(X;Y). Thus in this context mutual information and average free

energy are essentially the same.

Proof By definition (expectation with respect to the joint distribution p(x|, y))

H(X|Y) = −EX,Y [ln p(X|Y)] (4.40)

The logarithm of the posterior distribution is equal to

− 1

2σ2
‖y −Ax‖22 +

n∑
i=1

ln p(xi)− lnZ(y) (4.41)

The last term contributes EY [lnZ] to the entropy. The contribution of the second

term is also very easy to assess

EX,Y
[n∑
i=1

ln p(Xi)

]
=

n∑
i=1

EX [ln p(Xi)] = −nH(X) (4.42)

For the first term it is convenient to write down explicitely the integrals

− 1

2σ2

∫
dx

∫
dy p(x, y)‖y −Ax‖22

= − 1

2σ2

∫ n∏
i=1

dxip(xi)

∫
dy ‖y‖22

e−
1

2σ2
‖y‖22

(2πσ2)n/2

= −n
2

(4.43)

44 Formulation of Problems as Spin Glass Models

The second line is obtained by a shift y → y+Ax in the y-integral for each fixed

x.

4.6 K-SAT as a spin glass model

Make a brief section out of problem. Also formulate K-sat at finite temperature

is useful for later on.

Problems

4.1 The goal of this homework is to discuss the statistical mechanical formu-

lation of the random K-SAT problem. We consider the ensemble of random

formulas F(n,K,M) defined in chapter one (in class). The clause density will

be denoted α = M/n. In the first problem you will write the Hamiltonian and

the statistical mechanical measures in the spin language. In the second problem

you will derive a very elementary upper bound on the sat-unsat phase transition

threshold αs. Hint: there are no big calculations in this homework.

Given a formula F ∈ F(n,K,M) consider the following cost function:

HF (x1, ..., xn) = number of clauses violated by the assignment x1, ..., xn.

(4.44)

This is our Hamiltonian or energy function (xi the Boolean variables).

4.2 Hamiltonian, microcanonical measure, finite temperature Gibbs measure

Introduce the ”spin” variables si = (−1)xi that take values in {−1,+1}. Fur-

thermore if clause ca contains xi associate Jai = +1, and if it contains x̄i associate

Jai = −1. Thus full edges have Jai = +1 and dashed edges have Jai = +1, and

Jai are Bernoulli(1/2).

(a) Verify that each clause contributes a term∏
i∈ca

(1 + siJia
2

)
(4.45)

and then, write down the Hamiltonian or energy function in the spin language.

(b) Explain in one sentence which are dynamical variables and which are the

frozen (or equivalently quenched) random variables in the problem.

(c) Show that the following counts the number of solutions of F

Z =
∑

s1,...,sn∈{−1,+1}n

M∏
a=1

(
1−

∏
i∈ca

(1 + siJia
2

))
(4.46)

(d) Convince yourself that the microcanonical measure for the zero-energy sur-

face is nothing else than the uniform measure over solutions of F . Also, convince

4.6 K-SAT as a spin glass model 45

yourself that Z is the partition function (normalization factor) of the micro-

canonical zero-energy measure. Note that this measure is well defined only if F

admits at least one solution.

(d) Now take the Hamiltonian found in question (a) and write down the Gibbs

measure for inverse temperature β. Note that this measure has the advantage

that it is always well defined, i.e even if F does not have a solution. Consider the

free energy fF (β) (normalized by the number of variables) for a fixed formula

F . Show that

lim
β→+∞

β−1fF (β) =
1

n
min
x
H(x) (4.47)

This formula is interesting because if we succeed in computing the free energy

and if its zero temperature limit is non zero, then we can deduce that F is unsat.

The catch is that computing the free energy is a difficult problem.

4.3 Crude upper bound on αs Below P and E are with respect to the random

ensemble F(n,K,M). Consider the partition function Z of the microcanonical

ensemble.

a) Show the Markov inequality P[F satisfiable] ≤ E[Z].

b) Show that

E[Z] = 2n(1− 2−K)M . (4.48)

c) Deduce the upper bound

αs <
ln 2

| ln(1− 2−K)|
. (4.49)

For K = 3 this yields αs(3) < 5.191. It is conjectured that αs(3) ≈ 4.26: this

value is the prediction of the highly sophisticated cavity method of spin glass

theory. The asymptotic behavior of this simple upper bound for K → +∞ is

2K ln 2, which is known to be tight. However, the large K corrections obtained

by this bound are not tight.

5 Curie-Weiss Model

Before we start analysing our three running examples, it is instructive to con-

sider a very simple model for which the analysis can be carried out explicitly

with fairly little effort. This way we will encounter many concepts in their sim-

plest incarnation. This separates the concepts and notions, and why they are

important, from the computational difficulties which we will encounter when we

carry out the same analysis for our problems.

We will consider the Curie-Weiss model. This is a specific version of the so-

called Ising model and it is defined on a complete graph. This model is admitedly

special. But it has two advantages. First, it has an easy solution. Secondly, and

equally important, it still displays many of the interesting features of more com-

plicated models such as variational expressions for the free energy, fixed point

equations, and phase transitions. Analogous, but more complicated features oc-

cur in coding, K-SAT and compressive sensing. A second easily solvable model is

the Ising model on a tree. You will solve this in the homework. You will see that

the solution of the Ising model on the tree can be phrased in terms of message

passing quantities, another of our favourite themes.

We introduced the standard Ising model on a cubic grid Zd in Example 4 in

Chapter 3. This model is not only of considerable historical value for the develop-

ment of statistical mechanics, but its study has led to many of the fundamental

concepts in the theory of phase transitions. In fact, it is still the subject of fas-

cinating mathematical investigations. For completeness we review a few basic

results in section (5.6), which can be skipped in a first reading. One important

concept that is discussed is the one of pure state or extremal measure. Not only

this notion allow for a deeper understanding of phase transitions, but it becomes

very helpful in more advanced topics such as the cavity method.

Let us also point out that the Ising model on Zd with d → +∞ and the

Curie-Weiss model have the same free energies and phase diagrams.

5.1 Curie-Weiss model

Let G = (V,E) be a complete graph on n vertices. A complete graph on n

vertices is a graph in which each of the n(n − 1)/2 pairs of nodes is connected

by an edge. The case of n = 4 is shown in Figure 5.1. The Hamiltonian of the

5.2 Computation of the free energy 47

s2

s1

s4

s3

Figure 5.1 A complete graph with 4 nodes.

system is

Hn(s) = −J
n

∑
〈i,j〉∈E

sisj −H
∑
i∈V

si. (5.1)

Recall that the 〈i, j〉 notation denotes an edge, i.e., this is an unordered pair.

We will discuss only the case J > 0, i.e., the case in which equally “signed”

spins attract each other. This is called the ferromagnetic case. Note that the

interaction constant is scaled by n, i.e., we have the constant J/n in front of

the first sum. This scaling is necessary in order to have an interesting limiting

behavior: we would like both terms to scale in the same way as a function of n

and in particular to scale linearly in the system size.

In the sequel we will calculate the free energy and the magnetization, and

we will analyze the phase transitions for the model (5.1) in the thermodynamic

limit, i.e., when n→ +∞.

5.2 Computation of the free energy

Recall from Chapter 3 that in “real” physical systems the associated Gibbs

measure has the form e−
H(s)
kT

Z , where k is the Boltzman constant and T is the

temperature. In other words, for the Gibbs measure what is important is the ratio

of the energy of a configuration compared to a “background” energy kT which

depends on the temperature. One is then interested in studying the behavior of

this Gibbs measure as a function of T .

For our models the choice of this background energy is somewhat arbitrary and

it might not seem relevant. Hence we might be tempted to simply set kT = 1.

But, as we have seen already in previous chapters, it is often convenient to keep

an extra parameter. This parameter “weighs” the importance of the various

configurations with respect to each other. If we set kT to be very large then we

get an almost uniform measure, whereas if we look at the case where kT tends to

0, then only configurations of minimum energy count. For notational convenience

we typically write β instead of 1/(kT), and we call β the inverse temperature.

48 Curie-Weiss Model

We are therefore led to study the Gibbs measure with an exponent given by

βJ

n

∑
〈i,j〉∈E

sisj + βH
∑
i∈V

si. (5.2)

To simplify the notation further, it is customary to set βJ = K and βH = h so

that the Gibbs measure has the form

µ(s) =
e−βHn(s)

Zn
=
e
K
n

∑
〈i,j〉∈E sisj+h

∑
i∈V si

Zn
(5.3)

The partition function can be written as

Zn =
∑

s∈{−1,1}n
e
K
n

∑
〈i,j〉∈E sisj+h

∑
i∈V si . (5.4)

We recall the definition of the free energy f(K,h) in the thermodynamic limit,

βf(K,h) = − lim
n→+∞

1

n
lnZn. (5.5)

On a complete graph we have the identity,∑
〈i,j〉∈E

sisj =
1

2
(
∑
i∈V

si)
2 − 1

2
n. (5.6)

Given a constellation s, let us call the average of its spins the magnetization,

denote it by mn(s),

mn(s) =
1

n

∑
i∈V

si. (5.7)

It is then natural to express the Hamiltonian in terms of mn(s). We have

βHn(s) = −n(
K

2
mn(s)2 + hmn(s)) +

K

2
. (5.8)

Thus

Zn = e−
K
2

∑
s∈{−1,1}n

en(K2 mn(s)2+hmn(s)). (5.9)

The partition function can be computed by first summing over all spin configu-

rations with a fixed magnetization mn and then by summing over all magneti-

zations mn = { jn |j = −n,−n+ 1, . . . , n− 1, n}. We get

Zn = e−
K
2

∑
mn

#{s :

n∑
i=1

si = nmn}en(K2 m
2
n+hmn). (5.10)

The factor in front of the exponential is the number of spin configurations with

the given magnetization mn. Given mn, let n+ and n− be the number of positive

and negative spins respectively. We have{
n+ + n− = n,

n+ − n− = nmn.

5.3 Phase diagram 49

This implies that n+ = n 1+mn
2 . Therefore,

#{s :

n∑
i=1

si = nmn} =

(
n

n 1+mn
2

)
≈ enh2(1+mn

2), (5.11)

where the last step is valid for n→ +∞ and is obtained using Stirling’s formula.

In the last step we have introduced the binary entropy function h2(p) = −p ln p−
(1− p) ln(1− p). This leads to

Zn ≈ e−
K
2

∑
mn

en(K2 m
2
n+hmn+h2(1+mn

2)). (5.12)

Recall that mn = { jn |j = −n,−n + 1, . . . , n − 1, n}. So this is a Riemann sum

which tends for n→ +∞ to

Zn ≈ e−
K
2 n

∫ +1

−1

dmen(K2 m
2+hm+h2(1+m

2)). (5.13)

Consider the integral. Its integrand has the form eng(m), i.e., it is an exponential

function. The value of such an integral can be tightly approximated by the so

called Laplace method when n is large since in this case the value of the integral

is dominated by the integral in a small neighborhood of that value of m where

g(m) takes on its maximum. Since for the free-energy computation we take the

logarithm of the integral, divide by n, and take the thermodynamic limit, we only

need to determine the exponential behavior of the integral, and this is trivially

given by the maximum value the exponent takes on.

This gives us

βf(K,h) = − max
−1≤m≤1

{
K

2
m2 + hm+ h2(

1 +m

2
)

}
= min
−1≤m≤1

{
−(
K

2
m2 + hm)− h2(

1 +m

2
)

}
(5.14)

= min
−1≤m≤1

{
βf(m)

}
.

Although our derivation has been rather casual, with a littel bit more effort, this

formula can be converted into a theorem.

This formula says that the free energy is given by the solution of a variational

problem, i.e., as the solution of a minimization problem. The function f(m)

which is minimized has various names in the literature. We call it the free energy

function.

5.3 Phase diagram

Consider the free energy function f(m),

βf(m) = −(
K

2
m2 + hm)− h2(

1 +m

2
). (5.15)

50 Curie-Weiss Model

0.5

1.0

1.5

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

Figure 5.2 The behavior of m(K,h) as a function of (1/K, h), where 1/K ∈ [0, 1.5] and
h ∈ [−1.5, 1.5].

For each pair of (K,h), let m(K,h) denote the value of m which minimizes

f(m). Our language reflects the fact that, as we will see, for most pairs (K,h),

this minimizing value is unique. (In fact, it is unique for all h 6= 0.) What we

want to study is m(K,h) as a function of K and h. Note that h can take on both

positive and negative values, whereas K only takes on positive values. Instead

of plotting m(K,h) as a function of K (on the x-axis) and h (on the y-axis), we

will plot m(K,h) as a function of 1/K (on the x-axis) and h (on the y-axis).

Figure 5.2 shows the result. Why are we interested in this figure? As we

will discuss in more detail shortly, the quantity m(K,h) represents the aver-

age magnetization, i.e., it represents a quantity describing the global behavior of

the system as a function of the parameters. For some values of the parameters

(K,h), the system behaves smoothly when we perturb the parameters. But for

some other parameters the system behavior changes abruptly. These are so-called

phase transitions.

We will have much more to say about these phase transitions, but a quick look

at the figure already reveals a few different forms of behavior. For parameters

of the form (0 ≤ 1/K < 1, h = 0), when we move along the h-axis, the quantity

m(K,h) jumps. For the point (1/K = 1, h = 0), when we move along the h-axis

m(K,h) changes in a continuous fashion, but its derivative (wrt to h) jumps.

Finally, for all other points, m(K,h) changes smoothly (it is in fact analytic, i.e.,

infinitely differentiable with an absolutely convergent Taylor expansion).

We call the first behavior a phase transition of first order and the second

a phase transition of second order. The terms “first” and “second” here refers

5.3 Phase diagram 51

Kc = 1

second order

second order

first order

no transition

K−1 or T

h

Figure 5.3 The blue line is called coexistence line because two thermodynamic phases
(e.g. water/ice) coexist for parameters on it. Crossing the thick line is a first order
phase transition. This line is terminated by the critical point. Crossing the critical
point is a second order phase transition. There are many ways to cross it.

to which derivative “jumps.” Perhaps sligthly confusingly, but for good reason,

we do not refer here to the derivates of m(K,h) with respect to h, but to the

derivates of the integral of m(K,h) (wrt to h)! Never boring, these physicists!

Indeed we will see that the integral of m(K,h) is −β times the free energy, our

most primitive quantity, see (??).

For a sligthly different perspective, let us replot Figure 5.2 but this time let

us consider the picture “from the top,” i.e., we only show the K and h axis.

This is shown in Figure 5.3. The different cases (movements) leading to the

various phase transitions are indicated. The line indicated in blue, given by

(0 ≤ 1/K < 1, h = 0) is typically called the co-existence line. This name is

easily explained. If we approach this line from the top, i.e., we consider the limit

h→ 0+, then we get one value for m, but if we consider the limit h→ 0−, then

the sign of m is flipped. So “on” the line we can think of having two possible

“co-existing” phases.

Going down one further dimension by fixing a value of 1/K and only varying

h, Figure 5.4 explicitly shows a phase transition of first and second order.

Let us point out a few more important features that are apparent from the

variational expression (??) of the free energy f(K,h). This is a continuous and

concave function of K and h. In particular this means that the function itself

does not jump, only its derivatives might. Here we have seen that two types of

singularities occur in the phase diagram. The first derivative is discontinuous

when the coexistence line is crossed, this is a first order phase transition. The

second derivative is discontinuous when the critical point is crossed, this is a

second order phase transition.

The continuity and concavity of f(K,h) is a general requirement in thermo-

dynamics, and a general property of statistical mechanical models. Phase tran-

52 Curie-Weiss Model

h

m(K,h)

(a) First order

(1/K)critical

1/K

|m(K;h)|

(b) Second order

Figure 5.4 A phase transition of first and second order.

sitions1 are defined as singularities of the free energy. If the n-th derivative is

discontinuous one speaks of a phase transition of order n. There exist phase tran-

sitions of infinite order where the free energy is non-analytic but all its derivatives

are continuous. This classification of phase transitions is due to Ehrenfest but is

slighlty arbitrary for various reasons not discussed here. The more modern view

point, which we do not discuss in this course, is to distinguish between continu-

ous and discontinuous transitions and to classify them according to the type of

symmetry change.

In this course we will essentially encounter discontinuous phase transitions.

However we the reader should be aware that the study of continuous phase tran-

sitions is one of the most important chapters of statistical mechanics developped

in the 70’s.

5.4 Average magnetization

Before we discuss these phase transitions in more detail, let us first convince

ourselves that m(K,h) in fact represents the average magnetization.

We claim that

m(K,h) = lim
n→+∞

〈mn(s)〉 = lim
n→+∞

〈 1
n

∑
i∈V

si〉 = lim
n→+∞

〈si〉. (5.16)

The second equality is just (5.7). And the third equality is an immediate con-

sequence of the linearity of the Gibbs average and the symmetry of the model.

But the first equality has a non-trivial content. It says that m(K,h) is the av-

erage magnetization in the thermodynamic limit. One usually just calls it “the

magnetization.”

1 Here we discuss only static or thermodynamic phase transitions. We will see in later
chapter that there is a notion of dynamical phase transition related to changes in behavior

of the dynamics or of the algorithms. Such transitions are not related to singularities of

thermodynamic quantities like the free energy.

5.4 Average magnetization 53

One way to show (5.16) is to compute directly the Gibbs average

〈si〉 =
1

Zn

∑
s∈{−1,+1}

si e
−βHn(s). (5.17)

We have already computed the denominator. For the numerator one notes that

si can be replaced by 1
n

∑
i∈V si. Then one proceeds as before, a calculation that

we leave to the reader. The essential point is now this. Recall the point in the

calculation where we have converted the sum into an integral and where we now

evaluate the integral. Recall that this integral is dominated by that value of m

which maximizes the exponent. But this is exaclty the value m(K,h) and so

for large values of n this average is determined by spin constellations of “type”

m(K,h), i.e., by spin configurations which have magnetization m(K,h). It is

therefore not surprising that the average magnetization is exactly m(K,h) in

the thermoydynamic limit.2

There is a very useful and perhaps at first surprising relationship between

the free energy f(K,h) and the average magnetization m(K,h). As we have

mentioned previously, Gibbs averages can be obtained by differentiating the free

energy, i.e., we have

1

n

n∑
i=1

〈si〉 =
∂

∂h

1

n
lnZn. (5.19)

Taking the limit n→ +∞ one finds the important relation3

m(K,h) = − ∂

∂h
βf(K,h). (5.20)

The suspicious reader will notice that we have interchanged the limit n → +∞
and the h derivative. We do not prove it here, but this is permitted except at

phase transition points (a set of measure zero)!

2 As we have already seen, for h = 0 and 0 ≤ 1/K ≤ 1, the situation is special. The free

energy function f(m) is even and may have two opposite global minimizers (this indeed

happens for K > 1, see plot (5.6)). So if h is set to zero before taking the limit n→ +∞
one finds that the contributions of the two minima cancel, which yields a zero

magnetization. This is not the physically correct way to proceed. In reality there is always

an infinitesimal magnetic field h = ±0 present in the environment. For h = 0± one defines
the spontaneous magnetization as

lim
h→0±

lim
n→+∞

〈si〉 = m±(K) (5.18)

For K < 1 the limit is unique and the spontaneous magnetization vanishes: nothing
interesting happens. But for K > 1 the two limits differ: there is a phase transition. One

says that for h = 0± there is a spontaneous symmetry breaking. This symmetry breaking is

called “spontaneous” because physically we do not get to choose the orientation of the
magnetization: the infinitesimal perturbations in the environment select an orientation.

3 This relation was known in thermodynamics well before the invention of statistical

mechanics.

54 Curie-Weiss Model

5.5 Computing the phase diagram – the fixed point equation

We have already seen the three-dimensional picture of m(K,h) and from this

we can in principle see all phase transitions. But there is value in rederiving our

conclusions in a more classical way by using calculus. By doing so, not only will

we be able to add details to our picture, but we will also encounter some notions

which will reappear throughout the course.

Let us therefore sole the variational problem by differentiating the free energy

function

f(m) ≡ −(
K

2
m2 + hm)− h2(

1 +m

2
). (5.21)

Explicitly,

Km+ h+
1

2
ln

1−m
1 +m

= 0. (5.22)

Using the identity

tanh(
1

2
ln

1 +m

1−m
) = m, (5.23)

we obtain the Curie-Weiss equation

m = tanh(Km+ h). (5.24)

Of course this equation may have many solutions. One has to select the one

which minimizes f(m). If no solution is present then the minimum is attained

at m = ±1. However this case does not concern us too much because it happens

only for β = +∞ or T = 0.

Equ. (5.24) is often called the mean field equation. This is because it arises in

the approximate mean field theory of the Ising model on Zd. For d → +∞ the

mean field approximation becomes exact.

Analysis of the Curie-Weiss equation and of the phase transitions

Now our task is to find solutions of the Curie-Weiss equation and select the ones

that minimize f(m). The solutions of (5.24) can be determined graphically. In

the discussion below we distinghuish the cases h = 0, h > 0 and h < 0.

Case h = 0 The fixed points are shown in Figure 5.5 and the corresponding

free energy function f(m) are shown in Figure 5.6.

K < 1 : unique solution, m(K, 0) = 0, βf(K, 0) = ln 2. This is called

the high temperature phase (because K = βJ < 1 corresponds

to high T). In this phase the magnetization vanishes.

K > 1 : three solutions {m−, 0,m+}, the two opposite extremes are

global minimizers of f(m). This is the low temperature phase

where there is a “spontaneous” magnetization. Here the word

spontaneous refers to the fact that the magnetization does not

vanish although h = 0. A real system will choose from m− or

5.5 Computing the phase diagram – the fixed point equation 55

−1

1
tanh (Km)

K < 1

K > 1

m

m

Figure 5.5 Curie-Weiss fixed points, h = 0

ln 2

-1 +1

m

u(m)− s(m)

(a) K > 1

m

ln 2

-1 +1
m

u(m)− s(m)

(b) K < 1

Figure 5.6 Free energy functional

m+ because there is always an infinitesimal h = 0± in the envi-

ronnement. This is called “spontaneous symmetry breaking”.

Phase transition as a function of K: There is a continuous phase

transition at Kc = 1. The behaviour of the magnetization for h = 0 as

a function of K−1 ∼ kBT is shown in Figure 5.7. There is a continuous

phase transition at Kc = 1. The point (Kc = 1, h = 0) is called the

critical point. Continuous phase transitions are also called second order

phase transition because the second derivative of the free energy (i.e

first derivative of the magnetization jumps). It is interesting to study

the behavior of the magnetization close to the critical point. for K close

56 Curie-Weiss Model

Kc = 1

m−

m+

m = 0 K−1

m(K−1, 0)

Figure 5.7 Phase transition as a function of K−1 ∼ kBT in Curie-Weiss model

−1

1
tanh (Km + h)

m

m

(a) Fixed points

ln 2

m

u(m)− s(m)

(b) Free energy

Figure 5.8 Curie-Weiss fixed points, h > 0,K > 1

to Kc = 1 we have m small, so we can expand the Curie-Weiss equation

m = tanhKm ≈ Km− K3

3
m3

Besides the trivial solution m = 0 this leads to

m ∼ ±3(K −Kc)
1
2

The exponent 1
2 is called critical exponent. Remarkably it often does not

depend on the detailed form of the Hamiltonian but only on such things

as the dimensionality of the system (here d = +∞), and the underlying

symmetries of the Hamiltonian (here the Hamiltonian is invariant under

si → −si for h = 0).

Case h > 0 Fixed points and free energy function f(m) are shown in Figure 5.8

where h > 0 (h not too large) and K > 1. Fixed points and free energy

are shown in Figure 5.9 where h > 0 (h large) and K < 1. Note that the

5.5 Computing the phase diagram – the fixed point equation 57

−1

1
tanh (Km + h)

m

m

(a) Fixed points

m

u(m)− s(m)

(b) Free energy

Figure 5.9 Curie-Weiss fixed points, h > 0,K < 1

−1

1
tanh (Km + h)

m

m

(a) Fixed points

ln 2

m

u(m)− s(m)

(b) Free energy

Figure 5.10 Curie-Weiss fixed points, h < 0,K > 1

global minimizer m > 0.

Case h < 0 Fixed points and free energy are shown in Figure 5.10 where h < 0

(h not too large) and K > 1. Fixed points and free energy function f(m)

are shown in Figure 5.11 where h < 0 (h large) and K < 1. Note that

the global minimizer m < 0.

Phase Transition as a function of h: Summarizing, we see that

for K > 1, m(K,h) is discontinuous at h = 0. This is called a discon-

tinuous phase transition or a first order phase transition (because the

first derivative of the free energy jumps). See figure (5.12). For K < 1,

m(K,h) is continuous and there is no phase transition. At the critical

58 Curie-Weiss Model

−1

1
tanh (Km + h)

m

m

(a) Fixed points

m

u(m)− s(m)

(b) Free energy

Figure 5.11 Curie-Weiss fixed points, h < 0,K < 1

-1

+1

h

m(K,h)

Figure 5.12 Phase transition in Curie-Weiss model when K > 1 as a function of h.
The phase transition is at h = 0

point (Kc = 1, h = 0) the jump disappears and

m(Kc = 1, h) ∼ |h| 13 , h→ 0 (5.25)

This is again an example of second order phase transition with critical

exponent 1
3 (exercise: show this by expanding the Curie-Weiss equation

for small h when K = Kc = 1.)

5.6 Brief review of the Ising model on Zd

We briefly review the Ising model in finite dimensions. We point out that this

model is still the subject of deep mathematical investigations. This section can

be skipped in a first reading.

5.6 Brief review of the Ising model on Zd 59

Existence of the thermodynamic limit

We are interested in analyzing the system in the large size limit for a sequence

of graphs. This means that we have to specify a sequence of graphs: physically

this can be thought as specifying the “shape” of the sample. The large size limit

might depend on the shape. We do not wish to enter into a detailed discussion

of this topic here. The simplest case corresponds to taking an Ising model on a

cubic grid of equal sides and take free boundary conditions.

theorem 5.6.1 For a sequence of cubic grids V ⊂ Zd with equal side lengths

the thermodynamic limit of the free energy exists.

− lim
|V |→+∞

1

|V |
lnZV = βf(K,h) (5.26)

Moreover it is continuous and concave for all K and h.

Ehrenfest classification of phase transition

Phase transitions can be classified according to derivatives of f(K,h) (this is

just one possible classification called the Ehrenfest classfication. It is the most

usual one, but there exist other more “modern” ones).

• First order: The first derivative of f(K,h) is discontinuous. Recall

m(K,h) ≡ lim
|V |→+∞

1

|V |
∑
i∈V
〈si〉V = − ∂

∂h
f(K,h)

so the total magnetization per spin, is discontinuous. Figure 5.4a shows a

phase transition of first order.

• Second order: The second derivative of f(K,h) is discontinuous. Thenm(K,h)

is continuous but its first derivative is discontinuous. This typically hap-

pens when the temperature is varied. Figure 5.4b shows a phase transition

of second order.

Evidently one can define higher order transitions within this classification

scheme. Even infinite order phase transitions exist where the free energy is in-

finitely differentiable but not analytic. This hardly manifests itself on the func-

tion, but affects correlation functions. More modern classification schemes de-

pend on the symmetry changes that occur at a transition.

Dimensionality dependence

• d = 1: No phase transitions (except for interactions with very large range)

(Ising 1920).

• d ≥ 2: First and second order phase transition are present. Qualitatively these

are much like those of Curie-Weiss model (Proofs of existence of transition

by Peierls 1935, Griffith, Dobrushin 1965-70). Note however that the critical

60 Curie-Weiss Model

exponents of second order phase transitions are not the same than in Curie-

Weiss.

• d→ +∞: same solution than on the complete graph.

Critical behavior

• d ≥ 4: exponents of second order transition 1
2 and 1

3 , same as the ones found for

the Curie-Weiss model. Remarkably they do not depend on the microscopic

structure of H(s.)

• d = 2, 3 other critical exponents for the second order transition. For example,

for d = 2, m ∼ |K − KC |
1
8 . This results from Onsager’s famous exact

solution of the two dimensional model (1944). For d = 3, computing those

is the subject of the renormalization group which was developed in the 70’s

(Wilson, Fisher, Kadanoff. Nobel prize to K. Wilson). Their exact values

are unknown however and one has to use d = 4−ε expansions and numerical

calculations.

Spontaneous magnetization on Zd, d ≥ 2.

If one sets h = 0 from the outset, one has 〈s0〉V = 0 (free boundary conditions)

and this is also true for the limit |V | → +∞. However for K > 1 the limits h→ 0

and |V | → +∞ do not commute. One defines the spontaneous magnetization as

m± = lim
h→0±

lim
|V |→+∞

1

|V |
∑
i∈V
〈s0〉

= lim
h→0±

lim
|V |→+∞

〈s0〉V

On the coexistence line (see phase diagram) the two limits are different. This

means that for K > 1 an infinitesimally positive magnetic field tilts typical spin

configurations to mostly +1’s and an infinitesimally negative magnetic field tilts

typical spin configurations to mostly −1’s. In nature a magnet (say) picks up one

of the two limits because of infinitesimal magnetic fields that are always present.

This phenomenon is called spontaneous symmetry breaking.

Infinite volume Gibbs measures

One can study higher marginals/higher moments of the Gibbs measure in the

infinite size limit. For example

lim
|V |→+∞

〈si〉V = 〈si〉, lim
|V |→+∞

〈sisj〉V = 〈sisj〉, ect...

The set of all limiting marginals defines the infinite volume Gibbs measure.

When various phases coexist (on coexistence lines of the phase diagram) the

limits of these marginals are different for h → 0±. Other formulations of the

5.6 Brief review of the Ising model on Zd 61

same phenomenon use boundary conditions, and then the thermodynamic limits

|V | → +∞ depend on boundary conditions.

From the set of limiting marginals one can reconstruct the ”infinite volume

Gibbs measure”. Hence on the coexistence line the limiting Gibbs measure is

also non-unique. Caracterizing the set of infinite volume Gibbs measures is a

non-trivial problem. This is a convex set. Extremal points are called extremal

measures or pure states. These describe pure thermodynamic phases (pure wa-

ter/pure vapour for example). Convex combination of extremal measures de-

scribe the coexistence of pure thermodynamic phases (the coexistence of water

and vapour for example).

• In d = 1 only one infinite volume Gibbs measure for any finite temperature:

no phase transitions. The convex set is a point.

• In d = 2 only two extremal measures for K > Kc and h = 0 (proved in the

80’s). The convex set is a segment. For other points of the phase diagram

there is only one measure (convex set is a point). At the critical point K =

Kc and h = 0 the problem is different: seen from large scales the typical

configurations look fractal and self-similar. This is the subject of conformal

invariance developed by physicist in the 70’s-80’s. Some of the predictions of

conformal invariance have been recently proved by mathematicians (Fields

medals in 2006 to Werner, Okhounov and 2010 to Smirnov).

• In d = 3 on the coexistence line it is known that there exist more than

two extremal states. The convex set is richer than in two dimensions. In

particular there are extremal Gibbs measures that describe states with

interfaces. Interfaces are stable in three dimensions (and not in d = 2).

Problems

5.1 In problems of chapter 2 you proved that the Ising model in one dimension

(d = 1) does not have a phase transition for any T > 0. On the grid Zd there

is a non trivial phase diagram with first and second order phase transitions

for any d ≥ 2. This is also the case on the complete graph (as shown in the

lectures) which morally corresponds to d = +∞. Another graph that in a sense,

corresponds to d = +∞, is the q-ary tree for q ≥ 3. Indeed on Zd the number

of lattice sites at distance less than n from the origin scales as nd. On the q-ary

tree it scales as (q − 1)n which grows faster than nd for any finite d (for q ≥ 3).

Of course q = 2 corresponds to Z+.

The goal of the three exercises below is to solve for the Ising model on a q-ary

tree and show that it displays first and second order phase transitions (with

similar qualitative properties than on a complete graph).

Consider a finite rooted tree and call the root vertex o. All vertices have degree

q, except for the leaf nodes that have degree 1. We suppose that the tree has

n levels (the root being “level 0“). The thermodynamic limit corresponds to

62 Curie-Weiss Model

n→ +∞. The Hamiltonian (multiplied by β) is

βHn = −K
∑

(i,j)∈En

sisj − h
∑
i∈Vn

si (5.27)

were K > 0, h ∈ R, Vn is the set of vertices and En the set of edges. We are

interested in the magnetization of the root node in the thermodynamic limit:

m(K,h) = lim
n→+∞

< so >n=

∑
{sk,k∈Vn} so e

−βHn

Zn
(5.28)

The formula tanh−1 y = 1
2 ln 1+y

1−y might be useful.

5.2 Recursive equations. Perform the sums over the spins attached at the leaf

nodes and show that

< so >n=

∑
{sk,k∈Vn−1} so e

−βH′n−1

Z ′n−1

(5.29)

where En−1 and Vn−1 are the edge and vertex sets of a tree with with n − 1

levels and the new Hamiltonian is

βH′n = −K
∑

(i,j)∈En−1

sisj−h
∑

i∈Vn−1

si−(q−1) tanh−1(tanhK tanhh)
∑

i∈level n−1

si

(5.30)

Iterate this calculation and deduce

< so >n= tanh(h+ q tanh−1(tanhK tanhun)) (5.31)

where

uk+1 = h+ (q − 1) tanh−1(tanhK tanhuk), u1 = h (5.32)

Check that for q = 2 you get back the recursion of homework 2.

5.3 Analysis of the recursion. We want to analyze the fixed point equation for

q ≥ 3,

u = h+ (q − 1) tanh−1(tanhK tanhu) (5.33)

Plot the curves u→ u−h and u→ (q−1) tanh−1(tanhK tanhu) and show that:

• for K ≤ Kc ≡ 1
2 ln q

q−2 = tanh−1(q − 1)−1, (5.33) has a unique solution, and

that the iterations (5.32) converge to this unique solution.

• for K > Kc:

– for |h| ≥ hs, (5.33) has a unique solution (you do not needw3 to compute

hs explicitly although it is possible to find its analytical expression)

and that the iterations (5.32) converge to this unique solution.

– for |h| < hs, (5.33) has three solutions u−(h) < u0(h) < u+(h). Check

graphically that for h > 0 the iterations (5.32) with initial condition

u1 = h converge to u+(h). Similarly for h < 0 they converge to u−(h).

Check also graphically that the fixed point u0(h) is unstable whereas

u±(h) are stable.

5.6 Brief review of the Ising model on Zd 63

5.4 Phase transitions. Now we want to discuss the consequences of the results

in problem 2 for the phase diagram. On a tree the magnetization is defined as

the average spin of the root

m(K,h) = lim
n→+∞

〈so〉n, (5.34)

and we define the ”spontaneous magnetization” as m±(K) = limh→0± m(K,h).

You will show that in the (K−1, h) plane there is a first order phase transition

line (K−1 ∈ [0,K−1
c [, h = 0) terminated by a critical point Kc. Outside of this

line m(K,h) is an analytic function of each variable.

• Deduce from the analysis in problem 2 that for K ≤ Kc, m+(K) = m−(K) =

0.

• Deduce that for K > Kc, m+(K) 6= m−(K) (jump discontinuity or first order

phase transition) and that for K → +∞ m± → ±1.

• Show that for K → Kc from above, m±(K) ∼ (K − Kc)
1/2. So on the line

h = 0, as a function of K, the spontaneous magnetization is continuous

but not differentiable at Kc (second order phase transition).

• Now fix K = Kc and show that m(Kc, h) ∼ |h|1/3. As a function of h the spon-

taneous magnetization is continuous but not differentiable at Kc (second

order phase transition).

Hint: for the last two questions you can expand the fixed point equation to order

u3.

Remark 1: Note that the exponents 1/2 and 1/3 are the same than for the

model on a complete graph. This is also the case for all d ≥ 4 and is not the case

for d = 2, 3.

Remark 2: On a tree the definition of the magnetization above is not equivalent

to minus the derivative of the free energy with respect to h. In fact there is a fine

point: − 1
n lnZn is dominated by the contributions of leaf nodes and is not the

”physically meaningful” definition of free energy. Rather the ”physically mean-

ingful” definition is given by an integral, with respect to h, of the magnetization

at the root.

6 Summary of Part I

Explain that all mdoels coding, comprssed sensing and random k sat are of the

general form

0.25cm model whose distribution can be factorized as

µ(x) =
1

Z

∏
a

fa(x∂a), Z =
∑
x∈Xn

m∏
a=1

fa(x∂a) (6.1)

where ∂a = {i|i ∈ a}. For continuous alphabets all sums are replaced by integrals,

but otherwise the formalism is the same. These is the structure of fundamental

Gibbs distributiosn that describe physical systems. hence we expect convergence

of concepts and methods.

Foremost phenomenon is phase transitions. Phase digram will teach us what

we can hope to do and not to do whith local algorithmic dynamics ...

We solved CW: important paradigm, easy to solve, and will be useful to know

when we discuss compressive sensing. In homework discussed Ising on Tree: easy

to solve, important pardigm and will be useful for coding on sparse graphs.

Part II

Analysis of Message Passing

7 Marginalization, Factor Graphs,
and Belief Propagation

This chapter is largely about the following question: how can we efficiently com-

pute marginals of multivariate functions. We will see that this question has a

natural answer in form of a message-passing algorithm. Perhaps not too surpris-

ing, the message-passing paradigm is the basis for the low-complexity algorithms

which we will apply to our three running examples.

Much more surprising is the fact that message-passing is also the key for

the analysis of the so-called static threshold of the three examples (e.g., the

MAP threshold for coding or the SAT-UNSAT threshold for K-SAT). A priori

there is absolutely no connection between these thresholds and low-complexity

algorithms. As we will see, the element which connects these two worlds is the

Bethe free energy and the so-called Maxwell construction. We will discuss this

connection towards the end of our lectures. It has a fascinating history and a

beautiful graphical interpretation.

7.1 Distributive Law

Let F be a field (think of F = R) and let a, b, c ∈ F. By the distributive law

ab+ ac = a(b+ c). (7.1)

This simple law, properly applied, can significantly reduce computational com-

plexity: consider, e.g., the evaluation of
∑
i,j aibj as (

∑
i ai)(

∑
j bj). Factor graphs

provide an appropriate framework to systematically take advantage of the dis-

tributive law.

example 6 (Simple Example) Let’s start with an example. Consider a func-

tion f with factorization

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5). (7.2)

We are interested in computing the marginal of f with respect to x1. With some

abuse of notation, we denote this marginal by f(x1):

f(x1) ,
∑

x2,x3,x4,x5,x6

f(x1, x2, x3, x4, x5, x6) =
∑
∼x1

f(x1, x2, x3, x4, x5, x6).

In the previous line we introduced the notation
∑
∼... to denote a summation over

68 Marginalization, Factor Graphs, and Belief Propagation

all variables contained in the expression except the ones listed. This convention

will save us from a flood of notation. Assume that all variables take values in a

finite alphabet, call it X . Determining f(x1) for all values of x1 by brute force

requires Θ
(
|X |6

)
operations, where we assume a naive computational model in

which all operations (addition, multiplication, function evaluations, etc.) have

the same cost. But we can do better: taking advantage of the factorization, we

can rewrite f(x1) as

f(x1) =
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑
x6

f2(x1, x4, x6)
)(∑

x5

f4(x4, x5)
)]
.

Fix x1. The evaluation of the first factor can be accomplished with Θ
(
|X |2

)
operations. The second factor depends only on x4, x5, and x6. It can be eval-

uated efficiently in the following manner. For each value of x4 (and x1 fixed),

determine
∑
x5
f4(x4, x5) and

∑
x6
f2(x1, x4, x6). Multiply by f3(x4) and sum

over x4. Therefore, the evaluation of the second factor requires Θ
(
|X |2

)
opera-

tions as well. Since there are |X | values for x1, the overall task has complexity

Θ
(
|X |3

)
. This compares favorably to the complexity Θ

(
|X |6

)
of the brute force

approach. ♦

7.2 Graphical Representation of Factorizations

Consider a function and its factorization. Associate with this factorization a

factor graph as follows. For each variable draw a variable node (circle) and for

each factor draw a factor node (square). Connect a variable node to a factor node

by an edge if and only if the corresponding variable appears in this factor. The

resulting graph for the function of Example 6 is shown on the left of Figure 7.1.

The factor graph is bipartite. This means that the set of vertices is partitioned

into two groups (the set of nodes corresponding to variables and the set of nodes

corresponding to factors) and that an edge always connects a variable node to

a factor node. For our particular example the factor graph is a (bipartite) tree.

This means that there are no cycles in the graph; i.e., there is one and only

one path between each pair of nodes. As we will show in the next section, for

factor graphs that are trees marginals can be computed efficiently by message-

passing algorithms. This remains true in the slightly more general scenario where

the factor graph forms a forest; i.e., the factor graph is disconnected and it is

composed of a collection of trees. In order to keep things simple we will assume

a single tree and ignore this straightforward generalization.

example 7 (Special Case: Tanner Graph) Consider the binary linear code

7.3 Recursive Determination of Marginals 69

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x1
x2
x3
x4
x5
x6
x7

1{x1+x2+x4=0}

1{x3+x4+x6=0}

1{x4+x5+x7=0}

Figure 7.1 Left: Factor graph of f given in Example 6. Right: Factor graph for the
code membership function defined in Example 7.

C(H) whose parity-check matrix is

H =

x1 x2 x3 x4 x5 x6 x71

0

0

1

0

0

0

1

0

1

1

1

0

0

1

0

1

0

0

0

1

 .

Let F2 denote the binary field with elements {0, 1} and let x = (x1, . . . , x7)T .

Consider the function f(x1, . . . , x7) from F7
2 to {0, 1} ⊂ R that is defined by

f(x1, . . . , x7) , 1{x∈C(H)} ,

{
1, if Hx = 0T ,

0, otherwise.

We can factor f as

f(x1, . . . , x7) = 1{x1+x2+x4=0}1{x3+x4+x6=0}1{x4+x5+x7=0}.

Each term 1{·} is an indicator function: it is 1 if the condition inside the braces

is fulfilled and 0 otherwise. The function f is sometimes also called the code

membership function since it tests whether a particular word is a member of the

code or not. The factor graph of f is shown on the right in Figure 7.1. It is called

the Tanner graph of H. ♦

It is hopefully clear at this point that any (binary) linear block code has a

Tanner graph representation.

7.3 Recursive Determination of Marginals

Consider the factorization of a generic function g and suppose that the associated

factor graph is a tree (by definition it is always bipartite). Suppose that we are

interested in marginalizing g with respect to the variable z; i.e., we are interested

in computing g(z) ,
∑
∼z g(z, . . .). Since the factor graph of g is a bipartite tree,

70 Marginalization, Factor Graphs, and Belief Propagation

g has a generic factorization of the form

g(z, . . .) =

K∏
k=1

[gk(z, . . .)]

for some integer K with the following crucial property: z appears in each of the

factors gk, but all other variables appear in only one factor. To see this assume to

the contrary that another variable is contained in two of the factors. This implies

that besides the path that connects these two factors via variable z another path

exists. But this contradicts the assumption that the factor graph is a tree.

For the function f of Example 6 this factorization is

f(x1, . . .) = [f1(x1, x2, x3)] [f2(x1, x4, x6)f3(x4)f4(x4, x5)] ,

so that K = 2. The generic factorization and the particular instance for our run-

ning example f are shown in Figure 7.2. Taking into account that the individual

z
g

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

f

[g1] [gk] [gK] [f1]

[f2f3f4]

Figure 7.2 Generic factorization and the particular instance.

factors gk(z, . . .) only share the variable z, an application of the distributive law

leads to ∑
∼z

g(z, . . .) =
∑
∼z

K∏
k=1

[gk(z, . . .)]︸ ︷︷ ︸
marginal of product

=

K∏
k=1

[∑
∼z

gk(z, . . .)
]

︸ ︷︷ ︸
product of marginals

. (7.3)

In words, the marginal
∑
∼z g(z, . . .) is the product of the individual marginals∑

∼z gk(z, . . .). In terms of our running example we have

f(x1) =
[∑
∼x1

f1(x1, x2, x3)
][∑
∼x1

f2(x1, x4, x6)f3(x4)f4(x4, x5)
]
.

This single application of the distributive law leads, in general, to a non-negligible

reduction in complexity. But we can go further and apply the same idea recur-

sively to each of the terms gk(z, . . .).

7.3 Recursive Determination of Marginals 71

In general, each gk is itself a product of factors. In Figure 7.2 these are the

factors of g that are grouped together in one of the ellipsoids. Since the factor

graph is a bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . .) = h(z, z1, . . . , zJ)︸ ︷︷ ︸
kernel

J∏
j=1

[hj(zj , . . .)]︸ ︷︷ ︸
factors

,

where z appears only in the “kernel” h(z, z1, . . . , zJ) and each of the zj appears

at most twice, possibly in the kernel and in at most one of the factors hj(zj , . . .).

All other variables are again unique to a single factor. For our running example

we have

f2(x1, x4, x6)f3(x4)f4(x4, x5) = f2(x1, x4, x6)︸ ︷︷ ︸
kernel

[f3(x4)f4(x4, x5)]︸ ︷︷ ︸
x4

[1]︸︷︷︸
x6

.

The generic factorization and the particular instance for our running example f

are shown in Figure 7.3. Another application of the distributive law gives

z

kernel h

z1 zj zJ

[h1] [hj] [hJ] f3
f4

x5

x1

f2kernel

x4 x6

[f3f4]

[1]

[f2f3f4][gk]

Figure 7.3 Generic factorization of gk and the particular instance.

∑
∼z

gk(z, . . .) =
∑
∼z

h(z, z1, . . . , zJ)

J∏
j=1

[hj(zj , . . .)]

=
∑
∼z

h(z, z1, . . . , zJ)

J∏
j=1

[∑
∼zj

hj(zj , . . .)
]

︸ ︷︷ ︸
product of marginals

. (7.4)

In words, the desired marginal
∑
∼z gk(z, . . .) can be computed by multiplying

the kernel h(z, z1, . . . , zJ) with the individual marginals
∑
∼zj hj(zj , . . .) and

summing out all remaining variables other than z.

We are back to where we started. Each factor hj(zj , . . .) has the same generic

form as the original function g(z, . . .), so that we can continue to break down the

72 Marginalization, Factor Graphs, and Belief Propagation

marginalization task into smaller pieces. This recursive process continues until

we have reached the leaves of the tree. The calculation of the marginal then

follows the recursive splitting in reverse. In general, nodes in the graph compute

marginals, which are functions over X , and pass these on to the next level. In the

next section we will elaborate on this method of computation, known as message

passing: the marginal functions are messages. The message combining rules at

function nodes is explicit in (7.4). And at a variable node we simply perform

pointwise multiplication.

Let us consider the initialization of the process. At the leaf nodes the task is

simple. A function leaf node has the generic form gk(z), so that
∑
∼z gk(z) =

gk(z): this means that the initial message sent by a function leaf node is the

function itself. To find out the correct initialization at a variable leaf node con-

sider the simple example of computing f(x1) =
∑
∼x1

f(x1, x2). Here, x2 is the

variable leaf node. By the message-passing rule (7.4) the marginal f(x1) is equal

to
∑
∼x1

f(x1, x2) · µ(x2), where µ(x2) is the initial message that we send from

the leaf variable node x2 towards the kernel f(x1, x2). We see that to get the

correct result this initial message should be the constant function 1.

7.4 Marginalization via Message Passing

In the previous section we have seen that, in the case where the factor graph is a

tree, the marginalization problem can be broken down into smaller and smaller

tasks according to the structure of the tree.

This gives rise to the following efficient message-passing algorithm. The al-

gorithm proceeds by sending messages along the edges of the tree. Messages

are functions on X , or, equivalently, vectors of length |X |. The messages signify

marginals of parts of the function and these parts are combined to form the

marginal of the whole function. Message passing originates at the leaf nodes.

Messages are passed up the tree and as soon as a node has received messages

from all its children, the incoming messages are processed and the result is passed

up to the parent node.

example 8 (Message-Passing Algorithm for f of Example 6) Consider this

procedure in detail for the case of our running example as shown in Figure 7.4.

The top leftmost graph is the factor graph. Message passing starts at the leaf

nodes as shown in the middle graph on the top. The variable leaf nodes x2, x3,

x5, and x6 send the constant function 1 as discussed at the end of the previous

section. The factor leaf node f3 sends the function f3 up to its parent node.

In the next time step the factor node f1 has received messages from both its

children and can therefore proceed. According to (7.4), the message it sends

up to its parent node x1 is the product of the incoming messages times the

“kernel” f1, after summing out all variable nodes except x1; i.e., the message is∑
∼x1

f1(x1, x2, x3). In the same manner factor node f4 forwards to its parent

7.4 Marginalization via Message Passing 73

node x4 the message
∑
∼x4

f4(x4, x5). This is shown in the rightmost figure in

the top row. Now, variable node x4 has received messages from all its children. It

forwards to its parent node f2 the product of its incoming messages, in agreement

with (7.3), which says that the marginal of a product is the product of the

marginals. This message, which is a function of x4, is f3(x4)
∑
∼x4

f(x4, x5) =∑
∼x4

f3(x4)f4(x4, x5). Next, function node f2 can forward its message, and,

finally, the marginalization is achieved by multiplying all incoming messages at

the root node x1. ♦

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3

1

1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4 f4

1

1

∑
∼x1 f1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4 f4

1

1

∑
∼x1 f1

∑
∼x4 f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4 f4

1

1

∑
∼x1 f1

∑
∼x4 f3f4

∑
∼x1 f2f3f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1
1

f3
∑
∼x4 f4

1

1

∑
∼x1 f1

∑
∼x4 f3f4

∑
∼x1 f2f3f4

∑
∼x1 f1f2f3f4

Figure 7.4 Marginalization of function f from Example 6 via message passing.
Message passing starts at the leaf nodes. A node that has received messages from all
its children processes the messages and forwards the result to its parent node. Bold
edges indicate edges along which messages have already been sent.

Before stating the message-passing rules formally, consider the following im-

portant generalization. Whereas so far we have considered the marginalization

of a function f with respect to a single variable x1 we are actually interested in

marginalizing for all variables. We have seen that a single marginalization can

be performed efficiently if the factor graph of f is a tree, and that the complexity

of the computation essentially depends on the largest degree of the factor graph

and the size of the underlying alphabet. Consider now the problem of computing

all marginals. We can draw for each variable a tree rooted in this variable and

execute the single marginal message-passing algorithm on each rooted tree. It is

easy to see, however, that the algorithm does not depend on which node is the

root of the tree and that in fact all the computations can be performed simulta-

neously on a single tree. Simply start at all leaf nodes and for every edge compute

the outgoing message along this edge as soon as you have received the incoming

74 Marginalization, Factor Graphs, and Belief Propagation

messages along all other edges that connect to the given node. Continue in this

fashion until a message has been sent in both directions along every edge. This

computes all marginals so it is more complex than computing a single marginal

but only by a factor roughly equal to the average degree of the nodes. We now

summarize this discussion.

Messages, which we denote by µ and µ̂, are functions on X . Although this may

sometimes be redundant notation, in order to avoid confusions it is convenient to

reserve µ for messages from variable nodes (circles) to factor nodes (squares) and

µ̂ for messages from factor nodes to variable nodes. Marginals will be denoted by

ν. Message passing starts at leaf nodes. Consider a node and one of its adjacent

edges, call it e. As soon as the incoming messages to the node along all other

adjacent edges have been received these messages are processed and the result is

sent out along e. This process continues until messages along all edges in the tree

f

x

µ̂(x) = f(x) initialization at
leaf nodes

x

f

µ(x) = 1

f

x

variable/function
node processing

µ(x) =
∏K
k=1 µ̂k(x)

µ̂1 µ̂k µ̂K
f1

fk
fK

x

f

µ̂(x) =
∑
∼x f(x, x1, · · · , xJ)

∏J
j=1 µj(xj)

µ1 µj µJ
x1

xj
xJ

xmarginalization ν(x) =
∏K+1
k=1 µ̂k(x)

µ̂1 µ̂k µ̂K
f1

fk
fK

fK+1

µK+1

Figure 7.5 Message-passing rules. The top row shows the initialization of the messages
at the leaf nodes. The middle row corresponds to the processing rules at the variable
and function nodes, respectively. The bottom row explains the final marginalization
step.

have been processed. In the final step the marginals are computed by combining

all messages which enter a particular variable node. The initial conditions and

processing rules are summarized in Figure 7.5. Since the messages represent

probabilities or beliefs, the algorithm is also known as the belief propagation

(BP) algorithm. From now on we will mostly refer to it under this name.

7.5 Coding: Decoding via Message Passing 75

7.5 Coding: Decoding via Message Passing

Assume we transmit over a binary-input (si ∈ {±1}) memoryless (p(y | s) =∏n
i=1 p(yi | xi)) channel using a linear code defined by its parity-check matrix

H and assume that codewords are chosen uniformly at random. Recall that the

rule (4.8) for the bit-wise maximum a posteriori (MAP) decoder reads:

ŝi(y) = argmaxsi∈{±1}p(si | y) = sign〈si〉. (7.5)

Here p(si | y) is the marginal of the posterior (4.6),

p(s | y) =
1

Z(h)

∏
c∈C

1

2
(1 +

∏
i∈c

si)

n∏
i=1

ehisi . (7.6)

The partition function Z(y) is a ”constant” with respect to the sums over ∼ si
involved in the marginalization. Thus, to obtain p(si | y), it is sufficient to

marginalize the numerator in (7.6) and eventually normalize the resulting func-

tion of si. This numerator has a factorized form with two types of “kernel”

functions,

fi(si) = ehisi , and fc({si, i ∈ c}) =
1

2
(1 +

∏
i∈c

si). (7.7)

The first kernel function is attached in the factor graph to a single bit and

describes the influence of the channel. The second one is attached to several bits

and describes the parity-check constraints.

example 9 (Bit-wise MAP Decoding) Consider the parity-check matrix given

in Example 7. The corresponding factor graph is shown in Figure 7.6. This graph

eh1s1
eh2s2
eh3s3
eh4s4
eh5s5
eh6s6
eh7s7

1
2
(1 + s1s2s4)

1
2
(1 + s3s4s6)

1
2
(1 + s4s5s7)

Figure 7.6 Factor graph for the MAP decoding of our running example.

includes the Tanner graph of H but additionally contains the factor nodes which

represent the effect of the channel. For this particular case the resulting graph

is a tree. We can therefore apply the message-passing algorithm to this example

to perform bit-wise MAP decoding. ♦

In principle the messages are uniquely specified by the general message-passing

rules and we could simply move on to the next example. Indeed, the real power

of the factor graph approach lies in the fact that, once the graph and the factor

nodes are specified, no thought is required to work out the messages. For the

current example perhaps the result is quite intuitive and this might seem as no

76 Marginalization, Factor Graphs, and Belief Propagation

big deal. But in “real” systems substantially more complicated factor graphs are

encountered (taking into account the effects of fading, synchronization, mapping

of bits to elements of a constellation, or quantization) and in such cases without

the message passing rules it might be quite difficult to figure out how to correctly

combine messages.

Despite the fact that we could just blindly follow the rules, it is instructive

to explicitly work out a few steps of the belief propagation algorithm for this

example.

example 10 (Message passing algorithm for decoding) We give the first three

steps of belief propagation for the tree in Figure 7.6. In the first step the initial

messages are sent from leaf nodes. Here all leaf nodes are factor nodes whose fac-

tor is the prior, thus the initial messages are µ̂k→k(sk) = ehksk for k = 1, . . . , 7.

At the second step five variable nodes send messages to factor nodes, namely

the variable nodes that participate in only a single parity-check constraints:

µ1→1(s1) = eh1s1 , µ2→1(s2) = eh2s2 , µ3→2(s3) = eh3s3 , µ5→1(s5) = eh5s5 ,

µ7→1(s7) = eh7s7 . At the third step the three factor nodes have received all

their input, except the input from variable node 4. Hence, they can send their

messages in direction of node 4. These are

µ̂1→4(s4) =
∑
s1,s2

1

2
(1 + s1s2s4)eh1s1eh2s2 ,

µ̂2→4(s4) =
∑
s3,s6

1

2
(1 + s3s4s6)eh3s3eh6s6 ,

µ̂3→4(s4) =
∑
s5,s7

1

2
(1 + s4s5s7)eh5s5eh7s7 .

As you can see, the sums involved in the messages each involving 2 binary vari-

ables, and so each has 4 terms. They are easy to compute. For example the first

one is equal to

µ̂1→4(s4) = (1 + s4)cosh(h1 + h2) + (1− s4)cosh(h1 − h2).

In a real setting, the variables hi are known numbers and the sums are of course

computed numerically and not symbolically.

Looking at one more step, note that at this point all incoming messages to vari-

able node 4 are known and so we can compute the marginal ν(s4) by multiplying

these incoming messages. Explicitely,

ν(s4) =eh4s4
{

(1 + s4)cosh(h1 + h2) + (1− s4)cosh(h1 − h2)
}

×
{

(1 + s4)cosh(h3 + h6) + (1− s4)cosh(h3 − h6)
}

×
{

(1 + s4)cosh(h5 + h7) + (1− s4)cosh(h5 − h7)
}
.

Recall that we did not normalize our messages. Therefore, to get the true marginal

p(s4 | y) one has to normalize µ(s4),

7.6 Compressive Sensing: Finding a Sparse Vector via Message Passing 77

p(s4|y) = ν(s4)/(ν(+1) + ν(−1)).

To compute the other marginals one continues in this fashion with further steps

of belief propagation. As a final remark, note that messages can equivalently be

considered as vectors with two components or as Bernoulli distributions. ♦

7.6 Compressive Sensing: Finding a Sparse Vector via Message
Passing

Recall the setting in Section 4.4. We want to marginalize the posterior distribu-

tion (4.35)

p(x | y) =
1

Z(y)

r∏
a=1

e−
1

2σ2
(ya−ATa x)2

n∏
i=1

p(xi), (7.8)

in order to get the MMSE estimate

x̂i,σ(y) = 〈xi〉 =

∫
dxxi p(x | y) =

∫
dxixi p(xi | y). (7.9)

For compressive sensing the signal x ∈ Rn is continuous, thus marginalization

involves integrals instead of discrete sums. Formally, the distributive law (7.1) is

replaced by∫
R
dx a(x)b(x) +

∫
R
dx a(x)c(x) =

∫
R
dx a(x)(b(x) + c(x)). (7.10)

Note that for reasonable priors that decay sufficiently fast as |x| → +∞ all

integrals remain finite. The point is that with (7.10) the marginalization proceeds

exactly in the same way as in the discrete case if we simply replace sums by

integrals in the message-passing rules.

As in coding, the partition function Z(y) is a “constant” with respect to the

integrals over x \ xi involved in the marginalization. Thus, to obtain p(xi | y), it

is sufficient to marginalize the numerator in (7.8) and eventually normalize the

resulting function of xi. As in the coding case, this numerator has a factorized

form with two types of “kernel” functions,

fi(xi) = p(xi), and fa({xi, i : Aai 6= 0}) = e−
1

2σ2
(ya−ATa x)2 . (7.11)

The first factor encodes the prior whereas the second factor encodes the rela-

tionships induced by the matrix multiplication.

example 11 (Factor graph for compressive sensing) One can associate a “Tan-

ner” graph to the measurement matrix A. Edges are present if and only if

Aai 6= 0. One may think of Aai 6= 0 as the “strength” of an edge. There are

also additional factor nodes which represent the prior for the signal. There is one

important difference of the compressive sensing model and the coding model. In

78 Marginalization, Factor Graphs, and Belief Propagation

coding our analysis will rely heavily on the fact that the graph is sparse, i.e.,

that the number of edges is linear in the number of variables. As we will see,

if we look at very large instances of such graphs, the Tanner graph will not be

a tree but it will “locally” be a tree. This will be the key to our analysis. For

compressive sensing on the other hand we will assume that the entries of the

measurement matrix are iid Gaussian and so the matrix is dense. Indeed the

resulting graph is a complete bipartite graph. At first glance it therefore appears

that message-passing techiques which explicitly rely on the Tanner graph being

a tree are of no use in this context. But surprisingly, as we will see, we will still

be able to analyze this situation. The key in this case is that despite the fact

that we will not face a tree, the influence of each edge vanishes in the limit of

large graphs. This relies heavily on the fact that the sums here are over the reals,

whereas for sums over the binary field this would not be true irrespective how

large the sum is. ♦

p(x1)
p(x2)
p(x3)
p(x4)
p(x5)
p(x6)
p(x7)

e
− 1

2σ2
(y1−A11x1−A12x2−A14x4)

2

e
− 1

2σ2
(y2−A23x3−A24x2−A26x6)

2

e
− 1

2σ2
(y3−A34x4−A35x5−A37x7)

2

Figure 7.7 Factor graph for compressive sensing. The edges represent the non-zero
elements of the measurement matrix. The signal has seven components and there are
three measurements.

Let us discuss belief propagation for this example.

example 12 (Message passing algorithm for compressive sensing) We give

the first three steps of belief propagation for the tree in Figure 7.7. As re-

marked above, the messages are continuous distributions and instead of per-

forming binary sums one has compute integrals; this is the main difference with

the coding case. In the first step, the initial messages are sent from leaf nodes:

µ̂k→k(xk) = p(xk) for k = 1, . . . , 7. At the second step five variables (namely the

ones that participate in only one measurement) send messages to factor nodes:

µ1→1(x1) = p(x1), µ2→1(x2) = p(x2), µ3→2(x3) = p(x3), µ5→1(x5) = p(x5),

µ7→1(x7) = p(x7 =. At the third step the three factor nodes send messages to

variable node 4. These are

µ̂1→4(x4) =

∫
R2

dx1dx2 p(x1)p(x2)e−
1

2σ2
(y1−A11x1−A12x2−A14x4)2 ,

µ̂2→4(x4) =

∫
R2

dx3dx6 p(x3)p(x6)e−
1

2σ2
(y2−A22x2−A23x3−A26x6)2 ,

µ̂3→4(x4) =

∫
R2

dx5dx7 p(x5)p(x7)e−
1

2σ2
(y3−A34x4−A35x5−A37x7)2 .

We see from this formulation that all integrals are convergent: indeed the expo-

7.6 Compressive Sensing: Finding a Sparse Vector via Message Passing 79

nential is smaller than one and the priors p(·) are of course integrable. This time,

contrary to the coding example where binary sums could easily be computed, in

general the integrals cannot be performed analytically but have to be evaluated

numerically. One exception where a complete analytical calculation is easy, is the

case where the priors are Gaussians. This leads to messages that are Gaussians

throughout the whole belief propagation algorithm. A mixture of Bernoulli and

Gaussian priors also leads to explicit formulas for messages involving mixtures

of Gaussians. This last case is sometimes considered as a model of a sparse prior

in the context of compressive sensing. Note however, that the Laplacian prior

ce−
λ
σ2
|xk| does not lead to analytically tractable integrals because of the absolute

value.

At this point we can compute the marginal ν(s4). Indeed all messages incoming

into variable node 4 are known, and we have

ν(x4) = p(x4)µ̂1→4(x4)µ̂2→4(x4)µ̂3→4(x4)

To get the true marginal p(x4 | y) one has to normalize µ(s4),

p(x4|y) =
ν(x4)∫

R dx4 ν(x4)
.

Finally, the computation of other marginals requires further steps of belief prop-

agation. ♦

We remarked in 4.4 that the Lasso estimate can be obtained by taking the

prior p(xi) = ce−
λ
σ2
|xi|, and letting σ → 0

lim
σ→0

x̂σ(y) = argminx

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
. (7.12)

Taking the σ → 0 limit of the message passing rules developed in this chapter

leads to the so-called min-sum algorithm. It is instructive to work this out in

detail for the current example. But there is also an alternative route how to derive

at this result. The belief-propagation (or sometimes also called sum-product

algorithm) was derived from the distributed law once we applied to a factor

graph which is a tree. It led to the marginalization of a function.

But instead of using the operations of summing and multiplying (leading to

the sum-product algorithm) we can use as basic operations the minimization and

summing. The corresponding distributive law for this case reads

min(a+ b, a+ c) = a+ min(b, c). (7.13)

We can now formaly proceed just as in the previous case. A quick way to see this is

to use the correspondence (+,×)→ (min,+) which transforms ab+ac = a(b+c)

to min(a+b, a+c) = a+min(b, c). You will consider in detail the min-sum message

passing rules and apply it to the Lasso in the homeworks.

80 Marginalization, Factor Graphs, and Belief Propagation

7.7 K-SAT: Counting SAT Solutions via Message Passing

In the problems of Chapter 4 you derived the partition function of the K-SAT

problem (in the spin notation)

Z =
∑

s1,...,sn∈{−1,+1}n

M∏
a=1

(
1−

∏
i∈a

(1 + siJia
2

))
. (7.14)

Recall that Z counts the number of solutions of an instance defined by the matrix

Jia, i = 1, . . . , N , a = 1, . . . ,M . Instead of directly considering this quantity one

may first compute ∑
∼si

M∏
a=1

(
1−

∏
i∈ca

(1 + siJia
2

))
, (7.15)

which is the number of solutions given si = ±1. Of course if one has a method

to compute this quantity, it is immediate to deduce Z. In chapter 12 we will see

that this marginalization problem allows to, not only count solutions, but also

develop an algorithm for finding them1.

In the present case the marginalization problem involves only one type of

kernel function, namely

fa({si, i : Jia 6= 0}) = 1−
∏
i∈a

(1 + siJia
2

)
. (7.16)

There is no prior or bias over the spins like in coding and compressive sensing.

In the message passing formalism this corresponds to fi(xi) = 1. We leave it to

the reader to draw her favorite example of a factor graph indicating the factor

nodes.

For the K-SAT problem at finite temperature the Gibbs measure

1

Z

∑
s∈{−1,+1}n

M∏
a=1

exp
{
−β

∏
i∈ca

(1 + siJia
2

)}
(7.17)

again has a factorized form. It is easy to see that for a tree factor graph the

marginalization can be performed with the same message passing rules.

7.8 Summary of message passing equations for general models

In this chapter we learned how to compute the marginals in terms of exact

message passing equations on the tree. In the sequel we will use the same set

of equations for general loopy graphs. For general graphs, the message passing

1 This is the belief propagation guided decimation algorithm which finds solutions for

α < 3.86 in the random 3-SAT problem. This value should be compared to the

SAT-UNSAT threshold αs(3) ≈ 4.26.

7.8 Summary of message passing equations for general models 81

equations are the same but the initial conditions and the schedule differ. Here

we summarize the set of equations that we will very often use.

Consider a general model whose “Gibbs” distribution can be factorized as

µ(x) =
1

Z

∏
a

fa(x∂a), Z =
∑
x∈Xn

m∏
a=1

fa(x∂a) (7.18)

where ∂a = {i|i ∈ a}. For continuous alphabets all sums are replaced by integrals,

but otherwise the formalism is the same.

The BP equations are a set of relations linking two types of messages: those

flowing from variable to check nodes µi→a(xi) and those flowing from check to

variables node µ̂a→i(xi). These relations read

µi→a (xi) =
∏

b∈∂ira
µ̂b→i (xi) (7.19)

µ̂a→i (xi) =
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj) (7.20)

On a tree the messages are uniquely defined by their “initial” values at the leaf

nodes. Recall, when the leaf node is a check the outgoing message equals fa(x∂a)

when the leaf node is a check, and equals 1 when the leaf node is a variable.

Thanks to messages one can compute the marginals

νi (xi) =

∏
a∈∂i µ̂a→i (xi)∑

xi

∏
a∈∂i µ̂a→i (xi)

(7.21)

νa (x∂a) =
fa (x∂a)

∏
i∈∂a µi→a (xi)∑

x∂a
fa (x∂a)

∏
i∈∂a µi→a (xi)

. (7.22)

These are exact on a tree.

We said above will use the same set of equations even for non-tree graphs.

There are two points of views which are both useful. The first one is an “algo-

rithmic point of view” that we use throughout Chapters 8-15. One is to fix a

natural initial condition depending on the problem at hand, fix a schedule, and

compute iterations of the messages, µ
(t)
i→a (xi), µ̂

(t)
a→i (xi). At any time t the BP

marginals ν
(t)
i (xi), ν

(t)
a (xi) are by definition given by the relations (7.19)-(7.20).

The “statistical mechanics point of view” which is used throughout Chapters 19-

?? considers (7.19)-(7.20) as fixed point equations for a set of unkowns attached

to edges of the graph. Given a fixed point solution one can compute a set of

“marginals” from (7.21)-(7.22).

Let us finally stress one important feature of the BP equations that has already

been encountered throughout this Chapter. When we compute the marginals it

is not important how the messages are normalized. Indeed in (7.21)-(7.22) the

normalizations cancel out. We will often exploit this fact and write (7.19)-(7.20)

as proportionality relations. This makes many calculations technically easier.

Problems

7.1 Min-Sum Message Passing rules In class we discussed how to compute the

82 Marginalization, Factor Graphs, and Belief Propagation

marginal of a multivariate function f(x1, . . . , xn) efficiently, assuming that the

function can be factorized into factors involving only few variables and that

the corresponding factor graph is a tree. We accomplished this by formulating

a message-passing algorithm. The messages are functions over the underlying

alphabet. Functions are passed on edges. The algorithm starts at the leaf nodes

and we discussed how messages are computed at variable and at function nodes.

Recall from the derivation that the main property we used was the distributive

law. Consider now the following generalization. Consider the so-called commu-

tative semiring of extended real numbers (including ∞) with the two operations

min and + (instead of the usual operations + and ∗).
(i) Show that both operations are commutative.

(ii)Show that the identity element under min is ∞ and that the identity element

under + is 0.

(iii)Show that the distributive law holds.

(iv)If we formally exchange in our original marginalization + with min and ∗ with

+, what corresponds to the marginalization of a function?

(v)What are the message passing rules and what is the initialization?

7.2 Application to the Lasso estimate The goal of this problem is to show that

in case the factor graph associated to the measurement matrix is a tree we can

solve the Lasso minimization problem by using the min-sum algorithm. Recall

that the Lasso estimate is

x̂lasso(y) = argminx

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
. (7.23)

Consider first the minimum cost given that xi is fixed.

Ei(xi) = min∼xi

{
1

2
‖y −Ax‖22 − λ‖x‖1

}
. (7.24)

where min∼xi denotes minimization of the expression in the bracket with respect

to all variables, except xi which is held fixed. Ei(xi) is a function of a single real

variable whose minimizer yields the i-th component of x̂lasso(y).

Consider the Tanner graph in Figure 6.7 in the notes and write down the

factors associated to factor nodes. Pick your favourite variable, say variable 4,

and describe the steps of the min-sum algorithm for the computation of E4(x4).

8 Coding: Belief Propagation

In the last lecture we learned how to marginalize a multivariate function by

employing message passing rules. We saw that on trees message passing starts at

the leaf nodes and that a node which has received messages from all its children

processes the messages and forwards the result to its parent node. Further, on

a tree this messsage-passing algorithm is equivalent to MAP decoding. From

now on we will refer to this algorithm as BP and leave the term “message-

passing” as a generic term to encompass all local algorithms which follow the

basic message-passing paradigm, i.e., where an outgoing message along an edge

is only a function of the incoming messages at the same time along all other

edges incident to the node.

If the graph is not a tree then we can still use BP. But we need to define a

schedule which determines when to update what messages and it is not clear how

well such an algorithm will perform.

It is the aim of the present and the subequent chapter to clarify these issues.

We will carry out the analysis in detail for the BEC and then quickly point

out how the general case can be treated. The BEC has the advantage that its

analysis can be done by pen and paper. The general case is conceptually not

much harder, but there are a signficant number of details which one has to take

care of. This makes the computations considerably more messy.

8.1 Simplification of Message-Passing Rules for Bit-wise MAP
Decoding

In the binary case a message µ(x) can be thought of as a real-valued vector of

length two, (µ(1), µ(−1)) (here we think of the bit values as {±1}). The initial

such message sent from the factor leaf node representing the i-th channel real-

ization to the variable node i is (pYi|Xi(yi | 1), pYi|Xi(yi | −1)) (see Figure 7.6).

Recall that at a variable node of degree K + 1 the message-passing rule calls for

a pointwise multiplication:

µ(1) =

K∏
k=1

µk(1), µ(−1) =

K∏
k=1

µk(−1).

84 Coding: Belief Propagation

Introduce the ratio rk , µk(1)/µk(−1). The initial such ratios are the likelihood

ratios associated with the channel observations. We have

r =
µ(1)

µ(−1)
=

∏K
k=1 µk(1)∏K
k=1 µk(−1)

=

K∏
k=1

rk;

i.e., the ratio of the outgoing message at a variable node is the product of the

incoming ratios. If we define the log-likelihood ratios lk = ln(rk), then the pro-

cessing rule reads l =
∑K
k=1 lk.

Consider now the ratio of an outgoing message at a check node which has

degree J + 1. For a check node the associated “kernel” is

f(x, x1, . . . , xJ) = 1{
∏J
j=1 xj=x}

.

Since in the current context we assume that the xi take values in {±1} (and not

F2) we write
∏J
j=1 xj = x (instead of

∑J
j=1 xj = x). We therefore have

r =
µ(1)

µ(−1)
=

∑
∼x f(1, x1, . . . , xJ)

∏J
j=1 µj(xj)∑

∼x f(−1, x1, . . . , xJ)
∏J
j=1 µj(xj)

=

∑
x1,...,xJ :

∏J
j=1 xj=1

∏J
j=1 µj(xj)∑

x1,...xJ :
∏J
j=1 xj=−1

∏J
j=1 µj(xj)

=

∑
x1,...,xJ :

∏J
j=1 xj=1

∏J
j=1

µj(xj)
µj(−1)∑

x1,...,xJ :
∏J
j=1 xj=−1

∏J
j=1

µj(xj)
µj(−1)

=

∑
x1,...,xJ :

∏J
j=1 xj=1

∏J
j=1 r

(1+xj)/2
j∑

x1,...,xJ :
∏J
j=1 xj=−1

∏J
j=1 r

(1+xj)/2
j

=

∏J
j=1(rj + 1) +

∏J
j=1(rj − 1)∏J

j=1(rj + 1)−
∏J
j=1(rj − 1)

.

(8.1)

The last step warrants some remarks. If we expand out
∏J
j=1(rj + 1), then

we get the sum of all products of the individual terms rj , j = 1, . . . , J (e.g.,∏3
j=1(rj+1) = 1+r1+r2+r3+r1r2+r1r3+r2r3+r1r2r3). Similarly,

∏J
j=1(rj−1)

is the sum of all products of the individual terms rj , where all products consisting

of d terms such that J−d is odd have a negative sign (e.g., we have
∏3
j=1(rj−1) =

−1 + r1 + r2 + r3 − r1r2 − r1r3 − r2r3 + r1r2r3). From this it follows that

J∏
j=1

(rj + 1) +

J∏
j=1

(rj − 1) = 2
∑

x1,...,xJ :
∏J
j=1 xj=1

J∏
j=1

r
(1+xj)/2
j .

Applying the analogous reasoning to the denominator, the equality follows. If

we divide both numerator and denominator by
∏J
j=1(rj + 1), we see that (8.1)

is equivalent to the statement

r =
1 +

∏
j
rj−1
rj+1

1−
∏
j
rj−1
rj+1

,

which in turn implies r−1
r+1 =

∏
j
rj−1
rj+1 . From r = el we see that r−1

r+1 = tanh(l/2).

8.2 Regular LDPC ensemble on BEC 85

Combining theses two statements we have

tanh(l/2) =
r − 1

r + 1
=

J∏
j=1

rj − 1

rj + 1
=

J∏
j=1

tanh(lj/2), so that

l = 2 tanh−1
(J∏
j=1

tanh(lj/2)
)
. (8.2)

To summarize, in the case of transmission over a binary channel the messages

can be compressed into a single real quantity. In particular, if we choose this

quantity to be the log-likelihood ratio (log of the ratio of the two likelihoods)

then the processing rules take on a particularly simple form: at variables nodes

messages add, and at check nodes the processing rule is stated in (8.2).

8.2 Regular LDPC ensemble on BEC

The BEC is a very special BMSC. As depicted in Fig. 8.1, the transmitted bit is

either correctly received at the channel output with probability 1−ε or erased by

the channel with probability ε and thus, nothing received at the channel output.

The erased bits are denoted by “?”. For example, if x = 1 is transmitted in the

BEC, then the set of possible channel observation is {1, ?}.

X Y

1− ε

1− ε

ε

ε

0

1

0

1

?

Figure 8.1 Binary erasure channel with parameter ε.

The LLRs corresponding to the various channel observations are

l = log(
PY |X (y | x = 1)

PY |X (y | x = −1)
) =

log(1−ε

0) =∞ y = 1,

log(εε) = 0, y = ?,

log(0
1−ε) = −∞, y = −1.

Therefore, the possible values for the LLR are {±∞, 0}. According to the variable-

node rule, the outgoing message from a variable node is +∞ (or −∞) if at least

one incoming message from one of its neighbors is +∞ (or −∞), otherwise it is

equal to 0. Note that it is not possible that a variable node receives both +∞ and

−∞ simultaneously. This is due to the fact that by assumption the transmitted

word is a valid codeword and that the channel never introduced mistakes.

86 Coding: Belief Propagation

Since tanh(l/2) ∈ {±1, 0}, the updating rule of check nodes simplifies (use

tan(l/2) = sign(l)) to the following equation,

sign(li) =
∏

j∈N (c)\i

sign(lj). (8.3)

On the BEC, knowing the sign of all incoming messages is sufficient to com-

pute outgoing messages, thus we can assume that the set of messages is {±1, 0}
instead of {±∞, 0}. At check nodes the operation is then simple multiplication.

At variable nodes, if at least one of the incoming edges is non-zero, then all

non-zero incoming messages must in fact be the same and the outgoing message

is this common value. Otherwise, the outgoing message is 0.

8.3 Scheduling

If the Tanner graph is a tree, then message-passing starts from the leaf nodes

and messages propagate through the graph until a message has been sent on

each edge in both directions. However, as we mentioned before, cycle-free parity-

check codes do not perform well. This is true even if we allowed optimal decoding.

Hence we have to use codes whose Tanner graph has cycles.

Given a factor graph with cycles, the order in which messages are computed

has to be define explicitly and in principle different schedules might result in

different performance. We call such an order a schedule. A naive scheduling which

is convenient for analysis of belief propagation is the flooding or parallel schedule.

In this schedule at each step every outgoing message is updated according to the

incoming messages in the previous step.

In more details. Every iteration consists of two steps. In the first step we

compute the outgoing messages along each edge at variable nodes and we forward

them to the check node side. In the second step we then process the incoming

messages at check nodes, and compute for every edge at check nodes the outgoing

messsage and send it back to variable nodes. At the very beginning, none of the

messages except the ones coming from the channel are defined. So in order to

get started, we set all “internal” messages to be “neutral” messages. E.g., if we

represent messages as log-likelihood ratios, this means that we set all internal

messages to 0.

For the BEC, but only for the BEC, we can implement the parallel schedule in a

more efficient manner. For this channel, some thought shows that the messages

emitted along a particular edge can only jump once, namely from 0 to either

the value +1 or −1. After the value has jumped it stays constant thereafter.

Further, the message can only jump if at least one of the incoming messages

jumped. Therefore, rather than recomputing every message along every edge in

each iteration, we can just follow changes in the messaages and see if they have

consequences. As a consequence, we have to “touch” every edge only once and

so the complexity of this algorithm scales linearly in the number of edges.

8.4 (l, r) Regular LDPC Ensemble 87

8.4 (l, r) Regular LDPC Ensemble

To analyze the performance of the (l, r)-regular LDPC ensemble over the BEC(ε),

we pick a code, C, uniformly from the ensemble of graphs and run the message

passing algorithm. For a given code C and channel parameter ε, let PBP,b(C, x, ε, `)
denote the average bit error probability of message passing decoder for codeword

x at iteration `. We will study the behavior of PBP,b(C, x, ε, `) in terms of ε and

` as a measure of performance of the code C.
For the binary erasure channel, we either can decode a bit correctly, or the

bit is still erased at the end of the decoding process. Therefore, in this case

we typically compute the bit erasure probability. If we want to convert this

into an error probability, then we can imagine that for all erased bits we flip

a coin uniformly at random. With probability one-half we will guess the bit

correctly and with probability one-half we will make a mistake. Therefore, the

bit erasure and the bit error probability are the same up to a factor of one-half.

In our calculations we will always compute the erasure probability for the erasure

channel. But our language will sometimes reflect the general case and so we will

talk about error probabilties.

8.5 Basic Simplifications

Restriction To The All-One Codeword

The first important simplification arises by realizing that we can analyze the

error probality of the BP decoder assuming that the all-one codeword (i.e., the

codeword, all of its components are 1, where we use the spin language where the

components are from the set {±1}) was transmitted. In formulae, we claim that

PBP,b(C, x, ε, `) =
1

|C|
∑
x′∈C

PBP,b(C, x′, ε, `) = PBP,b(C, ε, `). (8.4)

This is true in a general setting. For the statement to hold we need two kinds of

symmetry to hold.

• Channel Symmetry: First, we need the channel to be symmetric. If we assume

that the input is from {±1} and that the output is from R, then we need

that p(y | x = 1) = p(−y | x = −1). It is easy to check that all our standard

channels, such as the BEC, BSC, or the BAWGNC, are symmetric. Channel

symmetry implies exactly what the name suggests, namely that channel

“looks” the same from the perspective of a +1 input as from the perspective

of a −1 input.

• Decoder Symmetry: Second, we need that the message-passing decoder pre-

serves this symmetry. For our purposes we are mostly interested in the

BP decoder, but in practice one often implements simplified versions. In

a nutshell, we require that the decoder does not introduce any bias. More

88 Coding: Belief Propagation

formally, we require that at check nodes the magnitude of the outgoing

message is only a function of the magnitude of the incoming messages, and

that the sign of the outgoing message is the product of the signs of the

incoming messaages. At variable nodes, we require that if the signs of all

the incoming messages are reversed then the outgoing message also just

changes by a reversal of the sign.

For the BEC and BP decoding it is particularly easy to see why (8.4) is

true. If you go back to the message-passing rules for this case, you will see

that both at check nodes as well as at variable nodes we can determine if the

outgoing message is an erasure or not by only looking how many of the incoming

messages are erasures, but we do not need to knwo the values of the incoming

messages. Therefore, the final erasue probability only depends on the erasure

pattern created by the channel, but is independent of the transmitted codeword.

The general case is proved by using the two symmetry conditions stated above.

The proof is not very difficult and we leave it to the reader.

Concentration

The second major simplification stems from the fact that, rather than analyzing

individual codes, it suffices to assess the ensemble average performance. This is

true, since, as [?, Thm. 3.30] asserts, the individual behavior of elements of an

ensemble is with high probability close to the ensemble average. More precisely,

theorem 8.1 (Concentration around Ensemble Average) Let C, chosen uni-

formly at random from C(n), be used for transmission over a BMS channel.

Assume that the decoder performs ` rounds of message-passing decoding and let

[PBP,b(C, ε, `) denote the resulting bit error probability. Then, for any given δ > 0,

there exists an α > 0, α = α(l, r, δ), such that

P{|PBP,b(C, ε, `)− EC(n) [[PBP,b(C, ε, `)] | > δ} ≤ ε−αn.

In words, the theorem asserts that all except an exponentially (in the block-

length) small fraction of codes behave within an arbitrarily small δ from the

ensemble average. Therefore, assuming sufficiently large blocklengths, the en-

semble average is a good indicator for the individual behavior and it seems a

reasonable route to focus one’s effort on the design and construction of ensem-

bles whose average performance approaches the Shannon theoretic limit. The

proof of the theorem is based on the so-called Hoeffding-Azuma inequality and

can be found in [?].

8.6 Computation Graph

Message passing takes place on the local neighborhood of a node. At each it-

eration, variable nodes send their beliefs along their edges toward check nodes

8.6 Computation Graph 89

(a) (b)

Figure 8.2 (a) The Tanner graph of a (2, 4)-regular LDPC code with 6 variable nodes;
(b) The corresponding computation graph of node 1 for the first iteration.

and, then, the check nodes compute the outgoing message for each of their edges

according to the beliefs of incoming edges and send it back to the variable nodes.

Afterwards, each variable node updates the outgoing messages along its edges

according to beliefs returned back on its edges.

Therefore, after ` iterations, the belief of a variable node depends on its initial

belief and the beliefs of all the nodes placed within (graph) distance 2` or less.

The graph consisting of these nodes is called the computation graph of that

variable node of height `. For example, the factor graph of a (2, 4, 6)-regular

LDPC code is shown in Fig. 8.2(a) and the computation graph of node 1 with

height 1 is also depicted in Fig. 8.2(b).

If a computation graph is tree, then no node is used more than once in the

graph. Therefore the incoming messages of each node are independent. But note

that by increasing the number of iterations, the number of nodes in a compu-

tation graph grows exponentially and in at most c log(n) steps, where c is some

suitable constant, some node will be reused. It is clear that small computation

graphs are more likely to be tree-like than large ones and that the chance of

having a tree-like computation tree increase if we increase the blocklength. The

following theorem makes this precise.

In particular, it states that computation graphs in sufficiently large LDPC

codes are tree-like with high probability.

theorem 8.6.1 (Convergence to Locally Tree-Like Graph) Let T denote the

computation graph of a variable node chosen uniformly at random from the set

of variable nodes of height ` in the (l, r, n)-regular LDPC ensemble. If ` is kept

fixed then

lim
n→∞

P (T is a tree) = 1. (8.5)

Proof We only give a sketch of the proof. We are given the randomly chosen

variable node and we construct its computation graph of height ` by growing

90 Coding: Belief Propagation

out its “tree” one node at a time, breath first. We use the principle of deferred

decisions. This means that rather than first constructing a particular code, then

checking if the correspoding computation graph is a tree and then averaging over

all codes we perform the averaging over all codes at the same time as we grow

the tree, i.e., we defer the decision of how edges are connected until we look at

a particular edge and reveal its endpoints.

Note that a computation graph of a fixed height has at most at certain number

of nodes and edges in there. At each step when we reveal how a particular edge

is connected there are two possible events. The newly inspected edge is either

connected to a node which is already contained in the computation graph. In

this case we terminate the procedure since we know that the computation graph

is not a tree. Or the edge is connected to a new node, maintaining the tree

structure. Since not yet revealed edges are connected uniformly at random to

any not yet filled slot, the probability of reconnecting to an already visited node

vanishes like 1/n, where n is the blocklength. By the union bound, and since

we only perform a fixed number of steps, it follows that the probability that the

computation graph is indeed a tree behaves like 1− c/n, which proves the claim.

Hence, the above result implies that for the fixed ` and as n grows large, the

error probability is equal to that observed on a tree.

8.7 Density Evolution

Consider hence the BEC(ε). As we just discussed, a random computation graph of

a fixed height is tree-like with high probability for large block-lengths. Therefore,

the incoming messages to each node of this compuation graph are independent.

This simplifies the analysis considerably.

Consider a computation graph T with height `. We divide this computation

graph to ` + 1 levels, from 0 to `. Level 0 contains the leaf nodes and the 1st

level contains the parent check nodes and the grandparent variable nodes of the

leaf nodes (Fig. 8.3).

Every variable node at the i-th level is the root of a computation tree with

height i. However, its root has degree l− 1. Let {?,+1,−1} denote the outgoing

message emitted by variable nodes in the i-th level. It is equal to either ? (erasure

message) with probability xi or a known value (±1) with probability 1− xi.
At level i + 1, each variable node is connected to l − 1 check nodes and each

check node is connected to r−1 variable nodes of i-th level. The outgoing message

of each check node is erasure message, if at least one of its incoming messages is

?. Since xi are independent, then the probability that a check node at level i+ 1

sends erasure message is equal to 1− (1− xi)r−1. The outgoing message from a

variable node of i+ 1-th level, i.e. xi+1, is erasure message if its initial message

is erasure message and all of its children (check nodes) at level i + 1 also send

8.7 Density Evolution 91

Level `

Level `− 1

Level `− 2

Level 1

Level 0

. . .

· · ·

...

Figure 8.3 A computation graph of (2, 3)-regular LDPC code with height `. The graph
is split to `+ 1 levels.

erasure messages. Hence,

xi+1 = ε(1− (1− xi)r−1)l−1 = f(ε, xi). (8.6)

By definition, the outgoing message at level 0 is x0 = ε. Therefore, the erasure

probability of the root of T which is connected to l check nodes of level ` is

lim
n→∞

PBP,b(l, r, n, ε, `) = ε(1− (1− x`−1)r−1)l = F (ε, x`−1). (8.7)

Problems

8.1 Belief Propagation for (3, 6) Ensemble and AWGN Channel In the first

homework you have implemented a program which can generate random ele-

ments from a regular Gallager ensemble. We will now use this, together with

the message-passing algorithm discussed in class, to simulate transmission over

a BAWGN channel.

We will use elements from the (3, 6)-ensemble of length n = 1024. For every

codeword we send we generate a new code. This way we get the so called en-

semble average. As discussed in class last week, when transmitting with a binary

linear code over a symmetric channel, we can in fact assume that the all-zero

(in 0/1 notation) codeword was sent since the error probability is independent

of the transmitted codeword. This simplifies our life since we do not need to im-

plement an encoder. We assume that we send the codeword over a binary-input

additive white Gaussian noise channel. More precisely, the input is ±1 (with

the usual mapping). The channel adds to each component of the codeword an

independent Gaussian random variable with zero mean and variance σ2. At the

receiver implement the message-passing decoder discussed in class. It is typically

easiest to do the computations with likelihoods. Since a random element from

the (3, 6) ensemble typically does not have a tree-like factor graph the scheduling

92 Coding: Belief Propagation

of the messages is important. To be explicit, assume that we use a parallel sched-

ule. This means, we start by sending all initial messages from variable nodes to

check nodes. We then process these messages and send messages back from check

nodes to all variable nodes. This is one iteration. For each codeword perform 100

iterations and then make the final decision for each bit.

Plot the negative logarithm (base 10) of the resulting bit error probability as a

function of the capacity of the BAWGN channel with variance σ2. This capacity

does not have a closed form but can be computed by means of the numerical

integral

C(σ2) =

∫ 1

−1

σ√
2π(1− y2)

e−
(1−σ2 tanh−1(y))2

2σ2 log2(1 + y)dy.

If the code and the decoder where optimal and the length of the code were infi-

nite, where should you see the phase transition (rapid decay of error probability)?

8.2 Gallager Algorithm A In class we discussed the BP algorithm which is the

“locally optimal” message-passing algorithm. One of its downsides in a practical

application is that it requires the exchange of real numbers. Hence, in any imple-

mentation messages are quantized to a fixed number of bits. One way to think of

such a quantized algorithm is that the message represents an “approximation”

of the underlying message that BP would have sent.

Assume that we are limited to exchange messages consisting of a single bit.

Recall that for BP a positive message means that our current estimate of the

associated bit is +1, whereas a negative message means that our current estimate

is −1 (the magnitude of the BP message conveys our certainty). So we can think

of a message-passing algorithm which is limited to exchange messages consisting

of a single bit, as exchanging only the sign of their estimate.

The best known such algorithm (and historically also the oldest) is Gallager’s

algorithm A. It has the following message passing rules.

We assume that the codewords and the received word have components in

{0, 1}.
(i) Initialization: In the first iteration send out the received bits along all edges

incident to a variable node.

(ii)Check Node Rule: At a check node send out along edge e the XOR of the

incoming messages (not counting the incoming message along edge e).

(iii)Variable Node Rule: At a variable node. Send out the received value along

edge e unless all incoming messages (not counting the incoming message

on edge e) all agree in their value. Then send this value.

Assume that transmission takes place over the BSC(p) and that we are using

a (3, 6)-regular Gallager ensemble. Write down the density evolution equations

for the Gallager algorithm A.

9 Coding: Density Evolution

In the preceeding chapter we have derived the DE equations for a regular en-

semble and transmission over the BEC. The task for this chapter is on the one

hand to analyse what these equations tell us and on the other hand to explain

how to extend this analysis to general BMS channels.

9.1 Density Evolution for the BEC

Recall that we consider a BEC(ε) and the (l, r)-regular ensemble. Let PBP, b(l, r, n, ε, `)

denote the bit error probability of BP decoding for an ensemble of size n, using

` iterations (a computation tree of depth `). We know from the last lecture that

the limit of this quantity as n goes to infinity is given by F (ε, x`−1), where

F (ε, x) = ε(1− (1− x)r−1)l.

The quantity x corresponds to the probability of erasure at each iteration, and

we can assume x0 = 1. It evolves after each iterations according to the recurrence

xi = f(ε, xi−1), where

f(ε, x) = ε(1− (1− x)r−1)l.

We analyze the sequence {xi} and ask whether it converges to 0 or not. In

case it does, the decoding is successful, otherwise it is not. Note that convergence

depends on ε, l, and r.

Remark 9.1 The function f(ε, x) is increasing in ε and x for x, ε ∈ [0, 1].

lemma 9.1 (Monotonicity) Let 2 ≤ l ≤ r and 0 ≤ ε ≤ 1. Let x0 = 1 and

xi = f(ε, xi−1), i ≥ 1. Then

• The sequence {xi} is decreasing in i.

• If ε ≤ ε′ then xi(ε) ≤ xi(ε′).

Proof Let us first show thaat the sequence {xi} is decreasing. We use induction.

The first two elements of the sequence are x0 = 1 and x1 = f(ε, x0) = ε,

so x0 ≥ x1. Therefore, for i ≥ 2, we assume xi−1 ≤ xi−2 as the induction

hypothesis. Since f(ε, ·) is increasing, we obtain f(ε, xi−1) ≤ f(ε, xi−2). The left

hand side is equal to xi, and the right hand side to xi−1, and we deduce that

xi ≤ xi−1.

94 Coding: Density Evolution

Figure 9.1 Monotonicity of x∞ as a function of ε. For this example, x∞ jumps at the
critical point. There are also examples where x∞ changes continuously at the critical
point. As we have discussed in previous chapters such systems are phase transitions of
first and second order, respectively.

To prove the second claim, we use induction once more. Assume that ε ≤ ε′.

Then x1(ε) = ε ≤ ε′ = x1(ε). The general statement is deduced as follows:

xi(ε) = f(ε, xi−1(ε))
(a)

≤ f(ε′, xi−1(ε))
(b)

≤ f(ε′, xi−1(ε′)) = xi(ε
′),

where inequality (a) follows from the fact that f is increasing in ε, and inequality

(b) follows from it being increasing in x, together with the induction hypothesis.

From the first part of the previous lemma, it follows that xi(ε) converges

in [0, 1]. From the second part, it follows that if xi(ε) → 0 for some ε, then

xi(ε
′) → 0 for all ε′ < ε. We denote by x∞(ε) the limit limi→∞ xi(ε). Then

x∞ is increasing in ε as shown in Figure 9.1. Hence we can define the quantity

εBP = sup{ε : x∞(ε) = 0}; this is called the BP threshold.

There is a graphical way to characterize this threshold. Note that x∞ is a

fixed point of f(ε, ·), i.e. f(ε, x∞) = x∞. Thus, if f(ε, x)−x < 0 for all x ∈ [0, ε],

then x∞ = 0. For the converese, as soon as there is a fixed point f(ε, x) = x

in the interval (0, ε], we have that x∞ > 0. In fact it is easy to check that this

condition can be further simplified since there never can be a fixed point in (0, 1]

as f(ε, x) has the form εg(ε, x), where g is upper bounded by 1. Therefore, if

f(ε, x) − x < 0 for all x ∈ [0, 1], then x∞ = 0. For the converese, as soon as

there is a fixed point f(ε, x) = x in the interval (0, 1], we have that x∞ > 0. This

condition is graphically depicted in Figure 9.2.

example 13 For the (3, 6)-regular ensemble, we get εBP ∼ 0.4294. Note that

the rate of this ensemble is R = 1 − l
r = 1

2 . Therefore, the fraction 0.4294 has

to be compared to the erasure probability that an optimum code could tolerate,

which is εShannon = 1−R = 1
2 . We conclude that already this very simple code,

9.1 Density Evolution for the BEC 95

Figure 9.2 The threshold εBP is the largest channel parameter so that f(ε, x)− x < 0
for the whole range x ∈ [0, 1].

together with this very simple decoding procedure can decode up to a good

fraction of Shannon capacity.

The previous example immediately suggests several questions? First, how well

can we do with such a scheme. E.g., for rate one-half codes, is 0.4294 the highest

erasure fraction we can recover from? Second, why does the (3, 6)-regular ensem-

ble not achieve capacity? Is this due to a weakness of the code or is the decoding

procedure just too simple minded?

For the first question it turns out that in fact we can achieve capacity by

slightly tweaking the scheme. There are several ways of doing this. The key step

is to look a somewhat more sophisticated ensembles, i.e., ensembles which have

some additional structure.

In particular, Luby, Mitzenmacher, Shokrollahi, Spielman and Stemann [2]

showed how to construct irregular LDPC ensembles which achieve capacity ar-

bitrarily closely under BP. This is very pleasing, since iterative schemes are

inherently low complexity.

Let us quickly expand on the main idea without going into details. So far

we consider ensembles where every variable node had degree l and every check

node had degree r and we called such an ensemble an (l, r)-regular ensemble.

From this point of view it is natural to introduce as extension ensembles where

we allow nodes of varying degrees. More precisely, define Λi as the fraction of

variable nodes of degree i in the ensemble; in particular, we have that Λi ≥ 0

and
∑
i Λi = 1. Likewise we define Ri as the fraction of check nodes of degree i.

The rate of such an ensemble is then quickly determined to be R = 1 −
∑
i iΛi∑
i iRi

.

The DE equations can be written down in the same manner as we have done this

for the regular case and the resulting function f(ε, x), which encodes DE has the

same properties as for the regular case. The question is then if we can choose

these fractions Λi and Ri such that we can approach capacity arbitrarily closely.

96 Coding: Density Evolution

This question was answered in the affirmative in [2]. But there is a small price

we have to pay. As a function of the gap to capacity, the average degree of the

nodes has to grow in a logarithmic fashion. This means that also the decoding

complexity grows as we approach capacity.

We will come back to the second question later on. In fact, we will see that

it connects very nicely to the material in this chapter, despite the fact that we

currently look at the performance of a suboptimal algorithm. Just to give a quick

preview. Define εMAP as the threshold of the MAP (i.e., the optimal) decoder.

By definition, this threshold can only be larger. But how large is it? We will

be able to give an analytic answer to this question. E.g., for the (3, 6)-regular

ensemble it will turn out that εMAP ∼ 0.4884. This is considerably larger than

εBP ∼ 0.4294 but still falls slightly short of εShannon = 1 − R = 1
2 . We conclude

that for the present example both the code as well as the decoder are to blame

for the suboptimal performance.

9.2 Exchange of Limits

At this point you might be slightly worried. We have defined density evolution

by looking at the erasure fraction which remains after ` iterations when we take

the blocklength to infinity. Subsequently we have analyzed DE by looking what

happens if we take more and more iterations. In short, we have looked at the

limit lim`→∞ limn→∞.

This is certainly a valid limit, but if the implication is sensitive to the order in

which we take the limit then one might worry how well experiments for “prac-

tical length” of lets say thousands of bits to hundreds of thousands of bits and

“practical number of iterations” lets say dozens to hundreds of iterations might

fit the theory. At least for the BEC there is a fairly simple and straightforward

analytic answer – the limit is the same regardless of the order and can also be

taken jointly as long as both quantities tend to infinity!

We will not prove this result here. The key is to consider the converse limit

limn→∞ lim`→∞ and to prove that it gives the same result. Note that due to

the special nature of the BEC, the performance is monotonically decreasing in

the number of iterations (things only can get better if we perform further itera-

tions). From this basic observation we can deduce the following: Let `(n) be any

increasing function so that `(n) tends to infinity if n tends to infinity. Then, for

any channel parameter ε, the error probability under the limit limn→∞ lim`→∞
is no larger than the error probability under the joint limit when ` = `(n), which

in turn is no larger than the error probability under the limit lim`→∞ limn→∞.

If now we can show that the two extreme cases have the same limit, then any

joint limit also has this same limit.

For the BEC the limit limn→∞ lim`→∞ can in fact be analyzed and this is

what was done in [2]. The technique is to use the so-called Wormald method, a

9.3 Density Evolution for General BMS Channels 97

method which we will encounter soon when we will analyze simple algorithms to

solve the K-SAT problem.

For the general case the situation is more complicated. Experiments and “com-

putations” show that also in the general case the limit does not depend on the

order. But in order to show this rigorously one currently has to impose some

further constraints on the ensemble, see ??.

9.3 Density Evolution for General BMS Channels

So far we only considered the very special case of transmission over the BEC.

Luckily it turns out that exactly the same type of analysis works for general

BMS channels. Again we will be able to derive a DE recursion and this recur-

sion will determine the BP threshold of the scheme. The main difference lies in

technicalities. The DE equation for the BEC, encoded by f(ε, x) is a function

of two real parameters. Further, this function is monotone in both paramters

over the range of interest. This made the analysis simple. For the general case,

the DE equation is encoded by a functional, i.e., a function of two probability

distributions. The first one encodes the channel, in the same way as ε encodes

the BEC. The second parameter encodes the state of the system after a certain

number of iterations, and it is quantity equivalent to x.

Rather than explaining all this for the general case let us go through the case

of transmission over the BAWGNC. The general case follows along the same

steps. The only difference is that in the general case the chennel might not

have a description in terms of a density of the log-likelihood ratios but might

contain some point masses. For a reader familiar with probability theory this

extra complication should not cause any problems. An in case you are not so

firm on probability, this is probably not the time and place to start discussing

measure theory.

We consider a BAWGNC channel, where the output Y is given in terms of the

input X by Y = X + Z, where Z ∼ N (0, σ2) is the noise (independent of the

input).

If we fix the input to X = 1, then Y ∼ N (1, σ2). In this case, the log-likelihood

is

l = log
p(y|x = 1)

p(y|x = −1)
= log

1√
2πσ2

e−
(y−1)2

2σ2

1√
2πσ2

e−
(y+1)2

2σ2

=
1

2σ2
[(y + 1)2 − (y − 1)2] =

2y

σ2
.

Note that in this case, up to rescaling, the log-likelihood is essentially equal to the

channel output. Therefore, if we consider the log-likelihood ratio at the output

of the channel, conditioned that X = 1, as a random variable, its distribution

is a Gaussian. Indeed, let L denote this random variable. Then it is distributed

like N
(

2
σ2 , σ

2
(

2
σ2

)2) ∼ N (2
σ2 ,

4
σ2

)
. Let a(l) denote this density, see Figure 9.3.

Recall that, due to the all-one codeword assumption, positive values of L

98 Coding: Density Evolution

Figure 9.3 The L-density corresponding to the BAWGNC.

indicate that we make a correct decision and negative values that we make an

error. Therefore the gray area in Figure 9.3 represents the error probability in

case we would make a decision based only on the value received by the channel.

More precisely, the bit error probability of the channel is

Pb =

∫ 0

−∞
a(l)dl = Q

(
µL
σL

)
= Q

(
1

σ

)
∼ e−

1
2σ2 .

Note that Pb tends to 0 as σ approaches 0.

We now look at the message passing rules in the generalized setting.

• At variable nodes, we assume the incoming messages are L1, . . . , Ll−1, with

(i.i.d.) distributions bi(y). The outgoing message is L =
∑l−1
i Li, with L

having the distribution ai+1(y). Since the outgoing random variable is the

sum of a fixed number of independent random variables, the density of the

outgoing random variable is the convolution of the densities of the incoming

random variables, i.e.,

ai+1 = ⊗l−1
i=1bi. (9.1)

• At check nodes, we assume the incoming messages are L1, . . . , Ll−1, with

(i.i.d.) distributions ai(y). The outgoing message is L = 2 tanh−1
(∏r−1

i=1 tanh
(
Li
2

))
,

with L having the distribution bi+1(y). Let us write in this case the density

of the outgoing random variable in the form

bi+1 = ⊕r−1
i=1 ai. (9.2)

Note that we have written it in a form similar to the convolution which

we encountered at variable nodes. Indeed, it turns out that if we are will-

ing to bring all the random variables into a different domain, then again

we can write the outgoing random variable as the sume of the incoming

random variables and so in this domain again the density of the outgoing

9.3 Density Evolution for General BMS Channels 99

Figure 9.4 The sequence of densities {ai}.

random variable is the convolution of the densities of the incoming random

variables. This explains the notation. We will not pursue this further here.

For our purpose it sufficies to know that there are computationally efficient

ways of computing the outgoing density from the incoming densities.

Assume hence that either via a numerical implementaton or by using a pop-

ulation dynamics approach we have succeeded in computing the sequence of

densities {ai}. A typical such sequence is depicted in Figure 9.4.

As one can see from this figure, as the number of iterations increases, the

densities move further and further “to the right.” This implies for example that

the associated sequence of error probabilities is decreasing, since these error

probabilities are given by

lim
n→∞

PBPb (l, r, σ, n, L) =

∫ 0

−∞
aL(y)dy.

We would like to proceed in exactly the same manner as we have done this

for the BEC. In particular we would like to know if there exists a threshold, i.e.,

a particular value of the channel parameter so that for elements of the channel

family which are “better” than this threshold the sequence of error probabilities

converges to zero whereas for elements of this family which are “worse” the error

probabilities converge to a non-zero value.

For the BEC the crucial ingredient which facilitated the proof was that there

was a simple “order” of all BEC channels – channels with fewer erasures are

better than channels with more erasures. We will now see how to introduce a

similar notion for the general case.

100 Coding: Density Evolution

9.4 Channel Degradation

In order to imitate the proofs that we have obtained for BEC, we need to define

an order on the distributions. For two distributions a(y) and b(y), the intuition

behind a(y) ≺ b(y) is that a(y) is “better” than b(y), and the sequence ai(y)

decreases, as is the case for the BEC.

To define the order relation, we associate to each probability distribution a(y)

a binary symmetric channel, with p(y|x = 1) = a(y), and (due to symmetry)

p(y|x = −1) = a(−y). A simple calculation shows that if we compute the log-

likelihood distribution of this new channel p(y|x) then it is exactly a(y), and

thus a(y) representes in fact a channel. We can think of this representation as

the canonical representation of a given channel, i.e., two “channels” which might

look very different but lead to the same representation, are for all practical

purposes the “same.”

Let us now define what notion of ordering we are using. Two BMS channels

p(y|x) and q(z|x), are said to be ordered by degradation, written as p(y|x) ≺
q(z|x), if there exists a memoryless symmetric channel r(z|y), s.t. q(z|x) is the

composition of p(y|x) and r(z|y), i.e.,

q(z|x) =
∑
y

r(z|y)p(y|x). (9.3)

As mnemonic. Think of the BEC, then the directon of the sign ≺ is the same as

if we were thinking of the erasure probabilities of the two corresponding BECs.

claim 1 Given two channels AWGN(σ) and AWGN(σ′), we have that ai(y;σ) ≺
ai(y, σ

′) if and only if σ < σ′.

In other words, the family of AWGNCs is ordered by physical degradation.

This is easy to see. In order to convert one AWGNC with noise variance σ2 into

another AWGNC with noise variances (σ′)2, where σ2 < (σ′)2, just add some

extra AWGN to the first channel, independent of the previous noise and with

variance (σ′)2 − σ2.

The fact that we are dealing with a channel which is ordered by physical

degradation gives us now the same properties which we had when we could

claim that f(ε, x) is monotone in the first component. In particular, this property

ensure that a threshold in fact exists. We also need monotonicity in the second

component however. So let us discuss this part as well.

definition 9.2 We say that a(y) ≺ b(y) if the corresponding channels are

ordered by physical degragdation.

claim 2 The ai(y) are monotonically decreasing under degradation, i.e. a1(y) �
a2(y) � . . . � ai(y) � This is similar in the case of BEC, where we had

x1 > x2 > . . . > xi >

Why is this property true? Consider the computation tree. The point is that

9.4 Channel Degradation 101

for each of the two types of operations which are involved in density evolution

the property of degradedness stays preserved. More precisely, if you for example

consider the operaton at a variable node, where the DE operation is the one of

a convolution of the densities then if a ≺ b then ⊗a ≺ ⊗b. The same statement

is true at check nodes, i.e., ⊕a ≺ ⊕b. More generally, if you consider any tree

and the DE process for this tree, i.e., you look at the density at the output

of the root node as a function of the densities at the various variables, this

operation preseves degradation, i.e., whenever you replace any of the densities

at the variables with a degraded/upgraded density then the output at the root

node will be degraded/upgraded with respect to the previous output.

These two properties allow to imitate the proof done over the BEC. They imply

that ai(y) converge weakly towards a∞(y) and that the bit error probability

behaves as indicated on page 2.

Examples

In your homework you will implement DE for the (3, 6)-ensemble and the AWGNC.

You will then be able to compare your prediction to the predictions which

you previously derived by running simulations of the BP algorithm and the

BAWGNC.

If we consider e.g., the BSC, then DE predicts a threshold for the (3, 6)-

ensemble of εBP = 0.084. This means that as long as the channel introduces

fewer than 8.4 percent errors, the BP decoder will with high probability be able

to recover the correct codeword from the received word. Note that for rate one-

half the maximum number of errors which a capacity-achieving code can tolerate

is around 11 percent. So we see that, as for the BEC, the simple (3, 6)-regular

ensemble achieves a good fraction of capacity under BP decoding.

Problems

9.1 Density Evolution via Population Dynamics In class we have seen the den-

sity evolution (DE) for transmission over the BEC. This was relatively easy since

in this case the “densities” are in fact numbers (erasure probabilities). For general

channels, DE is more involved since it really involves the evolution of densities.

These are the densities of messages which you would see at the various iterations

if you implemented the BP message-passing decoder on an infinite ensemble for

a fixed number of iterations.

An quick and dirty way of implementing DE for general channels is by means of

a population dynamics approach. Here is how this works. Assume that transmis-

sion takes place over a given BMS channel and that we are using the (l, r)-regular

Gallager ensemble. Pick a population size N . The larger N the more accurate

will be your result but the slower it will be.

(i) Pick an initial population, call it V0. This set consists of N iid log-likelihoods

associated to the given BMS channel, assuming that the transmitted bit is

1 (we are using spin notation here). More precisely, each sample is created

102 Coding: Density Evolution

in the following way. Sample Y according to p(y | x = 1). Compute the

corresponding log-likelihood value, call it L.

(ii)Starting with ` = 1, where ` denotes the iteration number, compute now the

densities corresponding to the `-th iteration in the following way.

(iii)To compute C` proceed as follows. Create N samples iid in the following way.

For each sample, call it Y , pick r−1 samples from C`−1 with repetitions. Let

these samples be namedX1, . . . , Xr−1. Compute Y = 2 tanh−1(
∏r−1
i=1 tanh(Xi/2)).

Note, these are exactly the message-passing rules at a check node.

(iv)To compute V` proceed as follows. Create N samples iid in the following way.

For each sample, call it Y , pick l − 1 samples from C` with repetitions.

Let these samples be named X1, . . . , Xl−1. Further, pick a sample from

V0, call it C. Compute Y = C +
∑l−1
i=1Xi. Note, these are exactly the

message-passing rules at a variable node.

We think now of each set V` and C` as a sample of the corresponding distribu-

tion. E.g., in order to construct this distribution approximately we might use a

histogram applied to the set. Recall, that we assume here the all-zero codeword

assumption. Hence, in order to see whether this experiments corresponds to a

successful decoding, we need to check whether in V` all samples have positive

sign and magnitude which converges (in `) to infinity.

Implement the population dynamics approach for transmission over the BAWGNC(σ)

channel using the (3, 6)-regular Gallager ensemble. Estimate the threshold using

this method. Plot the threshold on the same plot as the simulation results which

you performed for your last homework. Hopefully this vertical line, indicating

the threshold, is somewhere around where the error probability curves show a

sharp drop-off.

10 Interlude: BP to TAP for
Sherrington-Kirkpatrick Spin Glass
Model

The next two lectures are dedicated to analyzing the performance of compressive

sensing under message-passing. The basic outline of the anlysis is very much the

same as for coding. But of course, each problem has a few wrinkles on its own.

Recall the basic outline for coding. The decoding problem is an inference

problem. The code constraints were encoded in the Tanner graph and the effect

of the channel imposed a prior on the bits. This defined the graphical model.

We then ran BP on this model to perform the marginalization, since marginals

are exactly what the decoder needs to make a decision. If the graph is a tree,

this gives us optimal performance. For “real” applications the graph is not a tree

but large graphs are “locally tree-like.” This allowed us to write down the DE

equations. By studying the behavior of the DE equations as a function of the

iteration number we were able to define thresholds.

Now compare this to compressive sensing. Again, the decoding problem is an

inference problem if we put an appropriate prior on the set of possible “source

sequences.” Therefore, the next natural step is to run BP on this model. Here we

encounter the first difference. Whereas for coding the resulting graphical model

was “locall tree-like” this is not at all the case for compressive sensing. Indeed

the main part of the graphical model corresponding to the measurement matrix

is a complete bipartite (weighted) graph. This is as far as one can get from trees

as possible. One might think that this is the end of the story and that BP simply

will not work very well on such a model. But in fact BP works quite well. This

is true since although we have many loops, every single edge only has a small

influence on the outgoing message since there are n such incoming edges and the

output is just a weighted and normalized sum of the inputs.

So as we will see not only does BP work very well, but the denseness of

the graph leads to significant simplifications for the analysis. In a nutshell, be-

cause the outgoing message depends on so many incoming messages, and those

messages are to a large degree independent, the outgoing message can be well

approximated by a Gaussian and so all we have to determine is the mean and

the variance. Several other important simplifications will follow from this picture.

This is somewhat reminiscent of how we could simplify the message-passing rules

for the binary case by looking at ratios, except that now we are dealing with an

approximation which becomes exact as the graph tends to infinity rather than a

simplification which is exact per se.

104 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model

The computations which are necessary to make this simplifications are more

complicated though. Therefore, rather than starting right away with compressive

sensing, let us look back at a simpler model, namely the Sherrington-Kirkpatrick

spin glass model. We will first show how to do the computations in this case.

Once the principle is absorbed, the rest involves similar but somewhat more

complicated computations. Although we will write down these computations in

detail we might not present them in class line by line. This is best left for a rainy

Sunday afternoon when you are bored.

10.1 General Spin Systems with Pairwise Interactions

Recall the general setup of Chapter 5. Consider a graph G on n vertices with

vertex set V and edge set E. Denote variables by i, 1 ≤ i ≤ n, and edges by

(i, j). Let the associated Hamiltonian be

Hn(s) = −
∑

(i,j)∈E

Jijsisj −
∑
i∈V

hisi,

where Jij are the so-called coupling constants associated to each edge (i, j) ∈
E, and the hi is a site dependent external magnetic field. Associated to this

Hamiltonian we have our usual Gibbs distribution

µ(s) =
e−βHn(s)

Zn
=

1

Zn

∏
(i,j)∈E

eβJijsisj
∏
i∈V

eβhisi , (10.1)

with Zn =
∑
s e
−βHn(s).

To get the Curie-Weiss model of Chapter 5, take G to be the complete graph

with Jij normalized and uniform according to Jij = J/n, where J > 0 is a

constant. It turns out that many results are universal and do not depend on the

precise distribution of the coupling constants. In the simplest version of the CW

model one has a constant external magnetic field hi = h.

To get the Sherrington-Kirkpatrick model, choose G also to be the complete

graph and Jij = J̃ij/
√
n, and where the J̃ij are chosen iid with distribution

N (0, 1). Another popular version of the model takes J̃ij = ±1 iid Bernoulli(1/2).

For the simplest version of the SK model one takes hi = h constant.

Finally, to get the standard Ising model take G = Zd ∩ B, where d is the

dimension, and B is a box of some finite side-length. Here the edges (i, j) ∈ E
of the graph consist of all nearest neighbord pairs, |i − j| = 1. Further, pick

Jij = J > 0 for (i, j) ∈ E.

Note that in each of these three problems the normalizations of the constants

are different and are chosen in such a way that the free energy has a non-trivial

thermodynamic limit.

10.2 BP Equations for General Spin Systems 105

10.2 BP Equations for General Spin Systems

Let us now write the BP equations for these models. In the following it will

be convenient to represent the model in a slightly different way. For every edge

(i, j) ∈ E, place a “factor” node on this edge which represents the interaction

constant. In this way we get a bipartite graph where every factor node has degree

two. Let us denote variables (the vertices of the original graph) by indices like i

or j and factor nodes by symbols like a or b.

Let us apply the formalism of 7. Clearly, the Gibbs distribution (10.1) has a

factorized form with two types of kernel functions handy

fi(si) = eβhisi , and fa(si, sj) = eβJijsisj ,

where a ≡ (i, j). Further, we let µ̂a→i(si) denote the message which flows from

the factor node a to the variable i. It is a function of the spin si at position i. In a

similar manner, µi→a(si) is the message flowing from variable i to factor node a.

These messages satisfy the usual BP equations of Chapter 7. Since the messages

depend on binary variables si = ±1 we can use the same type of parametrization

used for coding in Chapter 8. Let

ĥa→i =
1

2β
ln

{
µ̂a→i(+1)

µ̂a→i(−1)

}
, (10.2)

hi→a =
1

2β
ln

{
µi→a(+1)

µi→a(−1)

}
. (10.3)

Up to the factor 2β these are the usual log-likelihood variables associated to the

messages.1

Let us apply our standard message-passing rules to this case. We get

hj→a = hj +
∑

b∈∂j\a

ĥb→j ,

ĥb→j =
1

β
atanh{tanh(βJij) tanh(βhi→b)}.

These equations are very similar to the ones we discussed in the context of coding

theory. The difference to coding is that β is not always equal to 1 and also that

there is an extra term tanh(βJij). Note though that this term tends to 1 if Jij
tends to infinity. In this limit the constraints become degree two parity check

constraints.

The BP-marginal, call it ν̂BP
i (si), at vertex i is determined from its log-

1 It is not difficult to see that (10.2) are equivalent to

µ̂a→i(si) =
eβĥa→isi

2 cosh(βĥa→i)
, µi→a(si) =

eβhi→asi

2 cosh(βhi→a)
.

where the messages have been normalized. These formulas allow to interpret the

log-likelihoods as effective magnetic fields.

106 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model

likelihood variable

ηi = hi +
∑
a∈∂i

ĥa→i. (10.4)

Explicitly, the normalized marginal is

ν̂BP

i (si) =
eβηisi

2 cosh(βηi)
.

The BP estimate for the magnetization, i.e. the average corresponding to the

BP-marginal, is hence equal to

mBP

i =
∑

si∈{±1}

siν
BP

i (si) = tanh(βηi).

We will call mBP
i the BP-magnetization to distinguish it from the equilibrium

(true) magnetization mi = 〈si〉.
At this point it is useful to give a physical interpretation of this formula. A

single spin s in the presence of a magnetic field h has a Hamiltonian −hs and

thus a magnetization tanh(βh) (if you have never checked this do it immediately

!). Therefore one interprets ηi as an effective magnetic field felt by spin si. This

is often called the “local field”. The local field is the total sum of the external

field hi and “cavity fields” ĥa→i. The later are called cavity fields because their

sum represents the field in a cavity left out by the removal of vertex i from the

graph.

10.3 BP Algorithm

Since we will apply the BP algorithm to graphs which are not trees (in fact in the

SK model the graph is complete) it is important that we specify the schedule.

We will opt for a flooding schedule. We initialize the iterations with

h0
j→a = hj ,

ĥ0
a→j = atanh

{
tanh(βJij) tanh(βh0

i→a)
}
,

for all j ∈ V, a ∈ C. Then at each iteration perform the following operations,

htj→a = hj +
∑

b∈∂j\a

ĥt−1
b→j ,

ĥtb→j =
1

β
atanh

{
tanh(βJi,j) tanh(βhti→b)

}
.

At step t the current BP estimate of the magnetization is

mt
i = tanh

{
β(hi +

∑
a∈∂i

ĥta→i)
}
.

Since every check has degree exactly two, it is more convenient to write the

10.4 From the BP Algorithm to the CW and the TAP Equations 107

whole process in terms of a single step rather than breaking it up into two. Let

therefore ĥi→j = ĥa→j when a ≡ (i, j). We then get

ĥ0
i→j =

1

β
atanh

{
(tanh(βJij) tanh(βhi)

}
, (10.5)

ĥti→j =
1

β
atanh

{
(tanh(βJij) tanh(β(hi +

∑
k∈∂i\j

ĥt−1
k→i))

}
. (10.6)

As before,

mt
i = tanh(βηi) = tanh

{
β(hi +

∑
j∈∂i

ĥtj→i)
}
. (10.7)

Note that in general we have Θ(n2) messages we need to update in each iter-

ation. So even a single iteration has quadratic complexity. But for the CW and

the SK model one can further simplify the message-passing equations and bring

the complexity down to Θ(n).

10.4 From the BP Algorithm to the CW and the TAP Equations

Both in the CW as well as in the SK model the coupling constants are weak.

Indeed, recall that in the CW model we have Jij = J/n and that in the SK

model we have Jij = J̃ij/
√
n. So let us assume in general that the coupling con-

stants Jij are small when n → +∞, and perform an expansion of the message

passing equations. We start with the general case, but at the end we will spe-

cialize to the CW and the SK model. In the case of the CW model the simplified

message-passing equations are the usual CW equations. More interestingly, for

the SK model the simplified message-passing equations are what is called the

Thouless-Anderson-Palmer (TAP) equations. As we will see these message pass-

ing equations have a complexity of Θ(n) at each iteration. Thus they provide a

linear complexity algorithm to compute the BP-magnetization mBP
i .

Consider the BP iteration (10.5) at step t. Using (10.4) we can rewrite it as

ĥti→j =
1

β
atanh

{
tanh(βJij) tanh(βηt−1

i − βĥt−1
j→i)

}
.

Now, since Jij is small2 we linearize both tanh(βJij) ∼ βJij and the inverse

hyperbolic tangent. This yields

ĥti→j = Jij tanh(βηt−1
i − βĥt−1

j→i) +O(β2J3). (10.8)

Here we abuse notation by writing O(β2J3) instead of O(β2J3
ij); this is justified

because all the coupling constants are of the same order of magnitude. Equation

(10.8) shows that each cavity field is O(J). On the other hand ηt−1
i is the sum of

2 Of order 1/n or 1/
√
n.

108 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model

hi and n− 1 such cavity fields. Therefore ĥt−1
j→i is much smaller than ηt−1

i , so we

further expand the hyperbolic tangent in (10.8) to first order in the cavity field,

ĥti→j = Jij tanh(βηt−1
i)− βJijht−1

j→i(1− tanh2(βηt−1
i)) +O(β2J3).

Recalling the expression (10.7) of the BP-magnetization, we can rewrite this

formulas as

ĥti→j = Jijm
t−1
i − βJij ĥt−1

j→i
(
1− (mt−1

i)2
)

+O(β2J3) (10.9)

Now we seek an expression for ĥt−1
j→i on the right hand side of this equation, in

terms of the BP-magnetization. We note that if we interchange the roles of i and

j (note that Jij = Jji) and use ĥt−1
j→i = O(J), we get

ĥtj→i = Jijm
t−1
j +O(βJ2). (10.10)

Replacing (10.10) in (10.9) we obtain

ĥti→j = Jijm
t−1
i − βJ2

ijm
t−1
j

(
1− (mt−1

i)2
)

+O(β2J3). (10.11)

Finally, by replacing this expression in the formula (10.7) for mt
j we arrive at

mt
j = tanh

{
β

(
hj +

∑
i∈∂j

Jijm
t−1
i − βmt−1

j

∑
i∈∂j

J2
ij

(
1− (mt−1

i)2
))}

+O(β3J3).

(10.12)

We have arrived at an approximation of the original BP iterations. The big

advantage is that with (10.12) the complexity of each step is Θ(n), instead of

Θ(n2) for the BP steps. This comes at a price however. The error terms O(β3J3)

will accumulate as one iterates, and it is not obvious that they can be neglected.

Some thought shows that after t iterations the accumulated error for the BP-

magnetization is tO(β3J3). For the CW and SK models O(β3J3) is O(n−3) and

O(n−3/2), so the error term can be neglected in the regime n� t. Note that for

the standard Ising model on the square grid neglecting this term is not justified.

Indeed even if β3J3 can be considered small, say at high temperatures, tβ3J3

will get large for t ≈ (βJ)−1.

CW model

We assume that the error term in (10.12) can be neglected (i.e. we look at the

regime n� t) and discuss the order of magnitude of the terms contributing to the

argument of the hyperbolic tangent. For the CW model Jij = J/n and hj = h,

so all vertices are equivalent. It is therefore reasonable to seek homogeneous

solutions of (10.12) i.e., mt
j = mt. We observe∑

i∈∂j

Jijm
t−1
i =

J

n
(n− 1)mt−1 = Jmt−1 +O(

1

n
)

10.4 From the BP Algorithm to the CW and the TAP Equations 109

and ∑
i∈∂j

J2
ij(1− (mt−1

i)2) =
J2

n2
(n− 1)(1− (mt−1)2) = O(

1

n
).

Thus, in thermodynamic limit n→ +∞ and for fixed t, (10.12) becomes

mt = tanh
{
β(h+ Jmt−1)

}
. (10.13)

This is a simple but remarkable result. For the CW model the BP algorithm

reduces to (10.13) which is the iterative form of the CW equation (5.24) derived

in Chapter 5. This is perhaps a surprizing result. Indeed, the CW equation

(5.24) is an equation for the equilibrium magnetization 1
n

∑n
i=1〈si〉, and does

not a priori have an “algorithmic meaning”. In addition the computations of

Chapter 5 are not of algorithmic nature.

Let us summarize what we have learned. We can calculate equilibrium quan-

tities such as the magnetization (and the free energy) from the BP algorithm.

Conversely we can guess an iterative algorithm by solving for the equilibrium

quantities. This is our first encounter with the “BP-MAP connection” we have

alluded to previously in this course. It is a remarkable fact that this connection

is valid for a host of more complicated models among which, the SK model,

our coding, compressive sensing and random satisfiability models are the main

paradigms. In all these cases both the analysis of message passing algorithms

and the direct computation of equilibrium quantities are more difficult.3 We will

have to develop various powerful tools and discuss new concepts in the third part

of the course to fully uncover the connection.

SK model and TAP equation

Here again the starting point is (10.12) with the error term neglected. We will

argue that for the SK model all terms in the argument of the hyperbolic tangent

must be retained. Recall that Jij = J̃ij/
√
n with J̃ij i.i.d Gaussian of zero mean

and unit variance or J̃ij = ±1 iid Bernoulli(1/2). Moreover one usually takes

hi = h.

Of course mt−1
j depends on the realization of the coupling constants so that

J̃ij and mt−1
j are not independent. In a first stage however we will pretend that

they are independent and see how far this leads us. It turns out that although

this assumption is far from true, some of the conclusions are valid. A rigorous

discussion would consist in a course in itself. In Section 10.5 we come back to a

few subtle but important issues.

Assuming independence of J̃ij and mt−1
j∑

i∈∂j

Jijm
t−1
j =

1√
n

∑
i∈∂j

J̃ijm
t−1
j (10.14)

3 The meaning of “more difficult” has to be tuned according to the problem at hand.

Random satisfiability and SK being the most difficult representatives which lead to further

surprizes.

110 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model

behaves as a Gaussian variable with zero mean and variance

qt−1 ≡ 1

n

n∑
i=1

(mt−1
i)2 (10.15)

of order one. The quantity qt−1 is called the Edwards-Anderson parameter4. One

expects that the sum in (10.15) concentrates on its mean.

Now consider the term

∑
i∈∂j

J2
ij

(
1− (mt−1

i)2
)
≈ 1

n

n∑
i 6=j

J̃2
ij

(
1− (mt−1

i)2
)

(10.16)

Here also, we naively expect that this term concentrates on its mean, and that

this mean is of order one. When J̃ij = ±1 are Bernoulli(1/2) (10.16) reduces to

∑
i∈∂j

J2
ij

(
1− (mt−1

i)2
)
≈ 1− 1

n

n∑
i=1, 6=j

(mt−1
i)2 ≈ 1− qt−1 (10.17)

The Edwards-Anderson parameter appears once more.

These naive arguments strongly suggest that both terms (10.14) and (10.16)

should be considered of the same order of magnitude and retained. So, apart

from neglecting the term O(β3J3) equation (10.12) cannot be simplified further.

As pointed out above, this discussion is much too naive. First, it is never true

that (10.14) behaves as a Gaussian. Second, the Edwards-Anderson parameter

(10.15) concentrates on its mean only in a limited portion of the (h, β) plane.

We call this region of the parameter plane the “high temperature phase”. This

portion corresponds to “high temperatures” and is depicted on figure ??. It is

separated from a low temperature region by a known phase transition line com-

monly called the Almeida-Thouless line. Third, in the high temperature phase

the whole term in the argument of the hyperbolic tangent in (10.12) behaves as

a Gaussian with variance (10.15). This last fact is remarkable and we come back

to it in section 10.5. It is not true in the low temperature phase. In particular,

in this phase the Edwards-Anderson parameter does not concentrate.

What is the conclusion of this convoluted discussion? It is that one certainly

has to retain the whole argument of the hyperbolic tangent in (10.12). The

message passing algorithm now involves Θ(n) iterations at each step instead of

Θ(n2). These iterations are

mt
j = tanh

{
β

(
hj +

1√
n

∑
i∈∂j

Jijm
t−1
i − β

n
mt−1
j

∑
i∈∂j

J̃2
ij(1− (mt−1

i)2)

)}
(10.18)

4 Note that here we really have the BP estimate of the Edwards-Anderson parameter. The

original Edwards-Anderson parameter is defined through the equilibrium magnetization
mi = 〈si〉.

10.5 Density evolution for TAP equations 111

A popular version of these equations valid for Bernoulli J̃ij is

mt
j = tanh

{
β

(
hj +

1√
n

∑
i6=j

Jijm
t−1
i − βmt−1

j (1− qt−1)

)}

qt−1 =
1

n

n∑
i=1

(mt−1
i)2

Equation (10.12) is an iterative form of the so-called TAP equations. The

original TAP equations concern the equilibrium magnetization and have the

same form with mi = 〈si〉 in place of mt
j . They are similar to the CW equation

except for the extra term

−β
n
mt−1
j

∑
i∈∂j

J̃2
ij(1− (mt−1

i)2), or − βm(t−1
j (1− qt−1).

called the Onsager reaction term. The usual statistical mechanics derivations the

TAP equations and of the Onsager term are not rigorous, but proceed by various

methods such as heuristic mean field arguments or high temperature expansions.

We will not explicitly show these derivations here.5

We contemplate here a second instance of the ”BP-MAP connection”. Remark-

ably, both the simplified BP algorithm and the statistical mechanics derivation

lead to the same fixed point equation. So message passing allows to guess the

statistical mechanical solution of the model, and the statistical mechanical solu-

tion allows to guess a low complexity algorithmic scheme. But the situation is

more complicated and more interesting than for the Curie-Weiss model. Indeed,

firstly it is not clear that the arguments used in the discussion of terms (10.14)

and (10.16) are valid. Secondly the mean field calculations are heuristic and the

high temperature expansions are not rigorous. There is a good reason for this

state of affairs. The replica and cavity methods6 of statistical mechanics both

predict that the conclusions - namely the TAP equations and their consequences

- are valid only in the high temperature phase.

10.5 Density evolution for TAP equations

The goal of density evolution is to write down an iterative equation that tracks

the evolution of the probability density of the “state” of the system. We review

basic results for the SK model that are valid in the high temperature phase where

the TAP equations themselves are valid. A rigorous justification is beyond the

scope of this chapter. But in the homeworks we propose a numerical justification.

We take the Bernoulli model for which the discussion is slightly simpler. The

5 Although the mean field derivation can be done on the “back of an envelope”.
6 The replica method is a strange and powerful algebraic method invented by G. Parisi. Its

predictions agree with the those of the cavity method which has probabilistic flavor and
has been made rigorous for the SK model in the last decade.

112 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model

results are independent of the precise distribution of J̃ij for a wide class of

distibutions. Recall expression (10.7) for the BP-magnetization,

mt
i = tanh

{
β(h+

∑
j 6=i

ĥtj→i)
}

The TAP approximation consists in replacing the exact cavity field ĥti→j by (see

equ. (10.11))

ĥti→j ≈
1√
n

{
J̃ijm

t−1
i − β√

n
mt−1
j (1− (mt−1

i)2)

}
The main assumption of density evolution here is that these cavity fields are

sufficiently weakly correlated so that the sum∑
j 6=i

ĥti→j (10.19)

is a Gaussian r.v with zero mean and variance

E
[(
J̃ijm

t−1
i − β√

n
m̂t−1
j (1− (mt−1

i)2)

)2]
≈ E

[
(mt−1

i)2

]
+O(n−1/2)

The assumption of weak correlation of the cavity fields is non-trivial, and amounts

to say that the Onsager reaction term corrects for the non-Gaussian nature of

the pure Curie-Weiss contribution

1√
n

∑
j 6=i

J̃ijm
t−1
i .

When the Onsager reaction term is included the local fiel becomes Gaussian.7 It

is the goal of the homework to check this assumption numerically. Let us discuss

one heuristic argument to gain some further intuition. Consider the SK model

on a random regular graph of vertex degree d. This is a sparse graph so it is

quite natural to consider the BP algorithm in exactly the same way as we did in

chapter 8. For a fixed number of iterations t and n large enough the neiborhood

of a vertex is a tree with probability 1 − O(dl/n), so that the messages ĥti→j
are independent. Now consider the limit d → +∞. In this limit the meaningful

scaling is Jij = J̃ij/
√
d. Of course it is not necessarily legitimate to interchange

the limits d → +∞ and n → +∞ but, assuming this is possible then the sum

(10.19) behaves as a Gaussian.

Let us now set

mt = E[(mt
i)

2], qt = E[(mt
i)

2]

7 Rigorous proof of this statement appears in recent works of E. Bolthausen (2009) and S.

Chaterjee (2010).

10.6 Notes 113

Averaging the TAP equation (10.18) we get

mt =

∫ +∞

−∞
dz
e−

z2

2

√
2π

tanh
{
β(h+ z

√
qt−1)

}
(10.20)

Squaring and then averaging the TAP equation (10.18) we get

qt =

∫ +∞

−∞
dz
e−

z2

2

√
2π

tanh2
{
β(h+ z

√
qt−1)

}
. (10.21)

These density evolution equations allow to compute the average magnetization

and Edwards-Anderson parameter.

The statistical mechanics solution of the SK model (i.e. the calculation of

the free energy, magnetization, etc) proceeds by the replica method (a purely

algebraic method) or by the cavity method (which has probabilistic flavor). Quite

remarkably there is an exactly known high-temperature region depicted on figure

?? where they both predict that the average magnetization E[〈si〉] and Edwards-

Anderson parameter E[〈si〉2] satisfy the fixed-point form of the density evolution

equations (10.20), (10.21). In the low temperature region the theory is much more

subtle: let us just mention here that the Edwards-Anderson parameter does not

concentrate on its mean but has a non-trivial distribution.

10.6 Notes

In 1936 Onsager was concerned with the dielectric properties of molecular liq-

uids where the so-called ”Onsager reaction terms” are important and correct

the earlier 1912 theory of Debye. The term “cavity field” was also coined by

him. Bethe had similiar insights for magnetism. In 1977 Thouless, Anderson and

Palmer (TAP) where the first to point out the importance of the Onsager term

in random spin systems. The TAP paper includes a non-algorithmic derivation

of the Onsager term through a diagrammatic expansion in the high temperature

regime. The SK model has played a very important role in the development of

methods and concepts of spin glass theory. These were developed through the

70’s and 80’s by many physicists and it remained an open mathematical problem

for more than 25 years to prove their validity. This was accomplished a decade

ago in break through works of Guerra and Talagrand.

Problems

10.1 Distribution of cavity fields in the TAP theory. The goal of this exercise is

to numerically justify some of the heuristic arguments of this chapter. When we

discuss state evolution for compressive sensing we will encounter similar argu-

ments and hopefully these will seem familiar. Consider the SK model with i.i.d

Bernoulli(1/2) coupling constants J̃ij = ±1 or J̃ij Gaussian with zero mean and

114 Interlude: BP to TAP for Sherrington-Kirkpatrick Spin Glass Model

unit variance. The TAP approximation to the BP equations reads

mt
j = tanh

{
β(h+

∑
i 6=j

ĥti→j)
}

where the update of the cavity fields is

ĥti→j =
1√
n
J̃ijm

t−1
i − β

n
mt−1
j (1− (mt−1

i)2)

and the initialization ĥ
(0)
i→j = 0.

Take a number N = 50 of realizations (coupling constants) of the system

of size n = 500 or 1000 and an iteration number say t = 10. Try values of

(h, T = β−1) in the high temperature regime. The following should be suitable

(h = 0.5, T = 1.2) and (h = 1, T = 0.8).

(i) Plot the histogram of the total cavity field

ĥtcav =
∑
i 6=j

ĥti→j .

This field is equal to a ”Curie-Weiss” field to which the ”Onsager reaction

term” is subtracted. Plot the histogram of the total Curie-Weiss contribu-

tion

htCW =
∑
i 6=j

1√
n
J̃ijm

t−1
i .

(ii)Check that the Edwards-Anderson parameter

qt =
1

n

n∑
i=1

(mt
i)

2.

is concentrated on its empirical mean over the N realizations.

(iii)Compare both histograms with the Gaussian distribution of zero mean and

variance equal to the Edwards-Anderson parameter. You should observe

that the histogram of the cavity field agrees with this Gaussian.

11 The Conditionning Technique

Bolthauzen’s conditionning technique is a method to analyze TAP recursion.

Gives analog of DE for TAP equations.

Is the basic tool used to derive state evolution from AMP.

11.1 A toy problem and a basic lemma

11.2 First iteration in TAP

11.3 Main theorem and proof ideas

12 Compressive Sensing: Approximate
Message Passing

Let us now look at compressive sensing. Recall from Chapter 4 that a meaningful

estimator for the compressive sensing problem is the Lasso estimator, given by

x̂(y, λ) = argminx

{1

2
‖y −Ax‖22 + λ‖x‖1

}
. (12.1)

We derived this estimator by asking for the estimator which minimizes the mean-

squared error in the case where the prior on the components of the signal have

a Laplacian distribution (in a small noise limit). But there are also several other

“derivations” which end up with this formulation.

We now take a slightly different point of view. We start with the assump-

tion that we want to implement the Lasso estimator. Our previous derivations,

showing that the Lasso estimator is optimal under some conditions, serves as

motivation for this point of view. But the real “justification” for using this es-

timator will only be given in hindsight. We will see that this estimator works

well in a fairly general setting. Indeed, together with the right structure for the

measuring matrix we can in some cases even get optimal performance in terms

of its asymptotic (in the size) behavior if we look at the required number of

measurements compared to the sparsity of the signal.

It is a long road until we can derive at this conclusion. So for now we will

not worry about this. We simply want to implement the Lasso estimator in an

efficient manner. The basic idea is straightforward. We first set up a factor graph

corresponding to (12.1). Given the factor graph we can mechanically write down

the message-passing rules following the general framework about factor graphs

set out in Chapter 7, no thinking required. Since the Lasso estimator asks for the

best global constellation x rather than the best component xi for each position,

our starting point is the min-sum algorithm. This is to some degree a matter of

convenience and alternative derivations of the AMP algorithm exist which start

with the BP algorithm. Quite surprisingly (the graph is dense and not at all

sparse) this works!

In principle this only takes a few lines and we could stop at this point. But

there are a few issues. First, there is the issue of complexity. We will see that for

the straightforward message-passing algorithm the number of messages which

need to be sent in each iteration is quadratic in the graph size. This is true

since the graph is dense. The second problem is that the messages are functions

and not numbers as was the case for coding. This increases the complexity even

12.1 Lasso Estimator 117

further. So for the rest of the chapter we will see how we can approximate the

original message-passing algorithm to (i) first simplify the messages to numbers,

and (ii) bring down the number of messages which need to be exchanged in each

iteration to a linear number. These calculations are in principle straightforward

but they are long. We will see that in order to achieve the second point we

can proceed in a fashion very similar to what we did for the SK model where

we ended up with the so-called Onsager reaction term. The final algorithm we

derive is called AMP, where AMP stand for approximate message-passing.

If the simplifications of the message-passing algorithm only had a practical

motivation, one could ignore it for the purpose of these lecture. For small exam-

ples we could just implement the min-sum algorithm itself and the rest might

just be considered engineering. But there is a second, perhaps even more impor-

tant reason for doing these simplifications. As we will see in the next chapter,

for the AMP algorithm we in fact can write down the analysis. This would be

out of the question for the original mn-sum algorithm. Finally, even though the

AMP algorithm is an approximation, it works very. So we will have derived a

relatively simple algorithm which works well and which can be analyzed. All this

is well worth the effort!

So without further ado, let us get started.

12.1 Lasso Estimator

From the point of view of statistical physics (12.1) is equivalent to minimizing

the Hamiltonian (or cost function)

H(x|y,A) =
1

2
‖y −Ax‖22 + λ‖x‖1.

We explained in Chapter 4 that this cost function can be interpreted as a spin-

glass Hamiltonian.

Recall that the matrix A and the observation y are random, but once we have

a realization they are considered fixed. In statistical physics jargon a random

variable which is fixed and which we do not average over is called a quenched

(or frozen) random variable. The degrees of freedom reside in the components

xi. These components are called “continuous spins” since xi ∈ R rather than the

usual si ∈ {±1};
Recall that the underlying factor graph is the complete bipartite graph with

m factor nodes and n variable nodes. It is therefore hopefully clear that this

model is, at least superficially, similar to the SK model. Therefore, it should not

come as a surprise that the methodology which we follow for the analysis is also

similar.

Note that in the formulation above we are looking for the most likely con-

stellation x. As we pointed out already above, this means that according to the

factor graph framework we use the min-sum algorithm (which minimizes the

118 Compressive Sensing: Approximate Message Passing

whole constellation instead of each position). We have seen in Chapter 7, that

equivalently we could use the sum-product algorithm applied to the Gibbs dis-

tribution exp(−βH(x|y,A)), and then let β tend to plus infinity. In this “zero

temperature” regime, the Gibbs measure is dominated by the minimum energy

configurations. But we opt to stick with the min-sum algorithm.

Running min-sum on a complete bi-partite graph with a bi-partition of size

n and m respectively, requires Θ(mn) operations at each iteration, i.e., it is

quadratic in the graph size and not linear. For large instances this complexity is

prohibitive. We will now show that we can get away with linear complexity. To

be sure, the algorithm which we now develop is no longer exact, but it is a good

approximation. Further, recall that we are not operating on a tree and so even a

full fledged BP is not necessarily optimal. There is therefore no reason to insist

on an exact implementation of the BP algorithm.

How can we derive such an approximation? The idea is write down the min-

sum equations and then to exploit the fact that Aai ∼ N (0, 1
m), so that each

entry is O(1/
√
m). This leads to significant simplifications. Note that these

simplifications will appear even more clearly with the Bernoulli(1/2) ensemble

Aai ∈ {+ 1√
m
,− 1√

m
}.

This situation is analogous to that of the SK model. We have seen in the

previous chapter that for the SK model we can go from the BP equations to the

TAP equations by exploiting the fact that the interaction coefficients are small,

explicitly by exploiting that Jij ∼ N (0, 1
n) or Jij ∼ Ber(1/2) in {+ 1√

n
,− 1√

n
}.

However, the calculations for the present case are more complicated and some

insight can be gained by first looking at a toy problem. This is the subject of

the next section.

12.2 Lasso for the Scalar Case

Let y = x+ z, where z ∼ N (0, σ2). We asssume that the scalar x is “sparse” in

the sense that there is a mass of weight 1 − ε at x = 0 and a mass of weight ε

distributed for x 6= 0. We take the Lasso estimator

x̂(y, λ) = argminx

{1

2
(y − x)2 + λ|x|

}
.

This corresponds to the Hamiltonian

H(x|y) =
1

2
(y − x)2 + λ|x|.

Let us check where this Hamiltonian takes on its minimum. For x > 0 we

have H′(x) = −(y − x) + λ. Setting this derivative to 0 we get the solution

x̂ = y − λ, which is valid if y > λ. On the other hand for x < 0 we have

H′(x) = −(y−x)−λ. Setting this derivative to 0 we get the condition x̂ = y+λ,

which is valid if y < −λ. For the remaining case −λ < y < λ one checks that

12.3 Min-Sum Equations 119

1
2y

2 ≤ 1
2 (y − x)2 + λ|x| which means that x̂ = 0. Let us summarize. We get the

estimator

x̂(y, λ) =

y − λ, if y > λ,

0, if −λ < y < λ,

y + λ, if y < −λ.

This is called the “soft thresholding estimator.” Let us express it in terms of the

“soft thresholding function” η(y;λ), where the graph corresponding to η(y;λ) is

shown in Figure 12.1.

−λ
λ

y − λ

y + λ

y

Figure 12.1 Graph of the soft-threshold function η(y;λ).

In the above estimator we need to choose the threshold λ (specifically if the

distribution of x is not known). How shall we choose this value? One possible

criterion is to solve the following minimax problem: “Choose the best λ for the

worst prior p0(x).” More formally, define

min
λ

max
p0(x)∈Fε

E[|x̂(y, λ)− x|2].

Writing it explicitly we get

min
λ

max
p0(x)∈Fε

∫
dxdy p0(x)

1√
2πσ2

e−
1

2σ2
(y−x)2(η(y, λ)− x)2. (12.2)

Here p0(·) ∈ Fε, where Fε is the set of distributions of the form (1−ε)δ(x)+φ0(x),

where φ0(x) is non-negative continuous and has total mass ε.

It is natural to set λ = ασ and to determine α instead of λ (mathematically

this is of course equivalent, but the interpretation is that it is natural to choose

the threshold on the scale of the noise). The minimax problem (12.2) can be

solved exactly. The discussion of its solution is best left to the next chapter.

12.3 Min-Sum Equations

Let us now get back to our main problem. Recall that we want to minimize

H(x|y,A) =

m∑
a=1

1

2
(ya − (Ax)a)2 + λ

n∑
i=1

|xi|.

120 Compressive Sensing: Approximate Message Passing

We set up a complete bipartite graph with variable nodes i and two types of

check nodes corresponding to the factors

1

2
(ya − (Ax)a)2, and λ|xi|.

There are two type of messages flowing from check to variable nodes and from

variable to check nodes, call them Êa→i(xi) and Ei→a(xi). By a straightforward

application of the min-sum message passing rules we get the following equations:E
t+1
i→a(xi) = λ|xi|+

∑
b∈∂i\a Ê

t
b→i(xi),

Êt+1
a→i(xi) = minx\xi

{
1
2 (ya − (Ax)a)2 +

∑
j∈∂a\iE

t+1
j→a(xj)

}
.

(12.3)

In addition we have the initialization{
E0
i→a(xi) = λ|xi|,

Ê0
a→i(xi) = minx\xi{ 1

2 (ya − (Ax)a)2 +
∑
j∈∂a\i λ|xj |}.

The estimate at time t, call it x̂ti(λ), is computed from

x̂ti(λ) = argminxiE
t
i (xi),

where

Eti (xi) = λ|xi|+
∑
b∈∂i

Êtb→i(xi).

Recall that in chapter 7 we discussed the BP equations for compressive sensing.

As explained there, the min-sum equations (12.3) can be obtained by taking the

β → +∞ limit of BP equations. Alternatively one can derive them by a direct

application of the distributive law to the min and + operations (see problems in

chapter 7.

12.4 Quadratic Approximation

In coding with binary inputs we saw that we could parameterize messages by

numbers (the log-likelihood values). In the present case this is a-priori not the

case. However, we will now introduce an approximation which admits such a

convenient reparameterization. The approximation is called the “quadratic ap-

proximation” and it is not yet the AMP algorithm.

The following is a fairly long calculation and somewhat mechanical and tech-

nical. In a first reading we recommend that you just look at formulas (12.4) and

(12.6) that define the parametrization, and then skip forward directly to the

summary of the result in Section 12.4.

12.4 Quadratic Approximation 121

Parametrization of messages by real numbers

The crucial observation is that

(Ax)a =

n∑
j=1

Aajxj ,

so that in the message passing expression (12.3) for Êt−1
a→i(xi) the xi dependence

enters as Aaixi and it enters only in the first term. Now Aaixi ∼ 1√
m

. This means

this term is small as m tends to infinity. We can therefore consider the Taylor

expansion of Êt+1
a→i(xi) and only keep the low-order powers of Aaixi.

Êt+1
a→i(xi) = Êt+1

a→i(0)− αt+1
a→i(Aaixi) +

1

2
βt+1
a→i(Aaixi)

2 +O((Aaixi)
3), (12.4)

where the messages αt+1
a→i and βt+1

a→i are real numbers that we will determine

later. Equation (12.4) constitutes the parametrization for Êt+1
a→i(xi). Replacing

this quadratic approximation in the message passing equation (12.3) for Et+1
i→a(xi)

we get

Et+1
i→a(xi) ≈ Et+1

i→a(0) + λ|xi| − xi
∑
b∈∂i\a

Abiα
t
b→i +

x2
i

2

∑
b∈∂i\a

A2
biβ

t
b→i

= Et+1
i→a(0)− λ(at1)2

2at2
+

λ

at2

{
at2|xi|+

1

2
(xi − at1)2

}
(12.5)

where

at1 =

∑
b∈∂i\aAbiα

t
b→i∑

bı∂i\aA
2
biβ

t
b→i

, at2 =
λ∑

b∈∂i\aA
2
biβ

t
b→i

.

Expression (12.5) has been obtained by completing the square. When the right

hand side of (12.5) is expanded around its minimum one finds (up to an irrelevant

constant)

Et+1
i→a(xi) = Const +

1

2γt+1
i→a

(xi − xt+1
i→a)2 +O((xi − xi→a)3) (12.6)

where

xt+1
i→a = η(at1; at2), γt+1

i→a =
at2
λ
η′(at1; at2) (12.7)

Equation (12.6) constitutes the parametrization for Et+1
i→a(xi). In these formulas

η(y;λ) is the same soft thresholding function that was used in the scalar case. The

expansion would be exact and the cubic remainder absent for λ = 0 in which case

η(y; 0) = y. For λ 6= 0 the absolute value is not differentiable at the origin so the

derivation involves a few technical subtleties that are worth discussing.1 Why can

one hope that it is a good approximation to expand Et+1
i→a(xi) near its minimum?

One way to understand this is to recall the connection between min-sum and BP.

1 The rigorous derivation uses a regularization procedure which amounts to work with the

BP finite temperature equations, and then take the limit β → +∞.

122 Compressive Sensing: Approximate Message Passing

For β → +∞ the BP messages are proportional to e−βE
t+1
i→a(xi), a weight that is

dominated by xi close to the minimum of the exponent. Once this is accepted, it

remains to find this minimum and write down the Taylor expansion around it.

From the scalar Lasso problem we learn that the minimum of (12.5) over xi is

attained at xti→a = η(at1; at2). The expansion is best performed by first assuming

that xti→a > 0, i.e. xti→a = η(at1; at2) = at1 − at2. In this case we can set |xi| = xi
and the first derivative of (12.5) is λ

at2
(at2 +(xi−at1)) which vanishes at xti→a. The

second derivative is equal to λ/at2 = λ/(at2η
′(at1; at2)) = 1/γti→a. Therefore (12.6)

holds when xti→a > 0. The reader can work out the case xti→a < 0 is a similar way.

Finally we consider the singular case xti→a = 0, i.e. η(at1; at2) = η′(at1; at2) = 0.

At the origin the first derivative of |xi| has a jump, and the second derivative is

formally infinite. Therefore we have to take γti→a = 0 which is consistent with

γti→a =
at2
λ η
′(at1; at2).

The final step is to determine αtb→i and βtb→i. For this we replace (12.6) in the

second min-sum equation (12.3). Then we compare with the expansion (12.4).

After some long but exact algebraic calculations this yields

αta→i =
ya −

∑
j∈∂a\iAajx

t
j→a

1 +
∑
j∈∂a\iA

2
ajγ

t
j→a

, βta→i =
1

1 +
∑
j∈∂a\iA

2
ajγ

t
j→a

. (12.8)

Let us summarize these calculations. The quadratic approximation assumes

that the expansions (12.4) and (12.6) are good approximations and neglect all

terms of cubic or higher order. The min-sum equations (12.3) then reduce to

message passing equations for real valued messages (12.7), (12.8).

Summary of MinSum equations after the quadratic approximation

Let us now summarize the message-passing rules.

• Variable-to-check messages:{
xt+1
i→a = η(at1; at2),

γt+1
i→a =

at2
λ η
′(at1; at2) ,

(12.9)

where η′(y;λ) = ∂
∂yη(y;λ) and where

at1 =

∑
b∈∂i\aAbiα

t
b→i∑

b∈∂i\aA
2
biβ

t
b→i

, at2 =
λ∑

b∈∂i\aA
2
biβ

t
b→i

.

• Check-to-variable messages:α
t
a→i =

ya−
∑
j∈∂a\i Aajx

t
j→a

1+
∑
j∈∂a\i A

2
ajγ

t
j→a

,

βta→i = 1
1+

∑
j∈∂a\i A

2
ajγ

t
j→a

, .
(12.10)

Note that we still have Θ(nm) equations, i.e., the complexity is still quadratic.

But we still gained – we are dealing now with numbers instead of functions

Ei→a(x) and Êa→i(x).

12.5 Derivation of the AMP Algorithm 123

12.5 Derivation of the AMP Algorithm

Simplications of (12.9) and (12.10)

First, let us simplify further the message passing equations which we have just

summarized. Our simplification rests on the assumption that the term in the

denominator of (12.10)

1 +
∑

j∈∂a\i

A2
ajγ

t
j→a

can be treated as independent of a and i. Why might this be true? Note that

A2
aj ∼ 1

m and that we sum over Θ(m) = Θ(n) terms. We therefore expect that

this sum concentrates on its mean. In the sequel we set

1 +
∑

j∈∂a\i

A2
ajγ

t
j→a =

θt
λ

and we treat θt as independent of a and i. The determination of θt is discussed

later on.

We also set

rta→i = ya −
∑

j∈∂a\i

Aajx
t
j→a, (12.11)

so that (12.10) become

αta→i =
λ

θt
rta→i, βta→i =

λ

θt
.

Let us now look at at1 and at2. From βtb→i = λ
θt

we deduce that the denominator

of at1 and at2 is equal to

λ

θt

∑
b∈∂i\a

A2
bi

Furthermore we note that
∑
b∈∂i\aA

2
bi ≈ 1 since the Abi are iid ∼ N (0, 1

m). For

the Bernoulli model this sum is exactly equal to (m− 1)/m which tends to 1 in

the large system size limit. With these remarks we obtain

at1 =
∑
b∈∂i\a

Abirb→i, at2 = θt.

Replacing in the first message passing equation (12.9) one finds

xt+1
i→a = η(

∑
b∈∂i\a

Abir
t
b→i; θt). (12.12)

Let us summarize now the current form of the message-passing rules (12.11) and

(12.12). We have {
xt+1
i→a = η(

∑
b∈∂i\aAbir

t
b→i; θt),

rta→i = ya −
∑
j∈∂a\iAajx

t
j→a.

124 Compressive Sensing: Approximate Message Passing

We have simplified (12.9), (12.10) but still have Θ(nm) updates at each iteration.

At this point the reader should not be surprized that within the quadratic

approximation Eti (xi) can be parametrized as follows:

Eti (xi) =
1

2γti
(xi − x̂ti)2 +O((xi − x̂ti)3),

where

x̂ti = η(ãt1; ãt2),

and

ãt1 =

∑
b∈∂iAbiα

t
b→i∑

b∈∂iA
2
biβ

2
b→i

, ãt2 =
λ∑

b∈∂iA
2
biβ

t
b→i

.

This leads to the (Lasso) estimate at time t of the form

x̂ti = η(
∑
b∈∂i

Abir
t
b→i; θt). (12.13)

Notice that in (12.13) all messages rtb→i entering nodes i are involved, wheras in

(12.12) the message rta→i is ommitted.

Finals steps

We are now ready to proceed to the final steps leading to the AMP algorithm.

From (12.12) we have

xt+1
i→a = η(

∑
b∈∂i\a

Abir
t
b→i; θt)

= η(
∑
b∈∂i

Abir
t
b→i −Aairta→i; θt)

≈ η(
∑
b∈∂i

Abir
t
b→i; θt)−Aairta→iη′(

∑
b∈∂i

Abir
t
b→i; θt)

= x̂ti −Aairta→i|x̂ti|0,

where

|x̂ti|0 =

{
1, if x̂ti 6= 0,

0, if x̂ti = 0.

The third approximate equality above is obtained by a taylor expansion to first

order in Aair
t
a→i ∼ 1/

√
m. If you go back to chapter ?? you will see that a similar

step was performed. This step is crucial and will lead to the “Onsager reaction

term”. The last equality follows from (12.13) and by remarking that η′ = 1 (resp.

12.5 Derivation of the AMP Algorithm 125

η′ = 0) whenever η 6= 0 (resp. η = 0). Replacing this final expression in (12.11)

rta→i = ya −
∑

j∈∂a\i

Aajx
t
j→a

= ya −
∑

j∈∂a\i

Aaj x̂
t−1
j +

∑
j∈∂a\i

A2
ajr

t−1
a→j |x̂

t−1
j |0

= (ya −
∑
j∈∂a

Aaj x̂
t−1
j) +Aaix̂

t−1
i +

∑
j∈∂a\i

A2
ajr

t−1
a→j |x̂

t−1
j |0

= (ya −
∑
j∈∂a

Aaj x̂
t−1
j) +

∑
j∈∂a

A2
ajr

t−1
a→j |x̂

t−1
j |0 +Aaix̂

t−1
i −A2

air
t−1
a→i|x̂

t−1
i |0.

We see that rta→i consists of a main term which is of order one and which is

independent of i and the last two terms which do depend on i but which are of

order 1/
√
m or 1/m. So let us write

rta→i = rta + δrta→i.

Up to leading order this yields for the main term

rta ≈ ya −
∑
j∈∂a

Aaj x̂
t−1
j + rt−1

a

∑
j∈∂a

A2
aj |x̂t−1

j |0.

and for the next order term

δrta→i ≈ Aaix̂t−1
i

Using again A2
ai ∼ 1

m (note again for the Bernoulli model this is exact) the last

two equations are summarized as{
rta = ya −

∑
j∈∂aAaj x̂

t−1
j + rt−1

a

‖x̂t−1
j ‖0
m ,

δrta→i = Aaix̂
t−1
i .

(12.14)

Replacing rtb→i = rtb+δrtb→i = rtb+Abix̂
t−1
i in the Lasso estimate (12.13) at time

t we find

x̂ti = η(
∑
b∈∂i

Abir
t
a +

∑
b∈∂i

A2
bix̂

t−1
i ; θt)

= η(
∑
b∈∂i

Abir
t
a + x̂t−1

i ; θt) (12.15)

We can now summarize the final AMP iterative equations (12.15) and (12.14){
x̂ti = η(x̂t−1

i +
∑
b∈∂iAbir

t
b; θt),

rta = ya −
∑
j∈∂aAaj x̂

t−1
j + rt−1

a
‖x̂t‖0
m .

(12.16)

Choice of Threshold θt

In the derivations of the previous paragraph we did not precisely specify the

threshold θt. In fact it is possible to do so by exploiting the equation for γti→a

126 Compressive Sensing: Approximate Message Passing

in (12.9). This is the subject of a problem in the homeworks. One finds that the

treshold adjusts itself according to the iterations

θt+1 = λ+ θt
||xt||0
m

. (12.17)

However λ still has to tuned suitably.

In this paragraph we discuss a good and simpler choice for θt that avoids

altogether this extra iterative equation. It turns out that the AMP algorithm

with the threshold adjustment (12.17) does not offer any significant benefit with

respect to the version with the simpler choice. It is not easy to fully justify these

points as one first needs the state evolution formalism to ultimately assess the

performance of AMP (and its variants).

Let us explain the simpler choice for θt. In the scalar case we saw that it is

natural to choose the threshold on the scale of the noise, i.e., to set λ = ασ and

then to determine α by solving a minimax problem. In that case, the σ was the

standard variation of y − x. In the present case it is natural to take θt on the

scale of
√

Var(
∑
b∈∂iAbir

t
b) which is the term added to the estimate xt−1

i in the

first AMP equation. Am rough estimate of this variance is

Var(
∑
b∈∂i

Abir
t
b) = E

(
AbiAcir

t
br
t
c

)
≈ 1

m

∑
a

(rta)2 =
1

m
‖rt‖22.

Therefore we take

θt = α
‖rt‖√
m
. (12.18)

Finally, the parameter α is determined by the minimax problem

inf
α

sup
p0(·)∈Fε

Ex,y[‖x̂(α)− x‖22].

We will describe the solution of this problem once we have derived the state

evolution equations corresponding to the AMP algorithm.

Discussion

We see that the AMP algorithm is almost the same as iterative soft thresholding

(IST): {
x̂ti = η(x̂ti + (AT rt)i; θt),

rt = y −Ax̂,

except for an extra term rt−1 ‖x̂t−1‖0
m . This term, and the way we obtained it, is

analogous to the Onsager reaction term in the SK model. This term is crucial.

Indeed it is this term that is responsible for the improved performance of AMP

12.5 Derivation of the AMP Algorithm 127

with respect to IST. This performance can be assessed by state evolution which

correctly tracks the behavior of the algorithm only if the Onsager term is present.

In a nutshell we will see that - analogously to the SK model -
∑
j∈∂aAajx

t−1
j +

rt−1
a
‖x̂t‖0
m has a Gaussian distribution in the large system size limit. This is not

true when the Onsager reaction term is ommited.

Although this is not shown in these notes, one can derive the IST algorithm

by usual naive mean-field theory arguments and the Onsager reaction term by a

TAP-like argument.

Problems

12.1 A generalization of IST and its connection to Lasso. The Iterative Soft

Thresholding algorithm has the form

xt+1
i = η(xti + (AT rt)i;λ)

rt = y −Axt

starting from the initial condition x0
i = 0. Consider the following generalization.

Let θt and bt be two sequences of scalars (called respectively “thresholds” and

“reaction terms”) that converge to fixed numbers θ and b. Construct the sequence

of estimates according to the iterations

xt+1
i = η(xti + (AT rt)i; θt)

rt = y −Axt + btr
t−1

The goal of the exercise is to prove that: if x∗, r∗ is a fixed point of these

iterations, then x∗ is a stationary point of the Lasso cost function L(x|y,A) =
1
2 ||y −Ax||

2
2 + λ||x||1 for

λ = θ(1− b)

Note that this theorem does not say how to specify suitable sequences bt and

θt. The point of AMP is that it specifies unambiguously that one should take

bt = ||x||0/m (for θt there is more flexibility). We will see in the next chapter

that with this choice state evolution correctly tracks the average behavior of the

iterative algorithm, which allows to assess its performance.

The proof proceeds in two steps.

(i) Show that the stationarity condition for the Lasso cost function is

AT (y −Ax∗) = λv, vi = sign(x∗i)

where vi = sign(x∗i) for x∗i 6= 0 and vi ∈ [−1,+1] for x∗i = 0.

(ii)Show that the fixed point equations corresponding to the iterations above are

x∗i + θvi = x∗i + (AT r∗)i

(1− b)r∗ = y −Ax∗

Remark that these two equations implies the stationary condition in item

(i).

128 Compressive Sensing: Approximate Message Passing

12.2 AMP with automatic adjustment of threshold In class, starting from the

min-sum equations, we derived an AMP algorithm of the form

x̂ti = η(x̂t−1
i + (AT r)i; θt)

rt = y −Ax̂t +
||x̂t||0
m

rt−1

We argued that a reasonable choice for θt = α||rt||2/
√
m. There are however

other choices that yield good performance. In particular, one of them follows

directly from the min-sum equations. The resulting algorithm is slightly more

complex and it turns out there is no benefit in performance.

Deduce from the message passing equations obtained after the quadratic ap-

proximation, that one can adjust the threshold according to the iterations

θt+1 = λ+ θt
||x̂t||0
m

Use the same assumption done in class, namely that 1 +
∑
j∈∂a\iA

2
ajγ

t
j→a is

independent of a and i.

13 Compressive Sensing: State
Evolution

In the context of coding we were able to assess the performance of the BP algo-

rithm thanks to DE. Recall that in the large-size limit the state of the algorithm

is given in terms of a distribution (density). DE then allows us to track this state

as a function of the iteration.

It is possible to develop a similar formalism for the AMP algorithm. In the

context of compressive sensing, this formalism is called state evolution (SE).

As we will see, one can derive recursive equations for the MSE whose average

behavior is tracked by SE.

An important application of SE is a principled way to compute an optimal

threshold parameter λ. We will aslo discuss a related application which consists

of determining a “phase transition” line in the “phase diagram” of compressive

sensing.

All these derivations have been the subject of extensive numerical as well as

analytical work in the last 15 years. They are fairly complicated and here we will

limit ourselves to a general description of the main results. Some of these will be

supported by only intuitive arguments, some we will do explicitly and rigorously.

13.1 The role of the Onsager term in the TAP and the AMP
equations

We begin with a few general analogies between the TAP equations and the AMP

equations. Recall the TAP equations (10.18). As explained in Chapter 10, the

total cavity field, namely

hj,cav =
1√
n

n∑
i=1;i 6=j

J̃ijm
(t−1)
i − βm(t−1)

j (1− q(t−1)), (13.1)

becomes Gaussian, more precisely N (0, q(t−1)), as n→∞. Recall that this would

not be the case when the Onsager term −βm(t−1)
j (1− q(t−1)) is omitted. So it is

exactly this term which removes the correlations in the first sum, so that for the

remaining sum a “central limit” theorem applies. You checked this numerically

in one of the homeworks.

The situation is perfectly analogous for the AMP equations. Recall the AMP

130 Compressive Sensing: State Evolution

equations (12.16)x̂
(t+1)
i = η(x̂

(t)
i + 1√

m

∑m
b=1 Ãbir

t
b; θ

(t)),

r
(t)
a = ya − 1√

m

∑n
j=1 Ãaj x̂

(t−1)
j + rt−1

a
‖x̂(t)‖0
m ,

where1 Ãaj ∼ N (0, 1) and θ(t) = α ‖r
(t)‖2√
m

. One can check numerically (see home-

work) that the unthresholded estimate

x̂
(t)
i +

1√
m

m∑
b=1

Ãbir
(t)
b ,

has a Gaussian distribution, and that this is not true if the Onsager term

r
(t−1)
a

‖x̂t‖0
m is omitted. Again, this term in effect cancels all the correlations

present among the terms of the sums in the AMP equations.

13.2 Heuristic Derivation of State Evolution

The rigorous derivation of state evolution is based on a technique introduced by

E. Bolthausen for the TAP equations. Roughly speaking, this technique allows

us to show the following. The behavior under the TAP equations is the same

as if we removed the Onsager term but in turn replaced the frozen values J̃ij

by new independent realizations J̃
(t)
ij at each time step t. Of course, the latter

system is much easier to analyse since for this system the cavity field (13.1) is

replaced by

1√
n

n∑
i=1;i6=j

J̃
(t)
i,jm

(t−1)
i ,

and we can apply to this sum the central limit theorem. Indeed, the m
(t−1)
i are

independent of the J̃
(t)
ij , so that the sum has distribution N (0, q(t−1)).

For the AMP equations we apply the same principle. We remove the Onsager

term and at the same time we replace the frozen variables Ãbi by new and

independent realizations Ã
(t)
bi chosen from N (0, 1) at each time step. This means

that we replace the AMP equations by the equationsx̂
(t+1)
i = η

(
x̂

(t−1)
i + 1√

m

∑m
b=1 Ã

(t)
bi r

(t)
b ; θ(t)

)
,

r
(t)
a = ya − 1√

m

∑n
j=1 Ã

(t)
aj x̂

(t−1)
j .

It is convenient for the subsequent discussion to merge the two equations in a

single one. Therefore we write

x̂
(t+1)
i = η

(
x̂

(t)
i +

1√
m

m∑
b=1

Ã
(t)
bi yb −

1

m

n∑
j=1

(Ã(t)>Ã(t))ij x̂
(t−1)
j ; θt

)
.

1 Here we set Ãaj = 1√
m
Aaj .

13.2 Heuristic Derivation of State Evolution 131

In order to be consistent we should also replace y = Ax0 + z, where x0 is the

measured signal by y = Ã(t)x0 + z. This leaves us with

x̂
(t+1)
i = η

(
x0i +

1√
m

m∑
b=1

Ã
(t)
bi zb +

n∑
j=1

(δij −
1

m
(Ã(t)>Ã(t))ij)(x̂

(t−1)
j − x0j); θ

(t)

)
.

(13.2)

One can easily check that the threshold θ(t) (12.18) becomes

θ(t) =
α√
m
‖ 1√

m
Ã(t)(x0 − x̂

(t)) + z‖2. (13.3)

Let us now discuss the behavior of each sum in (13.2), in the limit m → ∞.

Clearly, given z, from the central limit theorem

1√
m

m∑
b=1

Ã
(t)
bi zb (13.4)

tends to a Gaussian with zero mean and variance 1
m

∑m
b=1 z

2
b → σ2. Next,

again by the central limit theorem, one shows that the matrix entries (δij −
1
m (Ã(t)>Ã(t))ij) tend to a zero mean Gaussian with variance 1/m. By looking at

the covariance of these entries we see that they are independent to first order.

Thus the term

n∑
j=1

(δij −
1

m
(Ã(t)>Ã(t))ij)(x̂

(t)
j − x0j) (13.5)

is also zero mean Gaussian and has variance

1

m

n∑
j=1

(x̂
(t)
j − x0j)

2 =
1

δ

1

n
‖x̂(t) − x0‖22,

where δ = m
n is the undersampling rate. At this point we define the normalized

AMP estimate of the MSE at time t,

τ (t) = lim
n→+∞

1

n
‖x̂(t) − x0‖22 (13.6)

In thermodynamic limit the variance of (13.5) is equal to (τ (t))2/δ. Finally, one

can look at the covariance of the two approximate Gaussian variables in (13.4)

and (13.5) and show that they are approximately independent.

Let us summarize. We have obtained that in the thermodynamic limit (13.4) is

N (0, σ2), that (13.5) is N (0, 1
δ (τ (t))2), and that they are independent. Thus their

sum is N (0, σ2 + 1
δ (τ (t))2). Thus in the thermodynamic limit the first argument

of the thresholding function in (13.2) tends to the random variable

x0 + (σ2 +
1

δ
(τ (t))2)1/2z (13.7)

where z ∼ N (0, 1) and x0 ∼ p0(x).

132 Compressive Sensing: State Evolution

Let us now discuss the fate of θ(t) in (13.3). Expanding the norm we have

(θ(t))2 =
α2

m

m∑
b=1

(
zb +

1√
m

n∑
i=1

A
(t)
bi (x0i − x̂(t)

i)

)2

=
α2

m

m∑
b=1

z2
b + 2

α2

m
√
m

m∑
b=1

n∑
i=1

zbÃ
(t)
bi (x0i − x̂(t)

i)

+
α2

m2

m∑
b=1

n∑
i=1

n∑
j=1

Ã
(t)
bi Ã

(t)
bj (x0i − x̂(t)

i)(x0j − x̂(t)
j)

The first term tends to α2σ2. The second term can be shown to tend to zero and

the third term tends to α2

δ (τ (t))2. Thus in the thermodynamic limit we obtain

θ(t) = α

√
σ2 +

1

δ
(τ (t))2. (13.8)

From the limits (13.7) and (13.8) of the two arguments of η in (13.2) we

conclude that each component x
(t)
i tends to the random variable

x̂(t) = η

(
x0 + (σ2 +

1

δ
(τ (t))2)1/2z; θ(t)

)
, (13.9)

In this equation z ∼ N (0, 1), x0 ∼ p0(x), τ (t)) is the normalized MSE (13.6),

and θ(t) is given by (13.8). The normalized MSE can be replaced by |x̂(t)− x0|2.

Thus this is a closed equation for a random variable x(t) which plays the role of

a state.

An observable of prime importance that one can compute thanks to this for-

malism is the normalized MSE. From (13.9) we deduce that it satisfies the re-

cursion

(τ (t+1))2 = E
[(
η(x0 + (σ2 +

1

δ
(τ (t))2)1/2z; θ(t))− x0

)2]
. (13.10)

This equation tracks the MSE as a function of time, and is called the SE equa-

tion.2

It is sometimes more convenient to work with the following equivalent equa-

tion. Set

(τ̃ (t))2 = σ2 +
1

δ
(τ (t))2.

Then

(τ̃ (t+1))2 = σ2 +
1

δ
E
[(
η(x0 + τ̃ (t)z;ατ̃ (t))− x0

)2]
.

It is not difficult to analyse the corresponding fixed point equation. Indeed the

right hand side is an increasing and concave function of τ̃ for all reasonable

distributions p0(x). Moreover, for τ̃ = 0 the right hand side equals σ2, so is

2 This is a slight abuse of language; the evolution of the state is given by (13.9).

13.3 Performance of the AMP 133

strictly positive. As a consequence, you can see graphically that there exists a

unique solution τ̃∗(δ, ρ, α, p0, σ) in the extended positive real line [0,+∞].

13.3 Performance of the AMP

Recall some notation. The undersampling ratio is δ = m
n , ρ = k

m is the number

of non-zero components per measurement. We call Fε the class of distributions

with mass 1− ε at 0. Note that ε = ρδ is the fraction of non-zero components of

the signal.

Minimax Criterion

To analyse the performance of the AMP algorithm we have to decide on a cri-

terion of how to choose the threshold α. We already alluded to the choice of the

minimax criterion in Chapter 12. The idea is to tune α to the best value when

p0(x) ∈ Fε is the worst distribution. More formally, one solves the following

minimax problem,

inf
α≥0

sup
p0∈Fε

τ∗2(δ, ρ, α, p0, σ), (13.11)

where τ∗ is the solution of the SE fixed point equation (13.10). As shown latter

on

τ∗2(δ, ρ, α, p0, σ) = σ2τ∗2(δ, ρ, α, p̃0, 1), (13.12)

where p̃0(x) = σp0(σx). Then, notice that the class of distributions Fε is scale

invariant. Indeed

p̃0(x) = (1− ε)σδ(σx) + σΦ0(σx)

= (1− ε)δ(x) + σΦ0(σx)

= (1− ε)δ(x) + Φ̃0(x),

thus if p0 ∈ Fε then p0 ∈ Fε and vice-versa. Consequently (13.11) is equal to

σ2 inf
α≥0

sup
p0∈Fε

τ∗2(δ, ρ, α, p0, 1) = σ2M(ρ, δ).

The quantity M(ρ, δ) is sometimes called the noise sensitivity. It is the rate of

change of the minimax-MSE under changes of the external noise.

It is worth showing (13.12). For this, write explicitly the SE fixed point equa-

tion (13.10)

τ2 =

∫
dxp0(x)

∫
dz
e−

z2

2

√
2π

(
η
(
x+ (σ2 +

1

δ
τ2)1/2z;α(σ2 +

τ2

δ
)1/2

)
− x
)2

.

(13.13)

Set τ = στ1. We have to show that τ1 satisfies the same fixed point equation

134 Compressive Sensing: State Evolution

with σ and p0 replaced by 1 and p̃0 respectively. This is easily seen by making

the change of variables x→ σx and using the property η(σy;σλ) = ση(y;λ).

Our next goal is to compute the noise senitivity M(ρ, δ). This is not a trivial

task since one has to first compute the minimax of τ∗(δ, ρ, α, p0, σ = 1), which

itself satisfies a non-trivial fixed point equation, and then we have to optimize

over α and p0(x). Remarkably, there is a closed form expression that can be

expressed in terms of the analogous quantity for the scalar case. We thus revisit

the scalar case first.

Minimax of the scalar case

If you have a look at the equation (12.2) in Chapter 12 and set y = x0 +σz (with

z ∼ N (0, 1)) then you easily see that for the scalar case the minimax is equal to

σ2 inf
α≥0

sup
p0∈Fε

∫
dxp0(x)

∫
dz
e−

z2

2

√
2π

(η(x+ z;α)− x)2

= σ2minαMscalar(ε, α)

= σ2Mscalar(ε).

The solution of this problem is already non-trivial in itself (see Donoho 1994).

For fixed α the worst case distribution turns out to be

p0,worst(x0) = (1− ε)δ(x0) +
ε

2
δ+∞(x0) +

ε

2
δ−∞(x0).

If we plug this distribution into the minimax one finds after a few calculations

that it is equal to infα≥0Mscalar(ε, α), where

Mscalar(ε, α) = ε(1 + α2) + (1− ε)
(
2(1 + α2)Φ(−α)− 2α

e−
α2

2

√
2π

)
, (13.14)

where Φ(−α) =
∫ −α
−∞

e−
u2

2√
2π
du. Setting the derivative of Mscalar(ε, α) with respect

to α to zero we obtain

ε =
2
(
e−

α2

2√
2π
− αΦ(−α)

)
α+ 2

(
e−

α2
2√

2π
− αΦ(−α)

) (13.15)

One can check that the right hand side is a monotone decreasing function of

α. Thus, given ε there exist a unique optimal αbest(ε). One can then find the

minimax-MSE for the scalar problem as

Mscalar(ε) = Mscalar(ε, αbest(ε)) (13.16)

Minimax for the vector case and the notion of noise sensitivity phase
transition

As said before, it is possible to compute the minimax for the vector case. Before

indicating how this can be done, we discuss the result which is is remarkably

13.3 Performance of the AMP 135

simple,

M(δ, ρ) =

{
Mscalar(ρδ)

1− 1
δMscalar(ρδ)

ρ < ρc(δ)

+∞ ρ > ρc(δ),
(13.17)

where ρc(δ) is the solution of the equation

δ = Mscalar(ρδ). (13.18)

Figure 13.1 shows a plot of the curve ρc(δ) in the (δ, ρ)-plane. This curve sepa-

ρ

δ

Figure 13.1 The function ρc(δ) in the (δ, ρ)-plane.

rates the (δ, ρ) plane in two regions where M(δ, ρ) = +∞ and where M(δ, ρ) is

finite. In other words on can recover the sparse signal with finite error only for

ρ < ρc(δ). From the point of view of statistical physics, Figure 13.1 is a phase

diagram and the separating curve a phase transition curve.

It is easy to write this curve in parametrized form. Indeed with (13.15) and

(13.16) we see that (13.18) is equivalent to
δ = Mscalar(ρδ, α)

δρ =
2
(
e
−α

2

2√
2π
−αΦ(−α)

)
α+2
(
e
−α2

2√
2π
−αΦ(−α)

) .
Using (13.14), a bit of algebra leads to the more pleasant form

δ = 2 e
−α

2

2√
2π

1

α+2
(
e
−α2

2√
2π
−αΦ(−α)

)
ρ = 1−

√
2παe

α2

2 Φ(−α).

We conclude this paragraph with a calculation justifying formula (13.17). The

starting point is again the fixed point equation (13.13) and a scaling argument.

The change of variables x→ (σ2 + 1
δ τ

2)1/2x leads to

τ2 = (σ2 +
1

δ
τ2)

∫
dxp

(τ)
0 (x)

∫
dz
e−

z2

2

√
2π

(η(x+ z, α)− x)2 (13.19)

136 Compressive Sensing: State Evolution

where

p
(τ)
0 (x) = (σ2 +

1

δ
τ2)1/2p0((σ2 +

1

δ
τ2)1/2x)

The integral in (13.19) is the scalar MSE for a scaled signal distribution and

σ = 1. Let us denote it by Mscalar(ε, α, p
τ
0). Remark that scale invariance of the

set Fε implies

sup
p0∈Fε

Mscalar(ε, α, p
τ
0) = sup

p0∈Fε
Mscalar(ε, α, p0)

= Mscalar(ε, α)

where the last equality is attained for p0worst. Suppose first that Mscalar(ε, α) > δ.

Then τ |p0worst = +∞ (because (13.19) cannot have a finite solution) so that

supp0∈Fε τ = +∞. Consider now the case Mscalar(ε, α) < δ. In particular this

means that Mscalar(ρδ) < δ or ρ < ρc(δ). For such α’s the solution τ of (13.19) is

finite for all p0 ∈ Fε, and satisfies,

τ2 = σ2 Mscalar(ε, α, p
τ
0)

1− 1
δMscalar(ε, α, pτ0)

Now, we maximize both sides of this equation over p0 ∈ Fε. Since the set Fε is

scale invariant we can replace pτ0 by p0 in the maximization. Thus far we have

obtained

sup
p0∈Fε

τ2 =

σ2 supp0∈Fε

{
Mscalar(ε,α,p0)

1− 1
δMscalar(ε,α,p0)

}
, Mscalar(ε, α) < δ

+∞, Mscalar(ε, α) > δ

Now we wish to further minimize this expression over α ≥ 0. Formally, under a

variation of the parameters ∆α and ∆p0 the variation of the ratio in the first

equation is equal to

∆Mscalar

(1− 1
δMscalar)2

,

so the stationnary point satisfies ∆Mscalar = 0, just like for the pure scalar

problem, whose solution solution αbest and p0worst was discussed in Section 13.3.

Using this stationnary point we find

inf
α>0

sup
p0∈Fε

τ2 =

{
σ2 Mscalar(ρδ)

1− 1
δMscalar(ρδ)

, Mscalar(ρδ) < δ

+∞, Mscalar(ρδ) > δ.

This is formula (13.17).

13.4 Discussion

It remains to discuss a point, namely the relationship between the true Lasso

estimator (i.e., obtained by performing an exact minimization of the Lasso Hamil-

tonian) and the AMP estimator?

13.4 Discussion 137

This question is analogous to the situation in coding theory where we want to

compre the BP threshold to the MAP threshold. For coding we will look at this

question in later chapters, but for compressive sensing the answer is remarkably

simple. In a previous homework, you proved a simple but important theorem.

This theorem states that a fixed point of the AMP equations (x̂∗, r∗, θ∗) is a

stationary point of the Lasso cost function for

λ = θ∗(1− ‖x̂
∗‖0
m

)

In other words, running the AMP algorithm yields the current minimum of Lasso

for

λ(α) = α
‖r∗‖2√
m

(1− ‖x̂
∗‖0
m

).

Therefore we can conclude that the “true Lasso” estimation x̂(λ) has an MSE of

lim
n→∞

1

n
‖x̂(λ)− x0‖22 = τ2,

which satisfies the state evoluiton fixed point equation for

τ̃2
Lasso = σ2 +

1

δ
τ2
Lasso.

(τ̃∗)2 = σ2 +
1

δ
E
[(
η(x0 + (τ̃∗)2z;ατ̃)− x0

)2]
provided that we take

λ(α) = ατ̃∗
(

1− 1

δ
E
[
η′(x0 + (τ̃∗)2z;ατ̃)

])
.

This relationship bewen λ and α has been called “calibration map” in the liter-

ature.

At this point we again see that there is a close connection between message

passing solutions and exact solutions.We explicitly saw this for the CW model

and we discussed this for the SK model. We will come back to such a connection

in the case of coding and the K-SAT problem in the third part of this course.

Last but not least there is one more remarkable feature of the AMP algorithm.

The phase transition curve ρc(δ) is exactly the same as the one derived by Donoho

and Tanner by solving exactly the l1-minimization problem

x̂(l1) = argminAx=y‖x‖1.

From the perpective of message passing techniques that we have developped so

far this is not completely surprizing. Indeed one can reformulate this minimiza-

tion problem as the study of a “Gibbs” measure

1

Z
exp

{
−β2

2
‖y −Ax‖22 + β1‖x‖1

}
(13.20)

with two inverse “temperatures” and study this problem by going through a

138 Compressive Sensing: State Evolution

BP and AMP formalism similar to what we have presented in this chapter. The

connection with l1 minimization boils down to note that

x̂(l1) = lim
β1→+∞

lim
β2→+∞

〈x〉

for finite n. The coincidence of the Donoho-Tanner curve and the AMP phase

transition curves means that one can exchange the thermodynamic and zero tem-

perature limits, a fact that is often non-trivial to prove in the context statistical

mechanics.

Problems

13.1 Statistics of AMP and IST un-threshoded estimates. Consider a sparse

signal x0 with n iid components distributed as (1−ε)δ(x0)+ ε
2δ(x−1)+ ε

2δ(x+1).

Generate m noisy measurements y = 1√
m
Ãx + z where Ãai are iid uniform in

{+1,−1} and za are iid Gaussian zero mean and variance σ2.

Consider the AMP iterationsx̂
(t+1)
i = η(x̂

(t)
i + 1√

m

∑m
b=1 Ãbir

t
b; θ

(t)),

r
(t)
a = ya − 1√

m

∑n
j=1 Ãaj x̂

(t−1)
j + rt−1

a
‖x̂(t)‖0
m ,

with the choice θ(t) = α‖r(t)‖2/
√
m. In class we derived through heuristic means

that the i-th component, given x0, of the un-thresholded estimate

x̂
(t)
i +

1√
m

m∑
b=1

Ãbir
(t)
b ,

has Gaussian statistics. The mean is x0i and the variance σ2 + (τ̃)(2) where

(τ̃)(2) = ‖x(t) − x0‖22/n.

Perform an experiment to check this numerically. Compute also the statistics

of the un-thresholded estimate for the IST iterations, i.e. when the Onsager term

rt−1
a
‖x̂(t)‖0
m is removed. Compare the two histograms.

Indications: Fix a signal realization x0. Try n = 4000, m = 2000, ε = 0.125

and 40 instances for A and z. Try various values for σ and α. Look at the

i-th components of the un-thresholded estimate for components such that say

x0i = +1 (or −1, or 0).

14 K-SAT: Unit Clause Propagation
and the Wormald Method

The satisfiability problem is considerably more difficult to analyze than either

coding or compressive sensing. One reason for this difficulty is that random K-

SAT is not an inference problem. Indeed, in the regime where a random formula

is SAT with high probability (i.e., in the regime where the number of clauses

per Boolean function is sufficiently small) there are exponetially many solutions

contrary to coding or compressive sensing where we typically only have one valid

solution. At first we might guess that this makes the problem easy: We are not

asking for a particular solution – any solution will do! But in fact it is exactly

this lack of uniqueness which makes the problem hard.

Why does this non-uniqueness cause trouble? Pick a specific Boolean variable.

From the perspective of this variable this means that there are typically solutions

for which this variable takes on the value 0 but also solutions for which it takes

on the value 1. In fact, of the exponentially many solutions there are typically

roughly equally many of either type. So even if the message-passing algorithm

succeeded in computing the marginals of all bits correctly (here we assume that

we put a uniform measure on all solutions and compute the marginal wrt this

measure) all these marginals would we uniform and we cannot extract from them

a globally valid solution. Therefore a straighforward application of a message-

passing algorithm does not work. A new ingredient is needed.

One approach is quite natural given the above description. Assume for a second

that message-passing is capable of accurately computing marginals. Then we

can proceed as follows. Compute the marginal for one variable. As long as this

marginal does not put all mass on either 0 or 1 it means that there are solutions

which take on the value 0 as well as solutions which take on the value 1 for

this variable. So in this case choose any value for this variable and reduce the

formula, by eliminating this variable and all clauses which are now satisfied. This

reduction is called the decimation step. If the marginal puts all its mass on 0, then

pick the value 0, and if it puts all its mass on 1 then choose 1. Again, decimate.

It is clear that this procedure will succeed in finding a satisfiable formula if one

exists.

The above description assumed that message-passing is capable of exactly

computing the marginals. Since this might not be the case we proceed slightly

differently. Compute the marginals of all variables. Then pick a variable with

maximal bias and decimate according to this bias. The hope is that by picking

140 K-SAT: Unit Clause Propagation and the Wormald Method

variable with maximal bias we minimize the chance of making a mistake. This

will be true as long as the message-passing algorithm predicts the marginals with

reasonable accuracy. The above idea is what is used in BP-guided decimation. We

will talk in more detail about this algorithm in the next chapter. Unfortunately,

currently there does not exist a rigorous analysis for this algorithm. We consider

a simpler algorithm in this chapter and show how to analyse it rigorously.

As we mentiond before, the K-SAT problem is the most difficult of our three

running examples. Even very basic questions, like the existence of a SAT/UNSAT

threshold, are currently not settled rigorously. We therefore will not be able to

give a complete “solution” to this problem. The literature on this problem splits

into two categories. On the one hand there are rigorous results typically concern-

ing lower and upper bounds on the threshold, thresholds for some simple algo-

rithms, as well as some basic structural properties of the problem. On the other

hand, there are statistical physics calculations which make much more precise

predictions and suggests sophisticated algorithms but which are not rigorous.

The aim of the current chapter is to introduce and rigorously analyse a very

simple algorithm, called the unit-clause propagation algorithm. This algorithm

has a somewhat mediocre performance, i.e., the threshold up to which it works is

much below the actual SAT/UNSAT threshold as predicted by statistical physics.

But it is relatively easy to analyze and it will give us the excuse of introducing

a very powerful general machinery of analyzing such types of processes, called

the Wormald method. In the next chapter we will then introduce a much more

powerful message-passing algorithm based on belief-propagation and decimation.

This algorithm has significantly better performance but currently no rigorous

analysis exists.

Before we start with our analysis we give a quick tour of what is known about

the problem. Readers, who are mostly interested in techniques, and not so much

in the problem itself, can skip the next section.

14.1 A Brief Overview

As we mentioned earlier, satisfiability was the first problem proved to be NP-

complete. Practically speaking, this means that there is no known algorithm

which can efficiently decide for all SAT formulas if a satisfiable assignment exists

or not and it is doubtful that such an algorithm can be found. Here, by efficient

algorithm we mean an algorithm whose running time is polynomial in the number

of Boolean variables.

The preceding paragraph concerns the worst case, i.e., algorithms that must

succeed always. An alternative approach is to look at suitably defined random

instances and to ask that the algorithm succeeds with high probability. For in-

stance, suppose we construct a K-SAT formula by choosing each of the clauses

uniformly at random from the set of all possible K-clauses. Hence, rather than

considering deviously designed opponents (formulas), we are given an ensemble

14.1 A Brief Overview 141

of formulas, i.e., a set of formulas endowed with a probabilistic structure. We

can now ask how hard it is to decide for a typical formula. In the following, we

introduce the most famous of such probabilistic ensembles, namely the K-SAT

ensemble.

ConsiderN Boolean variables andM = bαNc clauses of lengthK. The number

α is positive and real and is called the clause density. To choose an instance

from the K-SAT ensemble, we proceed as follows. Each of the M clauses picks

uniformly at random a subset of length K of the variables and flips a fair coin to

decide whether or not to negate each variable. Each of the above steps are taken

independently of each other. The above procedure puts a uniform distribution on

the set of all K-SAT formulas. In the following, we use SAT(N,K,α) to denote

the ensemble of random K-SAT formulas with size N and density α.

Due to its simple probabilistic structure and the importance of the satisfiabil-

ity problem, the K-SAT ensemble has become a central topic of collaborations

between computer scientists, mathematicians and statistical physicists. As we

will see later, random K-SAT formulas enjoy a number of intriguing properties,

some of which have been proven rigorously, but many of which are still awaiting

a mathematical proof.

Most of the ideas and intuitions about this ensemble have been extended to

other constraint satisfaction problems such as graph coloring (COL). One can ar-

gue whether or not random ensembles are good models for the highly structured

SAT formulas which one finds in engineering and in the “real world.” However,

it is worth mentioning that random K-SAT instances are computationally hard

for a certain range of densities, and this makes them a popular benchmark for

testing and tuning SAT algorithms. In fact, some of the better practical ideas in

use today come from insights gained by studying the performance of algorithms

on random K-SAT instances [?].

We proceed by a brief detour of the current state of the art for the K-SAT

problem.

The Threshold Conjecture

Pick a random formula from the K-SAT ensemble. What is the probability that

such a formula is satisfiable? A moment of thought shows that this probability

is a non-increasing function of α. Also, for small α we expect that most of the

formulas are satisfiable whereas for α tending to infinity we expect most of the

formulas to be un-satisfiable. What more can we say? In particular, what happens

when the size of these formulas grows unbounded, i.e., when N →∞? Numerical

experiments, physical arguments (as we will see later) as well as the experience

from simpler constraint satisfaction problems sugggest that when the density

crosses a critical threshold, these formulas undergo a phase transition. More

precisely, as we increase α from zero to infinity the probability transitions from

being almost certainly satisfiable to almost certain unsatisfiable and it does so in

a jump at one critical value of α. Despite all evidence and effort, the conjecture

142 K-SAT: Unit Clause Propagation and the Wormald Method

in this strong form is yet unproved for K ≥ 3, and hence has remained as a

conjecture known as the satisfiability conjecture.

Conjecture 14.1.1 (The Satisfiability Conjecture) For K ≥ 2, there exists a

constant αs(K) such that the following holds

lim
N→∞

Pr
{

SAT(N,K,α) is satisfiable
}

=

{
1 if α < αs(K),

0 if α > αs(K).
(14.1)

For K = 2, the satisfiability conjecture is known to be true and we have

αs(2) = 1 [?]. The following theorem is the closest we know regarding the exis-

tence of such a threshold.

theorem 14.1 (Friedgut [?]) For K ≥ 2 there exists a sequence of numbers

αs(K,N) such that for all ε > 0

lim
N→∞

P{F (N,N(αs(N,K)− ε)) is SAT} = 1,

lim
N→∞

P{F (N,N(αs(N,K) + ε)) is SAT} = 0.

Theorem 14.1 comes very close to proving the satisfiability conjecture except

that the sequence αs(K,N) is not known to converge to a well-defined limit. In

particular, there remains the possibility that such a sequence oscillates in a small

window and hence may not converge. From now on, we let αs(K) denote both the

satisfiability threshold from Conjecture 14.1.1 and also the threshold sequence

of Theorem 14.1, and leave the corresponding interpretation to the interest of

the reader.

The consequences of Theorem 14.1 are not confined merely to the satisfiability

conjecture. Another main application of this theorem is in providing bounds on

αs(K) in the following way. Suppose there exists a method that proves for some

density αmethod(K),

lim
N→∞

Pr
{

SAT(N,K,αmethod(K)) is satisfiable
}
≥ C, (14.2)

where C is a positive constant. Then, from Theorem 14.1 we conclude that for

any α ≤ αmethod(K) we have

lim
N→∞

Pr
{

SAT(N,K,α) is satisfiable
}

= 1.

In particular, this would show that αs(K) ≥ αmethod(K). Similarly, if αmethod(K)

is such that the inequality (14.2) holds in the opposite direction, then the prob-

ability that a random formula is satisfiable at densities above αmethod(K) tends

to 0 and we obtain that αs(K) ≤ αmethod(K).

This consequence of Theorem 14.1 has been the main venue for providing lower

bounds on αs(K). We now proceed by reviewing various methods and bounds

on the threshold.

14.1 A Brief Overview 143

Various Bounds and the Asymptotic Behavior of the Threshold

Let us begin by a simple, but important, upper bound. For a random K-SAT

formula F we denote by X(F) its number of satisfying assignments (if X(F) is

zero then the formula is un-satisfiable). It is an easy exercise to show that

E[X] = 2N (1− 1

2K
)M .

As a result, by noticing M = Nα, if we choose

α >
− ln 2

ln(1− 1
2K

)
,

then the value of E[X] is exponentially small in N and hence by an applica-

tion of the Markov inequality we deduce that the probability of satisfiability is

exponentially small. We thus have

αs(K) ≤ − ln 2

ln(1− 1
2K

)
≤ 2K ln 2− ln 2

2
−O(2−K). (14.3)

The above method, which is based on the first moment of X is called the first

moment method. In fact, this simple upper bound can be made slightly sharper

[?, ?]

αs(K) ≤ 2K ln 2− 1 + ln 2

2
− o(1), (14.4)

where the o(1) term is asymptotic in K. To obtain a lower bound, the second

moment can be used [?, ?]. The idea is that by an application of the Cauchy-

Schwarz inequality we can show that

Pr(X > 0) ≥ E[X]2

E[X2]
. (14.5)

Now, if we find densities α for which the value E[X]2

E[X2] is bounded by a constant, it

is immediate that such a value of α is a lower bound for αs(K). However, on the

negative side, for the choice of X = X(F) to be the number of solutions, it can

be shown that for any value of α, the quantity E[X]2

E[X2] decays to 0 by N . In other

words, the number of solutions does not concentrate around its average. On the

positive side, one can choose other candidates for X, rather than the number of

solutions, to plug into (14.5). For instance, instead of giving an equal weight to

all solutions of a formula F (as done in counting the number of solution), one can

assign different weights to different solutions. This is called the weighted second

order method. Using this method, it can be shown [?] that

αs(K) ≥ 2K ln 2− (K + 1)
ln 2

2
− 1− o(1). (14.6)

Very recently, by a new version of the weighted second order method, a new

lower bound has been obtained in [?]

αs(K) ≥ 2K ln 2− 3 ln 2

2
− o(1). (14.7)

144 K-SAT: Unit Clause Propagation and the Wormald Method

K 3 4 5 7 10

Upper bound from (14.3) 5.19 10.74 21.83 88.37 709.44

Best upper bound [?] 4.51 10.23 21.33 87.88 708.94

Lower bound from [?] 2.68 7.91 18.79 84.82 704.94

Best algorithmic bound 3.52 5.54 9.63 33.23 172.65

Table 14.1 Best known rigorous bounds for the location of the satisfiability threshold
αs(K) for some small values of K. The last row gives the largest density for which a
polynomial-time algorithm has been proven to find satisfying assignments.

To summarize: for large K we have

2K ln 2− 3 ln 2

2
− o(1) ≤ αs(K) ≤ 2K ln 2− 1 + ln 2

2
− o(1), (14.8)

where the o(1) term is asymptotic in K. These bounds indicate that for large

values of K, the value of αs(K) is just a small constant away from 2K ln 2.

For smaller values of K, the bounds derived from these methods are given in

Table 14.1.

A different venue to find lower bounds is to provide algorithms capable of

solving a random formula with a positive probability. We will have more to say

about these algorithms and the methods used to analyze them later. In a nutshell,

most of these algorithms act in the following way. Given a random formula,

they set the variables one at a time using heuristics that use very little, and

completely local, information about the variable-clause interactions. Of course,

such a confinement is also what enables their analysis. Table 14.1 contains the

best such algorithmic lower bounds from [?] and [?].

Outline

We will see later on that the “real” 3-SAT threshold is around α = 4.26. This

threshold is currently not provable but only “computable” by statistical physics

calculations. If we use BP-guided decimation, we will find an algorithmic thresh-

old of αBP = 3.86. Even this threshold can currently only be asserted by large-

scale simulations or by statistical physics calculations.

The aim of this lecture is to derive a lower bound which can be asserted

rigorously. We will do so by analyzing a very simple algorithm, called unit-clause

propagation (UCP). As we will see, it has a threshold of α = 8
3 . This is not the

best known lower bound. More sophisticated algorithms have been analyzed and

yield a threshold of α = 3.52. But these algorithms are considerably harder to

analyze.

14.2 The Unit-Clause Propagation Algorithm 145

14.2 The Unit-Clause Propagation Algorithm

Let us now come back to the main object of study for the current chapter.

We will introduce and anlyse a simple algorithm to solve K-SAT formulas. The

algorithm does not have record-shattering performance. But it is natural can can

be analysed by a standard and important method, called the Wormald method.

The Unit Clause propagation algorithm, or UC for short, is a (randomized)

algorithm which sets one variable at a time. Compared to the DPLL algorithm,

the UC algorithm never backtracks. Once a variable is fixed, the value stays

fixed and is never changed. In brief, the algorithm works as follows: Represent a

K-SAT formula in the usual way by a bipartite graph G consisting of N literals,

or variable nodes, and M = Nα clauses, or check nodes. The algorithm starts

with G and in each step removes some nodes from the graph. In more detail, the

UC algorithm consists of two main steps:

• Free step: If there does not exist a check node (clause) in the graph of degree

one we perform a free step: Choose a variable uniformly at random and set

its value uniformly at random to either 0 or 1. Remove the chosen variable

node as well as any check node corresponding to a clause which is now

fulfilled through the choice of the value, as well as all edges emanating

from any of the removed nodes.

• Forced Step: If there exists a check node (clause) of degree one we perform a

forced step: Choose a check node of degree one uniformly at random from

all such check nodes. Set the value of the adjacent variable node to the

unique value which fulfills the clause (hence the name “forced”). Remove

from the graph the check node, the variable, all further check nodes which

in addition might now be fulfilled, as well as all edges emanating from any

of the removed nodes.

It is easy to see that the UC algorithm fails in finding a solution if only it

generates a clause of degree 0 at some point in the course of the algorithm.

In fact, once a 0-clause appears, the algorithm can halt and return a message

“unable to find a solution.”

The progress of UC algorithm can be predicted in terms of the solution of a set

of differential equations. This method, called the Wormald method, is broadly

applicable. Therefore, in the next section we describe this technique in general,

before coming back to the analysis of the UC algorithm in the subsequent section.

14.3 The Wormald Method

A Simple Example

Let us start with a very simple example to illustrate the idea. Consider N parti-

cles in a box of volume V . Assume that time is discrete and takes integer values.

146 K-SAT: Unit Clause Propagation and the Wormald Method

Assume that at each time instant and for each pair of particles (i, j) present,

the probability that these two particles annihilate each other is equal to

1

V 2
=
N2

V 2

1

N2
=

ρ2

N2
,

where ρ is the initial density of particles. Let N(t) denote the number of particles

which are left at time t, with N(0) = N . How will the number of particles evolve?

We have the relationship

N(t+ 1) = N(t)− 2
∑
(i,j)

1{(i, j) is annihilated between t and t+ 1}.

The evolution of this process is of course stochastic, but it is easy to write down

the expected progress in one time step given the current state. We have

E[N(t+ 1) | N(t)] = N(t)− 2
N(t)(N(t)− 1))

2

ρ2

N2

= N(t)− ρ2N(t)(N(t)− 1))

N2
.

This means that

E[N(t+ 1)−N(t) | N(t)] = −ρ2N(t)(N(t)− 1))

N2
.

Assume that the process evolves exactly according to its expected progress. This

means that we drop the expectations and the conditioning. This gives us

N(t+ 1)−N(t) = −ρ2N(t)(N(t)− 1))

N2
≈ −ρ2N(t)2

N2
.

Now set t = τN , where τ ∈ R+ so that N(t) = N(τN). Further, scale N(t) by

the initial number of particles, i.e., write N(Nτ) = Nn(τ). We can then write

Nn(τ + 1/N)−Nn(τ) ≈ −ρ2n(τ)2

n(0)2
.

With N = 1
dτ this leads us the consider the differential equation

dn(τ)

dτ
= −ρ2n(τ)2, n(0) = 1.

This differential equation has the solution

n(τ) =
1

ρ2(τ + 1
ρ2)

,

which is best seen by direct verification. If we go back to N(t) then we see that

according to this model we have

N(t) =
1

t
V 2 + 1

N

.

In the above derivation we have waved our hands like a drunken sailor. In par-

ticular, we have replace what by its very nature was a stochstic process by a

14.3 The Wormald Method 147

deterministic description. Clearly, this cannot be strictly correct. But one might

hope that the behavior of specific instances of N(t) are “close” to this determin-

istic solution. Indeed, this is correct, as we will see in the next section.

The Wormald Theorem

There are myriads of versions of increasing sophistication. We will be content

with stating and applying one particular incarnation. In the computer science

literature the basic approach is typically referred to as the Wormald method.

In the economics literature it is sometimes called the Kurtz method. Although

perhaps phrased less formally, the physics community has applied this techniques

for an even longer time.

theorem 14.2 (Wormald) Let Y
(n)
i (t) be a sequence (indexed by n) of real

valued random processes, 1 ≤ i ≤ k, where k is fixed, so that for all 1 ≤ i ≤ k,

all 0 ≤ tm(n), and all n ∈ N

|Y (n)
i (t)| ≤ Bn, for some constant B.

• Let H(t) denote the history up to time t, i.e., H(t) = {Y (n)(0), . . . , Y (n)(t)}.
• Let I = {(y1, . . . , yk) : P{Y (n)(0) = (y1n, . . . ykn)} > 0, for some n}.
• Let D be some open connected bounded set containing the closure of {(0, y1, · · · , yk) :

(y1, · · · , yk) ∈ I}.
• Let fi : Rk+1 → R, 1 ≤ i ≤ k:

1.(Trend) For all i and uniformly for all t < m

E[Yi(t+ 1)− Yi(t) | H(t)] = fi(
t

n
,
Y

(n)
1 (t)

n
, · · · ,

Y
(n)
k (t)

n
) + o(1).

2.(Tail) For all i and uniformly for all t < m

Pr(|Y (n)
i (t+ 1)− Y (n)

i (t)| > n
1
5 | H(t)) = o(n−3).

3.(Lipschitz) For each i, the function fi is a Lipschitz continuous on D.

That is, there exists a constant L such that for any pair x, y ∈ D,

|fi(x)− fi(y)| ≤ L||x− y||1 = L

k∑
i=1

|xi − yi|.

Then we have:

(a)(Differential equation)For (0, ẑ0, · · · , ẑk) ∈ D the system of differential equa-

tions
dzi
dτ

= fi(τ, z1, · · · , zk), 1 ≤ i ≤ k,

has a unique solution in D for zi : R → R passing through zi(0) = ẑi,

1 ≤ i ≤ k, and which extends to points arbitrarily close to the boundary of

D.

148 K-SAT: Unit Clause Propagation and the Wormald Method

(b)(Concentration) Almost surely

Y
(n)
i (t) = zi(

t

n
)n+ o(n),

uniformly for 0 ≤ t ≤ min{m(n), nτmax} and for each i, where zi(τ) is the

solution in (a) with ẑi(0) =
Y

(n)
i (0)

n and where τmax is the maximum time

until the solution can be extended before reaching in L1-distance ε-close to

the boundary of Dm where ε is arbitrary but strictly positive.

14.4 Analysis of the UC Algorithm

Let us begin by introducing the necessary notation for the analysis:

• We let t denote current “time” of the algorithm. The term “time” means the

total number of variables fixed so far.

• We let Ci(t), i ∈ {1, · · · ,K}, denote the the number of clauses of degree i

that the remaining formula at time t contains.

One important fact for the analysis of such algorithms is the so called uniform

randomness property. In brief, this property means that at any time t, each

clause of length i in the remaining formula is uniformly distributed among all

the possible clauses of length i. In other words, conditioned on the number of

variables and clauses of different length, the formula is uniformly random. An

intuitive justification for the randomness property in our case stems from the

fact that at any step (free or forced) in the UC algorithm, no information, what-

so-ever, can be deduced about the structure of the remaining formula. The exact

proof of the uniform randomness property in our case can be easily deduced from

[?, Lemma 3].

We are now ready to write the set of differential equations for Ci’s. Let us

for simplicity assume K = 3 and bear in mind that for general K the analysis

follows along the same path. Recall that we start with N Boolean variables.

In the process we consider, at each step in the process we remove exactly one

variable node. Let time t be discrete and increasing, starting at t = 0. Let N(t)

be the number of variables which are left at time t. Then we have N(t) = N − t.
We start with C3(t). At any time t, a variable is chosen among the N − t

remaining ones and is given a permanent value. This variable can either be

chosen due to a forced step or due to a free step. Note that in both cases the

degree distribution of the chosen variable is essentially the same. In more detail.

At time t there are N − t variables left and C1(t) + 2C2(t) + 3C3(t) edges left.

Further, each edge is connected uniformly at random to each variable node. So

the distribution of the number of edges for a randomly chosen variable node

is equal to C1(t) + 2C2(t) + 3C3(t) independent Bernoulli trials with success

probability 1/(N − t). In particular, in expectation, a randomly chosen variable

node has C1(t)+2C2(t)+3C3(t)
N−t edges connected to it. Even more, in a forced step,

14.4 Analysis of the UC Algorithm 149

when we consider a random variable which is connected to a clause of degree

1, the expected number of additional edges is C1(t)+2C2(t)+3C3(t)−1
N−t , which for

large N is essentially the same number. For this reason we can treat both cases,

namely free and forced step in the same way.

Now consider what happens when we fix the value of the variable. This variable

is connecected in expectation to

C1(t) + 2C2(t) + 3C3(t)− 1

N − t
3C3(t)

C1(t) + 2C2(t) + 3C3(t)− 1
=

3C3(t)

N − t
.

clauses of degree 3. Therefore

E[C3(t+ 1)− C3(t)|C3(t)] = −3C3(t)

N − t
. (14.9)

Among the 3-clauses that contain the chosen variable, half of them (in expecta-

tion) are satisfied and hence removed from the formula and the other half are

shortened to two 2-clauses. We claim that

E[C2(t+ 1)− C2(t)|C3(t), C2(t)] =
3C3(t)

2(N − t)
− 2C2(t)

(N − t)
. (14.10)

We have already seen where the first term on the right comes from. The second

term has a similar interpretation. Each variable node is connected in expectation

to

C1(t) + 2C2(t) + 3C3(t)− 1

N − t
2C2(t)

C1(t) + 2C2(t) + 3C3(t)− 1
=

2C2(t)

N − t
clauses of degree 2. In expectation, half of them will be fulfilled through the

choice of the value of the variable node, and the other half will become 1-clauses.

Finally, look at the evolution of degree-1 clauses. We claim that we have

E[C1(t+ 1)− C1(t)|C3(t), C2(t), C1(t)] =
C2(t)

N − t
− 1{C1(t)>1}. (14.11)

This equation is somewhat more subtle. If at time t there are degree-1 clauses

then we will eliminate one for sure. In this case we will also add in expectation
C2(t)
N−t new ones. If on the other hand we do not have a degree-1 node then we

only add in expectation C2(t)
N−t such clauses.

Note that in order to predict the evolution of C3(t) and C2(t) we only need

to know (C3(t), C2(t)) but not C1(t). Therefore, let us just solve the differential

equation for these two higher degrees.

At this step we need to check that all the conditions of the Wormald theo-

rem are fulfilled. We leave this task to the reader. Most conditions are trivially

fulfilled. E.g., the process starts in a bounded state and all quantities decrease

and stay non-negative. Hence the process is trivially bounded. Also the initial

condition is determinstic. Further, steps are small with high probability, so the

tail condition is also easy to check. Further, the trend condition is also trivially

fulfilled. The only condition which needs checking is that the function which

gives the trend is Lipschitz. A quick check shows that this is true until almost

150 K-SAT: Unit Clause Propagation and the Wormald Method

towards the end of the algorithm. At the very end, the denominator 1− τ tends

to zero, which causes problems. So according to the Wormald theorem, actual in-

stances will behave close to the prediction given by the solution of the differential

equation up to any fixed time strictly bounded away from τ = 1.

As a next step let us write down the differential equations corresponding to

this evolution. We get, using τ ≡ t
N , c2(τ) ≡ C2(t)

N , c3(τ) ≡ C3(t)
N ,

dc3(τ)

dτ
= −3

c3(τ)

1− τ
, (14.12)

dc2(τ)

dτ
=

3

2

c3(τ)

1− τ
− 2

c2(τ)

1− τ
, (14.13)

with initial conditions

c3(0) = α, (14.14)

c2(0) = 0. (14.15)

The solution to the above set of equations can easily be found to be

c3(τ) = α(1− τ)3,

c2(τ) =
3

2
ατ(1− τ)2.

Figure ?? compares the solutions of the differential equations with their coun-

terpart in performing the UC algorithm over an actual random K-SAT formula.

Now let us see what this differential equation tell us about the threshold of

this algorithm. We claim that the threshold is α∗ = 8
3 . Let us first show that it

is at most 8
3 . Assume that we are operating with a higher value of α. Note that

C2(t)

N − t
=

3

2
α
t

N
(1− t

N
) + o(1), (14.16)

Note that at time t = 1
2 we have according to this prediction C2(t)

N−t

∣∣∣
t=N

2

=

3
8α + o(1). But note that C2(t)

N−t is the density of 2-clauses at time t. In other

words, if we choose α greater than 8
3 then at this point in time the density of

2-clauses is above 1. Using the uniform randomness property we see that what

we would have at this point is a random 2-SAT formula with density larger than

1 with some additional 3-clauses. But such a formula is unsatisfiable with high

probability. So in particular the UCP cannot possible succeed.

Now let us prove that if we pick α strictly smaller than 8
3 then with high

probability the algorithm succeeds. Recall that the algorithm succeeds if and only

if no degree-0 clause is prodcued at any point in time. Consider the equation for

the evolution of the degree-1 clauses. Note that 2C2(t)
N−t is not only the 2-clause

density, but it is also the expected number of new degree-1 clauses which are

generated at time t. If this number is strictly less than 1 over the whole time

interval then with high probability C1(t) is at any point in time at most a

constant but never becomes linear in N . This means that the chance that when

14.4 Analysis of the UC Algorithm 151

we set a variable that this variable is connected to two such degree-1 clauses of

opposite sign vanishes. Hence, we never create a degree-0 clause.

Some care has to be taken to make this argument completely rigorous. In

particular, as we discussed we can only guarantee the accuracy of the prediction

up to a time very close to τ = 1. So we need in addition an argument which

guarantees that the remaining formula is satisfiable with high probability. This is

somewhat analogous to decoding, where we sometimes need an argument which

guarantees that we can decode all bits assuming that we have decoded most

of them. The argument for the present case goes as follows. If we look at the

solution of the differential equation, we see that if we run the algorithm long

enough for α < 8
3 then there is a time strictly before τ = 1 where the sum

of the 2-density plus the 3-density is strictly less than 1. We can now argue as

follows. Drop a random variable from each 3-clause. Then the resulting formula

is satisfiable with high probability.

Problems

14.1 (Peferential Attachment). The purpose of this homework is to use the

Wormald method to study a model for “preferential attachment.” Consider n

nodes. Initially all nodes have degree 0. Assume that we allow a maximum de-

gree of dmax. We proceed as follows. At every step pick two nodes from the set

of all nodes which have degree at most dmax − 1. Rather than picking them with

uniform probability pick them proportional to their current degree. More pre-

cisely, assume that at time t you have Di(t) nodes of degree i. Then pick a node

of degree i with probability
Di(t)∑dmax−1

j=0 dj(t)
, 0 ≤ i < dmax,

0, i = dmax.

Initially, we have D0(t = 0) = n and Di(t = 0) = 0 for i = 1, · · · , dmax. Note

that at time t = ndmax/2 all nodes will have maximum degree. Pick dmax = 4.

(i). Write down the set of differential equations for this problem. Are the condi-

tions fulfilled?

(ii). Plot the evolution of the degree distribution as a function of the normalized

time for τ = t/n ∈ [0, dmax/2]

HINT: In general one cannot expect to solve the system of differential equa-

tions analytically. But it is typically easy to solve them numerically. Here is how

you do it in Mathematica. The following lines set up the differential equation we

discussed in class and plots the solution.

(* initial conditions *)

cnds = {n[0] == 1};

(* set of diff equations *)

eqns = {n’[u] == - rho n[u]^2};

(* put the two together *)

eqnspluscnds = Flatten[Join[eqns, cnds]];

152 K-SAT: Unit Clause Propagation and the Wormald Method

(* solve up to this point *)

umax=10;

(* solve the diff equation *)

sol=Flatten[NDSolve[eqnspluscnds, {n}, {u, 0, umax}]]

(* plot the solution *)

Plot[Evaluate[{n[u]} /. sol], {u, 0.0, umax}]

If you have more than one variable then it is convenient to call them

d[0][u], d[1][u], d[2][u], ...

In this case you might have something like

cnds = {d[0][0] == ..., d[1][0]==..., ...};

eqns = {d[0]’[u] == ..., d[1]’[u]==..., ...};

eqnspluscnds = Flatten[Join[eqns, cnds]];

umax=...;

sol =

Flatten[NDSolve[eqnspluscnds, {d[0], d[1], ...}, {u, 0, umax}]]

Plot[Evaluate[{d[0][u], d[1][u], ...} /. sol], {u, 0.0, umax}]

15 K-SAT: BP-Guided Decimation

In the preceding chapter we have introduced and analysed a very simple al-

gorithm, called unit clause propagation. This analysis established a non-trivial

lower bound for the SAT/UNSAT threshold and this threshold is in particular

algorithmic, i.e., we have an efficient algorithm which works up to this threshold.

On the downside, the UCP algorithm is not very powerful and so the threshold

is quite low.

The aim of the current chapter is to introduce and to discuss a more powerful

algorithm, called BP-guided decimation. The basic idea is similar to what that

of the UCP algorithm. At each step we pick a variable node (or several of them)

and fix its value, i.e., we decimate the formula. The difference lies in how we

choose the variable we decimate. In the UCP algorithm, the choice was either

forced upon us or we chose randomly. In the BP-guided decimation algorithm

we use the BP algorithm to guide the selection.

We first introduce a version of the algorithm which is guaranteed to succeed if

the formula is satisfiable and if the factor graph corresponding to the formula is

a tree. As we did for coding, we then introduce a more convenient parametriza-

tion of the messages. Finally, we apply the algorithm to formulas in the ensem-

ble, even though of course in this case the factor graphs are far from trees. As

we discussed previously, the K-SAT problem is considerably harder than either

coding or compressive sensing. Many of the basic questions are still open from a

mathematical point of view. E.g., currently there exists no rigorous analysis of

BP-guided decimation. We will therefore have to be content with a somewhat

more heuristic approach.

15.1 Simple Example

Let us start with a very simple example. Suppose we are given the formula

F = x1 ∧ (x1 ∨ x2 ∨ x3). (15.1)

The corresponding factor graph is shown in Figure 15.1. Dashed lines means the

variable appears negated in the corresponding clause.

F is a Boolean function. However, we can slightly modify F and model it as a

binary function that can take either of 0 or 1 values. In this case, we can write F

154 K-SAT: BP-Guided Decimation

Figure 15.1 Factor graph of the equation F = x1 ∧ (x1 ∨ x2 ∨ x3)

Table 15.1 Satisfiability of F , given by equation (15.1), for all possible combination of
x1, x2 and x3.

as the product of two other binary functions: f1 = x1 and f2 = sign(x1+x2+x3),

where sign is the normal sign function with sign(0) = 0.

Note that in order to see if F is satisfiable, we can compute the “partition

function” ∑
x1,x2,x3

f1(x1)f2(x1, x2, x3).

This is true since the partition function counts the number of satisfying configu-

rations. Hence, if the partition function is non-zero then the formula is satisfiable.

For the current case there are 3 SAT solutions. Table 15.1 illustrate the satisfi-

ability of F for all possible combination of x1, x2 and x3.

We can also look at marginals with respect to different variables, for instance∑
∼x1

f1(x1)f2(x1, x2, x3).

This marginal counts the number of satisfying clauses given that x1 has a partic-

ular fixed value. From Table 15.2 we see that µ(x1 = 0) = 0 and µ(x1 = 1) = 3;

µ(x2 = 0) = 2 and µ(x2 = 1) = 1; µ(x3 = 0) = 1 and µ(x3 = 1) = 2. Note that

the factor graph is a tree. Therefore BP can compute the partition function as

well as the marginals exaclty. Table 15.2 summarizes the messages exchanged in

15.1 Simple Example 155

Table 15.2 Messages exchanged in each iteration of the belief propagation performed
over the factor graph given in Fig. 15.1.

each iteration of the belief propagation in order to compute the marginal with

respect to x1, denoted by µ(x1), for the factor graph given in Fig. 15.1. Let us

illustrate the use of message passing rules for the derivation of µ(x1). The first

line of the table gives the initial messages at the leaf nodes. First we compute

µ2→1 =
∑
∼x1

f2(x1, x2, x3). µ2→2(x2)︸ ︷︷ ︸
1

µ3→2(x3)︸ ︷︷ ︸
1

= 4 if x1 = 0 and 3 if x1 = 1

(15.2)

and

µ1→1 = f(x1) = 0 if x1 = 0 and 1 if x1 = 1 (15.3)

Finally,

µ(x1) = µ2→1(x1)µ1→1(x1) = 0 if x1 = 0 and 3 if x1 = 1 (15.4)

which agrees with Table 15.2.

Let us summarize. The marginals count the number of satisfying solutions

with a particular assignment for the given Boolean variable. If we are interested

in the fraction of satisfying solutions with a particular assignment for the given

Boolean variable we can just normalize the messages. Also, we will see shortly,

that if we can accurately compute marginals, we can also find SAT assignments.

Notation: We denote clauses by a, b, c, . . . and variables by i, j, k, Further-

more, we denote the neighborhood of a node x by ∂x. The same neighborhood

excluding a particular node y is indicated by ∂x \ y.

Having these notations in mind, we start by modifying the message-passing

rules. In the original message passing scheme, the message from variable i to

clause a is given by equation (15.5).

µi→a(xi) =
∏

b∈∂i\a

µb→i(xi) (15.5)

However, since we are interested in the fraction of the solutions with xi = 0 and

xi = 1, we require the new messages µ̃i→a(xi) to satisfy the following equation.

µ̃i→a(xi = 0) + µ̃i→a(xi = 1) = 1

Therefore, it is sufficient to set µ̃i→a(xi) according to equation (15.6).

µ̃i→a(xi) =
µi→a(xi)

µi→a(xi = 0) + µi→a(xi = 1)
(15.6)

156 K-SAT: BP-Guided Decimation

Figure 15.2 BP Guided Decimation over Trees
1. Run belief propagation on F and compute the all marginals µ(xi) for all of the

variables.
2. Pick a variable i. If µ(xi = 0) > 0 (there exists an assignement with xi = 0), then:

1Set xi = 0 in all clauses.
2Eliminate all those clauses that xi appears negated in them.
3Remove xi from the other clause.

If on the other hand µ(xi = 0) = 0 (there doesnt exist an assignmenet with
xi = 0), then:

1Set xi = 1 in all clauses.
2Eliminate all those clauses that xi appears unnegated in them.
3Remove xi from the other clause.

3. Repeat the process until no variables are left.

At this point, it seems as if we have to once calculate µi→a(xi) for xi = 0, 1 and

then normalize the messages. However, it is easy to show that we can directly

calculate µ̃i→a(xi). To simplify the notations, we omit the normalization factor

and write the messages as

µ̃i→a(xi) ∝
∏

b∈∂i\a

µ̃b→i(xi). (15.7)

15.2 From Counting the Number of Solutions to Finding a Solution

Given a SAT problem F , assume that the factor graph of F is a tree and F has

a satisfying solution. Then algorithm 1 will find a solution that satisfies F .

Note that in each step of the above algorithm we must run BP. So in total we

might need to run BP n times.

Terminology: Since we use belief propagation and eliminate a variable in

each iteration, the algorithm is called BP-guided decimation.

Algorithm 1 is only guaranteed to give accurate marginals if we have a tree.

But what about the more general cases? We will introduce a modified version of

the above algorithm in the next section to deal with general factor graphs.

Applying BP Guided Decimation to General Factor Graphs

In this section, we apply a modified version of the BP guided decimation al-

gorithm to general factor graphs. However, note that the graph in this section

should be sparse as before.

Over a tree, the previous algorithm yields exact marginals and we can pick

anyone of them in each iteration. However, in general graphs it is not the case any

more. As a result and in order to deal with the inherent uncertainty in marginals,

in each iteration we pick a node i such that the difference |µ(xi = 0)−µ(xi = 1)|
is maximized. This way, we hope that this node has such a clear bias that its

marginals are are quite exact despite the graph not being a tree.

15.3 Convenient Re-parametrization 157

Figure 15.3 BP Guided Decimation over General Graphs
1. Run BP and calculate all marginals.
2. Pick a node i such that |µ(xi = 0)− µ(xi = 1)| is maximized.
3. Set xi to the most likely value, i.e. xi = 0 if µ(xi = 0) > µ(xi = 1) and to 1

otherwise.
4. Eliminate all clauses that the particular choice of xi make them satisfied. Remove

xi from the other clause.
5. Recurse until all variables are eliminated.

The rest of the algorithm is the same, summarized below:

Some remarks about running BP on general graphs are in order:

• Initialization The typical way of initializing messages is to set all of them

equal to 1/2.

• Scheduling In contrast to BP guided decimation over a tree, the choice of

node i affect the solution and the whole algorithm. Therefore, scheduling

matters. We usually use flooding as a means of scheduling. In other words,

in each iteration every node sends its messages over its outgoing links.

Figure 15.4 illustrates two kinds of probabilities as a function of α (ratio of nb

of clauses to variables). One can run pure BP over many instances and compute

the empirical probability that it converges. This yields the upper curves in figure

15.4. For K = 3 we get a convergence threshold αBP≈3.86 and for K = 4 we get

αBP ≈ 10.3. Now, one can run BP guided decimation (algorithm 2) over many

instances and derive the empirical probability of success. The corresponding

threshold must in general be lower than αBP since BP must at least converge

after each decimation step. This empirivcal probability is given by the lower

curve in figure 15.4. For K = 3 the threshold is approximately identical to αBP
but for K = 4 it is smaller and approximately equal to 9.3.

The actual SAT-UNSAT threshold is for K = 3, αsat−unsat ≈ 4.26 and for

K = 4, αsat−unsat ≈ 9.93. We will see in future lectures how to obtain these

thresholds by survey propagation algorithms.

15.3 Convenient Re-parametrization

To write down the BP equations in simple form it is convenient to use the

reformulation in terms of spin variables exposed in Chapter 4. Recall that a

weight Jia = +1 (resp. −1) is associated to full (resp. dashed) edges for which

xi appears un-negated (negated) in clause a. Recall also that si = (−1)xi . With

these definitions si = Jia means that the assignment si does not satisfy a, and

si = −Jia means that it satisfies a.

We parametrize the messages as follows

µi→a(si = ±Jia) =
1∓ tanhhi→a

2
, µ̂a→i(si = ±Jia) =

1∓ tanh ĥi→a
2

. (15.8)

158 K-SAT: BP-Guided Decimation

Actual
threshold

3.86 4.26

Pr{Being Satisfiable}

1

3

Actual
threshold

~9.98

Pr{Being Satisfiable}

1

3-SAT 4-SAT

One
Instance

Many
Instances

One
Instance

Many
Instances

Figure 15.4 Probability of 3− SAT and 4− SAT being satisfied by BP guided
decimation.

The interpretation of this notation is that (1 − tanhhi→a)/2 is the probability

that xi/si has a value which does not satisfy the clause corresponding to node

a. Similarly, (1 − tanh ĥi→a)/2 represents the probability that xi/si is not free

to be chosen arbitrarily since the clause a is not satisfied yet.

We need one more bit of notation. Consider a fixed edge ia with some edge

weight Jia. Let Sia be the subset of variable nodes in ∂a that have the same edge

type (weight) Jia. Likewise, let Uia be the subset of variable nodes in ∂a with a

different edge type i.e., −Jia.

The original message passing equations for messages from variable to check

nodes is given by:

µi→a(si = ±Jia) ∝
∏

b∈∂i\a

µ̂b→i(si = ±Jia)

∝
∏
b∈Sia

µ̂b→i(si = ±Jib)
∏
b∈Uia

µ̂b→i(si = ∓Jib) (15.9)

Hence,

1± tanhhi→a
2

∝

(∏
b∈Sia

1± tanh ĥb→i
2

)(∏
b∈Uia

1∓ tanh ĥb→i
2

)
(15.10)

Taking the ratio of these two equations we find

hi→a =
∑
b∈Sia

ĥb→i −
∑
b∈Uia

ĥb→i (15.11)

The original message passing rules for messages from constraint to variable

nodes yield

µ̂a→i(si = ±Jia) ∝
∑

∼si=±Jia

fa(s∂a)
∏

j∈∂a\i

µj→i(sj) (15.12)

15.3 Convenient Re-parametrization 159

As noted at the beginning of this section for si = −Jia the clause a is satisfied

irrespective of other variables, i.e. ψ(s∂a) = 1. As a result, the sum of some

products in (15.12) factorizes into

µ̂a→i(si = −Jia) ∝
∏

j∈∂a\i

∑
sj

µj→a(sj) ∝ 1. (15.13)

In other words (1 + tanh ĥa→i)/2 ∝ 1. Now we calculate (15.12) for si = Jia.

For this assignment the variable si can be eliminated from the kernel function

fa since this variable does not satisfy a. In (15.12) we have to sum over all

assignments of remaining variables j ∈ {∂a \ i} such that at least one of them

has value sj = −Jja. It is easy to see that this yields

µ̂a→i(si = Jia) ∝ 1−
∏

j∈∂a\i

µ(sj = Jja). (15.14)

Dividing out relations (15.12) and (??) allows to eliminate the normalization

factors and one finds

ĥa→i = −1

2
ln

{
1−

∏
j∈∂a\i

1− tanhj→a
2

}
(15.15)

Equations (15.11)-(15.15) are the BP equations for K-SAT. The reader will ap-

preciate the similarity with coding.

Problems

15.1 You will implement Belief Propagation (BP) for K-SAT (say K = 3 and

K = 4) The first one is to find a convenient parametrization of the BP messages.

This was done in class. The second is to investigate numerically the convergence

of BP as a function of α (the clause density). The third is to implement a

decimation algorithm that finds satisfying assignments for α not too large.

15.Belief Propagation Equations for K-SAT Go through the derivation,

especially if this was not done in detail during class.

15.2 Implementation of BP] You will implement BP according to the flood-

ing (or parallel) schedule. initialize the messages uniformly randomly in [0, 1].

One iteration means that you send messages from nodes to clauses and back from

clauses to variables. Define the following ”convergence criterion”: declare that

the messages have ”converged” if there is an iteration number (time) tconv(δ)

such that no messages changes by more than δ at tconv(δ) (take the smallest

such time).

Perform the following experiment. Take 100 K-SAT instances of length say

N = 5000 and 10000 variables and for each instance implement BP as explained

above with δ = 10−2. If the iterations do not converge stop them at a large

time say tmax ≈ 1000. When they converge, they should do so in a shorter time

tconv(δ) < tmax that does not change much with N .

Plot as a function of α the empirical probability that the iterations converge.

160 K-SAT: BP-Guided Decimation

You should see that this probability is large for α < αBP and drops abruptly

around some threshold αBP. For K = 3, αBP ≈ 3.85 and K = 4, αBP ≈ 10.3.

15.3 BP guided decimation] Now you will implement the following algo-

rithm for finding SAT assignments. It uses the above BP procedure as a guide

to take decisions on how to fix values for the variables. Once a variable has been

fixed the K-SAT formula is suitably reduced - this step is called ”decimation” -

and BP is run again.

• Initialize with a K-SAT formula F of length N .

• For n= 1, ..., N do:

– Run BP on an instance, as in the previous exercise (with the same

convergence criterion).

– If BP does not converge, return ”assignment not found” and exit.

– If BP converges, for each variable j compute its bias (express it in terms

of ẑeta variables!)

πj = µj(1)− µj(0) =

∏
a∈∂j µa→j(1)−

∏
a∈∂j µa→j(0)∏

a∈∂j µa→j(1) +
∏
a∈∂j µa→j(0)

– Pick a variable j(n) that has the largest absolute bias |πj(n)|.
– If πj(n) ≥ 0 fix xj(n) = 1. Otherwise fix xj(n) = −1.

– Replace F by the K-SAT formula obtained by decimating variable j(n).

• End-For

• Return all fixed variables.

Give for several values of α, the empirical success probability of this algorithm

when tested over 100 instances. Compare this empirical success probability with

the empirical convergence probability of the previous exercise. You should ob-

serve that K = 3 and K = 4 do not behave on the same way. Try to find

an approximate threshold αt beyond which the algorithm does not find SAT

assignments.

16 Maxwell Construction

The Maxwell construction is a paradigm to guess the “true” (optimal/physical)

behavior of a system from a simple model. For us the “simple model” is the

description in terms of message-passing quantities and this setting is well-suited

for this construction. Once the Maxwell construction has given us a guess, this

guess can then often be converted into a rigorous statement. The important

point here is that typically the proof uses the guess as an essential input. I.e.,

the Maxwell construction is typically a crucial first step in the proof.

We will discuss several instances of this paradigm in this chapter. Note that

whenever this program works, then this means that the message-passing algo-

rithm is not just a convenient low-complexity algorithm but plays a fundamental

role in characterizing the problem.

16.1 The Original Maxwell Construction

The original Maxwell construction goes back to the 19th century struggle of

trying to understand the liquid-vapor phase transition for simple substances

(say H2O). Quite surprisingly, even though this problem seems to have little to

do with our three examples, there is a very straightforward analogy between the

Maxwell construction for this problem and the Maxwell construction in our case.

It is therefore worth to quickly review the problem.

Assume that we have a gas consisting of N molecules in a volume of V cubic

meters under a pressure of p pascals and a temperature of T Kelvins. How are

these quantities related? The ideal gas law states that

pV = NkT, (16.1)

where k is the Boltzmann constant. The left picture in Figure 16.1 shows this

relationship at different temperatures T . As one can see from this picture, as we

decrease the volume, the pressure increases. The derivation of this ideal gas law

is based on several simplifying assumptions. In reality the molecules1 interact via

1 The reader should not underestimate that the atomic and molecular constitution of matter

acquired the status of scientific truth, as opposed to philosophical assumption, only in the
19th century thanks to the work of numerous chemists.

162 Maxwell Construction

V/N

p

↑ T

V/N

p

↑ T

Figure 16.1 Left: Isotherms of the ideal gas equation of state. Right: Isotherms of the
van der Waals equation of state. Note that below a critical temperature, the
isotherms are no longer monotone.

forces of quantum mechanical origin.2 These forces have a very short range and

strong repulsive part and a weak long range attractive part. Because of the short

range strong repulsion it is good model to assume that the molecules have an

“effective volume”. The ideal gas law simply neglects this effective volume as well

as the attractive part of the force (so it neglects all forces hence the name ideal).

The relation expressed in (16.1) is an equation of state, since it relates quantities

that define the thermodynamic “state” of the system (namely, (p, V, T,N)).

In 1873, Johannes Diderik van der Waals derived a more accurate equation of

state taking into account the non-zero effective size of the molecules as well as

the weak long range attracting forces. His derivation resulted in the equation

(p+ a
N2

V 2
)(V − bN) = NkT.

This equation is very similar in structure to the ideal gas law, but both the vol-

ume as well as the pressure terms are modified. The constant b takes into account

the effective finite size of each molecule. Due to this finite size the effective vol-

ume of the box which is available to the N molecules shrinks from V to V − bN .

The constant a takes into account attractive forces between molecules. It is as-

sumed that these attractive forces act only between molecule of the gas but not

between the wall and gas molecules. Therefore, close to a boundary, a molecule

has more neighbors away from the boundary then towards the boundary and this

creates an effective force “inwards,” reducing the pressure of the gas. Note that

the van der Waals equation is equivalent to p = NkT/(V −bN)−aN
2

V 2 so that the

pressure is reduced by aN
2

V 2 . The reduction is proportional to N2 because each

molecule close to the wall feels the effect of approximately N other molecules

and there are of the order of N molecules close to the wall. To obtain an in-

tensive quantity (pressure is intensive, i.e. independent of system size) we have

to divide by V 2 which is the only other extensive quantity besides N . Another

way to understand the form of this term is to assume that that the reduction in

2 So it is only much later, in 1920-1930, that the true origin and proper way to model these

forces was understood!

16.1 The Original Maxwell Construction 163

V/N

p

V/N

p

Figure 16.2 The original Maxwell construction. Left: One isotherm of the van der
Waals equation of state. Right: The same isotherm, where a part of the curve is
replaced by a horizontal line which is placed so that the two enclosed areas are in
balance.

pressure is only a function of the density N/V close to the wall. For somewhat

low densities (at least in the gas phase) one can expand this function in powers

of N/V . The first order term must vanish because the attracting forces involve

pairs of particles, leaving us with the second order term. Higher order terms are

then neglected in the van der Waals theory.3

Let us write the above equation as (p+ aN
2

V 2)(V/N − b) = kT . Note that now

all involved quantities, namely p, V/N , as well as T are intensive quantities, i.e.,

they are independent of the system size.

The right-hand side picture in Figure 16.1 shows the van der Waals isotherms

for some choice of constants a and b and for various choices of T . Comparisons

with measurements show that the predictions of the van der Waals equation are

for the most part more accurate compared to the predictions of the ideal gas

equation. But a closer look at Figure 16.1 shows a somewhat curious and non-

physical behavior. Below a “critical” temperature, the isotherms are no longer

relating the pressure p and the density V/N in a monotone fashion, i.e., below

this critical temperate, there is a section where a decrease in density leads to a

decrease in pressure. Clearly, the physical process is not described accurately in

this range.

It was Maxwell who in 1875 suggested a modification of the van der Waals

isotherms to account for this unphysical behavior. Consider Figure 16.2. The

picture on the left shows one isotherm which shows a non-physical oscillating

behavior. The idea of Maxwell was to modify this curve by replacing part of the

curve by a horizontal line. This line is placed in such a way that the two areas

(painted in red and blue in the picture) are in balance. Note that these two areas

represent work since the pressure is measured in Newtons per square meters and

the volume in meters cubed. So the product is Newton times meter, the units

3 Note that such “virial expansions” in powers of density are computed in the framework of
statistical mechanics once a precise model for the repulsive and attractive forces is fixed.
These expansions relate coefficients like a and b to the expressions of the forces; and by

experimentally measuring the equation state one extracts information about the forces.

164 Maxwell Construction

of work. Roughly speaking, the basic thermodynamic argument to support the

equality of the two areas is that the work done by compressing the gas (starting

at large volumes) along the curved path and the work gained by relaxing the

volume along the straight line back to its original value should be equal because

the system has returned to its initial state, and no net work should have been

gained or done (otherwise we would have a perpetuum mobile). The horizontal

line segment corresponds to a phase in the system where the gas co-exists in two

phases, namely as liquid as well as vapor. Along the line the percentage of each

component changes from all vapor to all liquid. Note that as soon as all the gas

is in liquid form, any further decrease in volume leads to a very large increase in

pressure.

It is important to realize that for this physical system neither the ideal gas

equation, nor the van der Waals equation, and not even the modified van der

Waals equation with the Maxwell construction describe the system exactly. They

are all increasingly accurate descriptions, taking into account more and more

physical effects, and they agree reasonably well with experimental measurements.

For our applications we are in a somewhat easier situation. Our aim is not to

find a correct theoretical description for a real physical system. Rather, we start

with a model and this model is by definition exact. Therefore, in such a situation

we can hope that also the Maxwell construction gives us an exact result.

16.2 Curie-Weiss Model

For the Curie-Weiss model we have in fact already “seen” the Maxwell construc-

tion, we just never mentioned it.

In Chapter 5 we computed the exact relationship between the magnetization

m and the external magnetic field h for a particular interaction strength K. We

saw in (5.15) that for a fixed h and K, m takes on a value which minimizes (the

free energy function)

−(
K

2
m2 + hm)− h2(

1 +m

2
). (16.2)

If we take the derivative of the above expression, we see that m is a solution of

the fixed-point equation

m = tanh
{
h+Km

}
. (16.3)

For K < 1, this fixed-point equation has only a single solution for each h, but for

K > 1 it has up to three, depending on h. Note that even though there might be

many solutions of m for each h, there is always exactly one solution of h for each

m. The left picture in Figure 16.3 shows this relationship (which is a smooth

curve) between m and h for K = 2. The dashed part of the curve are points

(h,m) which are solutions to the fixed-point equation but where m is not the

minimizer of (16.2).

16.2 Curie-Weiss Model 165

h

m

h

m

Figure 16.3 Phase transition in Curie-Weiss model when K > 1 as a function of h.
The phase transition is at h = 0.

In Chapter 10 we attacked the CW (and SK) model via a message-passing ap-

proach. We first wrote down the message-passing equations. We then simplified

the message-passing equations and derived the TAP equations. Note that the

simplification itself was expected to be “loss-less” since it was based on the real-

ization that only the leading terms in the message-passing equations contribute

in the thermodynamic limit, the remaining terms tend to 0 with increasing sys-

tem size.

But the graph corresponding to the CW model is not a tree. In fact it is as

far away from a tree as one can get since it is a complete graph. It is therefore

far from clear how well a message-passing analysis can capture the behavior. We

saw, to our surprise, that the resulting message-passing equation, written as a

fixed point equation is in fact equal to (16.3). But in the message-passing world

we do not know that we “should” minimize (16.2). From the message passing

perspective we start with a particular value of m and then we iterate.

Note that if we consider h as a function of m we again have in some range an

unphysical behavior, namely in the branch where h decreases but m increases.

It is therefore very natural to “correct” this unphysical part by a Maxwell con-

struction, where we replace this unphysical part with a straight line which cuts

the BP curve. Note that by symmetry we again have a balance of the two areas

and that this Maxwell construction results in the correct phase diagram.

Let us see where we are. We have seen the Maxwell construction now for two

examples, but so far it is perhaps not very convincing. For the gas model the

Maxwell construction might appear like a kludge – a rough fix for an obvious

problem. For the CW model, on the other hand, it might appear like a very lucky

coincidence, but it did not tell us anything new.

It would be much more compelling if we could start with the BP equations

and then from these equations could prove that the actual equation of state

and phase transition threshold have to be of the form predicted by the Maxwell

construction. In particular, this will be compelling if the actual equation of state

and phase transition threshold is difficult to compute directly.

In the next section we discuss exactly such a case – namely the case of coding.

Here the Maxwell construction does indeed give the correct prediction for the

166 Maxwell Construction

MAP threshold and it is the starting point for a rigorous derivation of this

quantity. More importantly, this is currently the only way of computing and

proving the MAP threshold.

16.3 Coding: The Maxwell Construction for the BEC

Let us now consider coding, using elements of the (l, r)-regular LDPC ensemble,

transmission over the BEC, and BP decoding. For this case we will see how we

can determine the MAP threshold exactly. The Maxwell construction plays a

crucial role in this determination.

As we saw in Chapter 8, the threshold for this case is determined by means of

the fixed points (FP) of the equation

x = εf(ε, x),

where f(ε, x) = ε(1− (1−x)r−1)l−1. This leads us to consider the curve (ε(x), x)

for 0 ≤ x ≤ 1. Recall how from this curve we can determine the threshold – the

threshold is the smallest value of ε which we see along this curve,

εBP = min
0≤x≤1

ε(x) = min
0≤x≤1

x

(1− (1− x)r−1)l−1
.

Instead of plotting the curve (ε(x), x) let us plot the curve (ε(x), (1 − (1 −
x)r−1)l). Note that (1 − (1 − x)r−1)l) is the erasure probability of the best

estimate of a randomly chosen variable nodes we can make if we only use the

“internal” messages but ignore the directly received observation of this bit (since

we ignore the direct observation the factor ε is missing; on the other hand we

have a power of l in the expression and not just (l−1) as for the density evolution

equations since we take all internal inputs into account). This is the “correct”

curve to which to apply the Maxwell construction as we will see now. This curve

is known as the EXIT curve in the literature.

lemma 16.1 (Graphical Characterization of Thresholds) The left-hand side of

Figure 16.4 shows the so-called BP EXIT curve associated to the (3, 6)-regular

ensemble. This is the curve given by {ε(x), (1− (1−x)r−1)l}, 0 ≤ x ≤ 1. For all

regular ensembles with l ≥ 3 this curve has a characteristic “C” shape. It starts

at the point (1, 1) for x = 1 and then moves downwards until it “leaves” the unit

box at the point (1, xu(1)) and extends to infinity.

The right-hand side of Figure 16.4 shows the Maxwell construction for this

case. The MAP threshold is constructed from the curve by inserting a vertical

line. The line is inserted at that unique spot so that area of the BP EXIT curve

to the left of the vertical line is equal to the area of this curve to the right.

The Maxwell conjecture only gives us a guess of the MAP threshold. To prove

this conjecture needs considerably more work. We will first show that the con-

jectured threshold is always an upper bound on the MAP threshold. To prove

16.3 Coding: The Maxwell Construction for the BEC 167

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ε

h
E

P
B

(1
,x

u
(1

))

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ε

h
B
P
(ε

)

εB
P

εM
A
P

∫
hBP = 1

2

Figure 16.4 Left: The BP EXIT curve hBP of the (l = 3, r = 6)-regular ensemble. The
curve goes “outside the box” at the point (1, xu(1)) and tends to infinity. Right: The
BP EXIT function hBP(ε). Both the BP as well as the MAP threshold are determined
by hBP(ε).

0.20.40.60.8

0.2

0.4

0.6

0.8
1.0

0.0 ε

εM
A
P

0.20.40.60.8

0.2

0.4

0.6

0.8
1.0

0.0 ε 0.20.40.60.8

0.2

0.4

0.6

0.8
1.0

0.0 ε

Figure 16.5 Maxwell construction.

that it is also a lower bound, and hence exact, needs different techniques, and

we will discuss this later on.

Let C be a fixed code from the (l, r)-regular LDPC ensemble of length n. Let X

denote the codeword, chosen uniformly at random from the set of all codewords

and let Y be the received word, i.e., Y is the result of transmitting X over a

BEC with parameter ε. We claim that

dH(X|Y (ε))

ndε
=

1

n

n∑
i=1

P{x̂MAP
i (y∼i) =?} (16.4)

To see this, assume that each bit i is transmitted over a BEC with parameter εi.

168 Maxwell Construction

So we have

1

n

dH(X|Y (ε1, · · · , εn))

dε
=

n∑
i=1

∂H(X|Y (ε1, · · · , εn))

∂εi

∣∣∣∣
εi=ε

(a)
=

1

n

n∑
i=1

∂H(Xi|Y (ε1, · · · , εn))

∂εi

∣∣∣∣
εi=ε

(b)
=

1

n

n∑
i=1

P{x̂MAP
i (Y∼i) =?}

(c)

≤ 1

n

n∑
i=1

P{x̂BP
i (y∼i) = ?}.

To see (a) note that

H(X | Y) = H(Xi | Y) +H(X∼i|Xi, Y) = H(Xi | Y) +H(X∼i|Xi, Y∼i),

where in the last step we can drop the Yi in H(X∼i|Xi, Y) since the channel is

memoryless. Now note H(X∼i|Xi, Y∼i) does not depend on εi so that this term

drops when we take the derivative. For step (b),

H(Xi | Y) = P{Yi =?}P{x̂MAP
i (Y∼i) =?}︸ ︷︷ ︸

not a function of εi

= εiP{x̂MAP
i (Y∼i) =?}. (16.5)

Finally, step (c) follows since the MAP decoder is optimal and hence has the

lowest error probability of all decoders.

Let us now look closer at the last expression. Define

hBP(ε) = lim
`→∞

lim
n→∞

ELDPC

[
1

n

n∑
i=1

P{x̂BP,`(y∼i) = ?}

]
. (16.6)

This limit exists and is given by density evolution. In fact, hBP(ε) is essentially the

EXIT function which we just discussed above. This derivation makes it clearer

why the EXIT function is the “right” quantity on which to apply the Maxwell

construction.

Let us discuss this all in some more detail. As we discussed above, define

hBP

0
ε

10.4294
Figure 16.6 The function hBP(ε) for the (3, 6)-regular ensemble.

ε(x) =
x

(1− (1− x)r−1)l−1
, hBP(x) = (1− (1− x)r−1)l,

16.3 Coding: The Maxwell Construction for the BEC 169

and let us plot (ε(x), hBP(x))1
x=0, see Figure 16.6: Then the “envelope” of this

hBP

0
ε

1

(ε(x), hBP(x))�������)

Figure 16.7 The curve (ε(x), hBP(x)) and its “envelope.”

curve is equal to hBP(ε) as a function of ε. It will be convenient to have a notation

for the integral under this curve. To this end define the so called trial entropy:

P (x) =

∫ x

0

(1− (1− x)r−1)lε′(x)dx. (16.7)

= x+
1

r
(1− x)r−1(l + l(r − 1)x− rx)− l

r
. (16.8)

Note that P (x) is the areas under the EXIT curve from the point x = 0 (this

corresponds to a point at +∞) until the point which is parameterized by x as

indicated in Figure 16.8. Note that P (0) = 0. The function P (x) is decreasing

xBP

Figure 16.8 The trial entropy P (x).

until x = xBP, where xBP is that unique parameter so that εBP = ε(xBP). For

xBP ≤ x ≤ 1, P (x) is increasing and P (1) = 1− l
r , as a direct check shows.

It follows that there is a unique value of x in the region [xBP, 1], call it xA, so

that P (xA) = 0. We call ε(xA) the area threshold, and write εA = ε(xA).

170 Maxwell Construction

We now have the following sequence of inequalities:

1− l

r
− lim inf

n→∞
ELDPC[

1

n
H(x | y(ε = ε̃))]

(a)
= lim

n→∞
ELDPC[

1

n
H(x | y(ε = 1))]− lim inf

n→∞
ELDPC[

1

n
H(x | y(ε = ε̃))]

(a)
= lim sup

n→∞
ELDPC[

1

n
{H(x | y(ε = 1))−H(x | y(ε = ε̃))}]

(b)
= lim sup

n→∞
E

[∫ 1

ε̃

1

n

n∑
i=1

P{x̂MAP

i (y′∼i) = ?}

]
dε

(c)
= lim sup

n→∞

∫ 1

ε̃

E

[
1

n

n∑
i=1

P{x̂MAP

i (y′∼i) = ?}

]
dε

≤
∫ 1

ε̃

lim sup
n→∞

E

[
1

n

n∑
i=1

P{x̂MAP

i (y′∼i) = ?}

]
dε

(d)

≤
∫ 1

ε̃

lim
`→∞

lim
n→∞

E
[

1

n
P{x̂BP,`

i (y′∼i) = ?}
]
dε

(e)
=P (1)− P (ε̃)

=1− l

r
− P (ε̃).

In step (a) note that 1
nH(x | y(ε = 1)) is equal to the logarithm of the size of

the code normalized by the length. It is intuitive that the limit of this quantity

when n → ∞, and averaged over the ensemble, is equal to the “design rate” of

the code which is 1 − l
r . Even though this is intuitive, this needs some proof.

Since the proof is purely combinatorial we skip the steps. But this transition is

valid for all (l, r)-regular ensembles with 2 ≤ l ≤ r.
In step (b) we write the conditional entropy as an integral of its derivative and

replace the derivative with the sum as we previously discussed. Since the integral

is non-negative, we can exchange the order of the two integrals by Tonelli. This is

step (c). In step (d) we apply the Fatou-Lebesgue theorem by observing that the

integrand is bounded. Step (d) follows by the optimality of the MAP decoder,

and in the final two steps we have used the definition of the trial entropy.

Equivalently,

lim inf
n→∞

ELDPC

[
1

n
H(x | y(ε(x))

]
≥ P (x). (16.9)

definition 16.2 (MAP Threshold) 4 The MAP threshold of the (l, r)-regular

ensemble for the BEC is denoted by εMAP(l, r) and is defined by

inf{ε ∈ [0, 1] : lim inf
n→∞

E[H(Xn
1 | Y n1 (ε))/n]>0}.

4 Define Pe,i = Pr{Xi 6= X̂i(Y
n
1)}, where X̂i(Y

n
1) is the MAP estimate of bit i based on the

observation Y n1 . Note that by the Fano inequality we have H(Xi | Y n1) ≤ h2(Pe,i). Assume

16.3 Coding: The Maxwell Construction for the BEC 171

We conclude that εMAP ≥ εA = ε(xA), the area threshold.

nBP(ε)

εMAP ≤ εA

1− l
r�

��
�

��

��
��

��
��

��
��

�
��
�

�
��
�

��
��

��
��

��
��

�
��
�

��
��

��
��

��
��

��
��

�
��
�

��
��

��
��

�
��
�

��

��
�
����

Figure 16.9 aa

So far we have seen that the threshold given by the Maxwell construction is

an upper bound on the MAP threshold. There are several ways of proving the

reverse inequality. For the specific case at hand, namely transmission over the

BEC, one can give a purely combinatorial proof. The idea is to prove that with

high probability the matrix which we get if we start with the parity-check matrix

and remove all columns which correspond to non-erased bits has rank equal to

the number of erased bits. This shows that with high probability the codeword

can be reconstructed by solving the corresponding linear system of equations,

i.e., with high probability the MAP decoder succeeds. Since this proof is very

specific to the erasure channel we skip it. There is a second more conceptual

that we are transmitting above εMAP(l, r) so that E[H(Xn
1 | Y n1)/n] ≥ δ > 0.5 Then

h2(E[
1

n

n∑
i=1

Pe,i])≥E[
1

n

n∑
i=1

h2(Pe,i)] ≥ E[

n∑
i=1

H(Xi | Y n1)/n]

≥ E[H(Xn
1 | Y n1)/n] ≥ δ > 0.

In words, if we are transmitting above the MAP threshold, then the ensemble average

bit-error probability is lower bounded by h−1
2 (δ), a strictly positive constant. This

ensemble is therefore not suitable for reliable transmission above this threshold.
In general we cannot conclude from E[H(Xn

1 | Y n1)/n] ≤ δ that the average error

probability is small. This is possible if we have the slightly stronger condition
E[
∑n
i=1H(Xi | Y n1)/n] ≤ δ. In this case δ ≥ 1

n
E[
∑n
i=1H(Xi | Y n1)] =

1
n
E[
∑n
i=1 EY n1 [h2(minx p(x | Y n1))]] ≥ 1

n
E[
∑n
i=1 EY n1 [2 minx p(x | Y n1)]] = 1

n
E[
∑n
i=1 2Pe,i],

so that 1
n
E[
∑n
i=1 Pe,i] ≤ 1

2
δ. The last step in the previous chain of inequalities follows

since under MAP decoding the error probability conditioned that we observed yn1 is equal
to minx p(x | yn1). An alternative way to prove this is to realize that H(Xi | Y n1) represents
a BMS channel with a particular entropy and to use extremes of information combining to
find the worst error probability such a channel can have. The extremal channel in this case

is the BEC. But for the codes we consider we will see that below εMAP we can indeed

decode correctly with high probability, which justifies the choice of our definition.
The reader might wonder why we did not start with an operational interpretation of the

MAP threshold as the channel parameter below which a MAP decoder can decode with
high probability. As pointed out above, for the codes we consider the given definition is in
fact equivalent to the operational one. But in addition it has the advantage that the

conditional entropy connects directly to the quantities which appear in our analysis, in

particular to the generalized EXIT curve.

172 Maxwell Construction

approach using spatial coupling and the interpolation technique which applies

to all such problems. We will get back to this point in the next chapter.

16.4 Compressive Sensing

Also for compressive sensing there is a Maxwell construction. As a starting point

however one has to consider the compressive sensing problem for a fixed and

known source distribution, rather than looking for a universal algorithm.

16.5 Random K-SAT

As always, for K-SAT the situation is the most complicated. Again it is possible

to write down a Maxwell construction. However, the starting point is not the BP-

guided decimation algorithm but a more sophisticated algorithm, called survey

propagation.

16.6 Discussion

Besides the original example, we have given two explicit examples of the Maxwell

construction. For the CW model, the Maxwell construction appears somewhat

like a coincidence. We first computed the exact relationship between average

magnetization and the external field and then we computed the same relationship

from a message-passing perspective. Comparing the two expressions we see that

they are related by a Maxwell construction, just like in the original construction

for an ideal gas.

Even more interesting is the situation if we cannot in fact compute the exact

free energy expression but, starting with the message-passing formulation, can

construct it using a Maxwell construction. This was the case for our second

example, namely coding. There is currently no classical way of computing the

MAP threshold. We have seen that the Maxwell construction gives us a guess of

where this phase transition appears and we have also seen how we can prove that

this guess is an upper bound on the MAP threshold. In the third part of these

notes we will see how we can further show that this guess is also a lower bound

on the MAP threshold using the concepts of spatial coupling and the so-called

interpolation method. So in this case, the Maxwell construction, together with

further techniques, allows us to solve, what from a classical perspective seems to

be a hard problem.

This is a general theme. But, there is no trivial recipe for how to apply the

Maxwell construction and how to prove that it is indeed correct. Each case re-

quires some slightly different tricks and techniques. In fact, it is easy to construct

examples (like K-SAT with BP guided decimation) where the predictions given

16.6 Discussion 173

by the Maxwell construction are not even correct. But with a little bit of expe-

rience the Maxwell construction is a powerful paradigm.

Problems

16.1 Magnetization of the Ising model on a d-regular graph with large girth.

In this problem we consider the ferromagnetic Ising model on a d-regular graph

with large girth. Using the probabilistic method Erdős and Sachs proved that

there exist a graphs Gn,d on n vertices, with all vertex degrees equal to d and

with a girth gn,d ≥ (1− o(1)) logd−1 n (here o(1) stands for a function that goes

to zero as n → +∞). We recall that the girth is the length of the shortest loop

in the graph.

Consider the Gibbs distribution of the Ising model on Gn,d

µn,d(s) =
1

Zn,d
exp

(
βJ

d

∑
{i,j}∈edges

sisj + βh

n∑
i=1

si

)
The Hamiltonian is given by the contribution of all ferromagnetic interactions

associated to edges {i, j}, and a contribution from a constant magnetic field. The

strength of the interaction is scaled by d for later convenience. Note that J > 0

but h can take both signs.

Recall that the magnetization at a vertex o is defined as 〈so〉n,d where 〈−〉n,d
is the usual Gibbs average. This quantity is non trivial to compute. On the other

hand we can run BP and compute the BP estimates of the magnetization.

(i) The second Griffith-Kelly-Sherman correlation inequality states that for Ising

models with all interaction coefficients and all magnetic fields positive the

magnetization can only decrease when one coefficient decreases. In the

present case this inequality implies that the magnetization decreases when

an edge is removed from Gn,d. Now consider the neighborhood of a vertex

o, namely N = {i ∈ Gn,d|dist(o, i) ≤ gn,d − 1}. Define 〈−〉N the Gibbs

average for the Ising model restricted to N . Show that for h ≥ 0

〈so〉n,d ≥ 〈so〉N

and that for h ≤ 0

〈so〉n,d ≤ 〈so〉N

Hint: for the second inequality use symmetry properties under the operation

h→ −h.

(ii)The average 〈so〉N can be computed exactly from the BP recursion. Why?

Show that this recursion is:

m(t) = tanh(βh+ d tanh−1(tanhβ
J

d
tanhu(t)))

u(t) = βh+ (d− 1) tanh−1(tanh
βJ

d
tanhu(t−1)), u(0) = h

and that 〈so〉N = m(gn,d−1).

174 Maxwell Construction

Remark: go back to homework 4 and observe this is the same recursion that

you had derived by “other means”.

(iii)Take now a fixed sequence of graphs Gn,d with respect to n. Observe from

above that for h > 0 and all t,

lim inf
n→+∞

〈so〉n,d ≥ m(t),

and for h ≥ 0

lim sup
n→+∞

〈so〉n,d ≤ m(t).

We want to look at the limit d→ +∞. Show that

lim
d→+∞

lim inf
n→+∞

〈so〉n,d ≥ lim
t→+∞

m
(t)
CW,

and for h ≤ 0 and all t

lim
d→+∞

lim sup
n→+∞

〈so〉n,d ≤ lim
t→+∞

m
(t)
CW,

where m
(t)
CW is the BP-magnetization of the CW model and satisfies the

recursion

m
(t)
CW = tanh(β(h+ Jm

(t−1)
CW))

with the initial condition m
(o)
CW = tanhβh.

Remark: These inequalities suggest the conjecture

lim
d→+∞

lim inf
n→+∞

〈so〉n,d = lim
d→+∞

lim sup
n→+∞

〈so〉n,d = 〈so〉CW

where 〈so〉CW is the true CW magnetization.

17 Summary of Part II

Let us summarize what we have seen in this part.

We have considered three problems, coding, compressive sensing, and con-

straint satisfaction. In all three problems we started with a basic message-passing

algorithm (BP) which is guaranteed to work if the factor graph is a tree and then

we applied it to non-tree like factor graphs.

Coding and compressive sensing are inference problems. A signal is selected,

the signal is sent over a channel, and we get to see noisy observations. From these

noisy observations we want to infer the signal either exactly or give an estimate

of the signal which is “close” to the sent one.

Even though both problems are inference problems, there are nevertheless

substantial differences.

In the coding problem we started with a criterion (maximum a posteriori

criterion) which is optimal in the sense that it minimizes the error probability.

We then formulated a message-passing algorithm which implements the criterion

in case the factor graph is tree-like. Finally, we applied it to non tree-like factor

graphs and analyzed its behavior. As it turns out, even though the initial criterion

was optimal, the actual performance we get is not optimal. More precisely, the

threshold we determined is lower than the threshold which we could achieve if

we used a decoder which would implement the MAP criterion exactly. In fact, in

Chapter 16 we have seen how we can determine the MAP threshold and so we

can determine now for each ensemble how much we loose by using a sub-optimal

algorithm. In addition to this algorithmic loss, there is also the loss which we

incur due to the fact that we use a sparse graph code. Due to this sparseness,

the even the MAP threshold of a given ensemble is not equal to the Shannon

threshold.

Compare this now to what happened in compressive sensing. There we started

with the LASSO criterion. This in fact is not the optimal criterion since the

regularization term involves the L1 norm and not the L0 norm. The reason

for starting with LASSO is that is a natural starting point for message-passing

algorithms. We then formulated a message-passing algorithm which was inspired

by the LASSO criterion and which would again be exact if the factor graph

was a tree. The second important difference to the coding problem is that for

compressive sensing the factor graph is a complete graph, i.e., it is as far away

from a locally tree-like graph as one could imagine. Nevertheless we applied our

176 Summary of Part II

algorithm to this case and it works very well. In fact, once all was said and done,

we could conclude that in terms of threshold behavior the algorithm works as well

as exactly implementing the LASSO criterion. This is not just surprising given

that the graph is not at all tree-like, it is also surprising since we did not in fact

analyze the natural message-passing algorithm which corresponds to the LASSO

algorithm, but we analyzed an algorithm which was a considerable simplification

of the original algorithm. We had two reasons to look for such a simplification.

First, this brings down the complexity per iteration from square to linear. Second,

only because we brought it down to a much simpler algorithm, where we able

to in fact analyze the behavior of the algorithm. The basic approach we used

for compressive sensing was very simple. What made the story somewhat long

was that we required long calculations to determine how we could simplify the

algorithm.

To summarize, whereas in coding we started with an optimal criterion but

got suboptimal performance due to using a simple message-passing algorithm,

in compressive sensing we started with a suboptimal criterion but then did not

loose any further performance by using a message-passing algorithm.

Finally, for the K-SAT problem we are not dealing with an inference problem.

The problem is much closer to e.g., lossy source coding where we also have an

exponential number of essentially equivalent solutions and any solution will do.

As we discussed, it is this non-uniqueness which makes the problem hard to

solve. The standard solution approach is to use a type of decimation algorithm

where we decide on the value of one variable at a time. What makes the analysis

so difficult is that we have to run BP many times on slightly altered versions

of the graph. Since each time we are dealing with essentially the same graph,

there is substantial correlation in the system. There are currently no known

mathematical techniques that can be applied for a rigorous analysis for this

case.

Let us now look ahead to see what is to come. In all three cases the application

of message-passing algorithms leads to good but suboptimal performance as it

turns out. So how good would each of these systems work if in fact we did not

have any constraints on complexity and could implement the optimal criteria?

This is an important engineering question. If the gap to the optimal performance

is very small then it is probably not worth thinking of improved algorithms or

spending higher computational resources to solve the problem. But if the gap is

substantial, it is an entirely different story. Also, if we are able to answer this

question, then perhaps we can take a more active approach. Particularly in cod-

ing and compressive sensing, we are not forced to use a particular code or sensing

matrix. We often have a choice and can design the system. Therefore, at least

in these two problems we can ask what we can do in order to narrow the perfor-

mance gap. This is sometimes also called as “engineering the phase transition.”

For this purpose, we will discuss a generic and very useful construction, called

spatial coupling, which allows us to construct graphical models which perform

particularly well under message-passing algorithms.

Part III

Advanced Topics

18 Spatial Coupling and Nucleation
Phenomenon

So far we have seen that a variety of problems can be phrased in a natural way in

terms of marginalizing a highly-factorized function. Message-passing algorithms

are then the logical choice to accomplish this marginalization and we have seen

how such algorithms perform in the thermodynamic limit.

Perhaps more surprisingly, we saw that the same quantities which were im-

portant for the analysis of the suboptimal message-passing algorithm reappeared

when we looked at the seemingly more fundamental question of determining

static thresholds, like the MAP threshold or the SAT/UNSAT threshold. The

Maxwell construction is a graphical representation of this phenomenon.

We will now tie these two threads together. We will discuss a generic construc-

tion, called spatial coupling, which can be applied to a wide range of graphical

models. The idea is to take many copies of a graphical model, to place them

next to each other on a line and then to start connecting these models by “ex-

changing edges” in such a way that the local structure of the graphical model

remains unchanged but that globally we create a larger graphical model which

forms a one-dimensional chain. If in addition we impose suitable conditions at

the boundaries of the model, this larger graphical model behaves very well un-

der message-passing. Roughly speaking, the performance of the large spatially-

coupled model under message-passing (in terms of the resulting threshold) is as

good as if we had done optimal processing on the original graphical model.

For the most part we will only discuss the phenomenon but we will not give

proofs. We will see how this phenomenon has again a nice physical interpretation.

In fact – it is what is called the nucleation phenomenon in physics. Nucleation

explains amongst other things how crystals grow, starting with a seed or nucleus.

We will discuss two important consequences of the nucleation phenomenon.

First, whenever we are in control of the graphical structure and the size of

the graph is not very crucial, it is natural to construct the graph according

to the above recipe. This results in graphs which are well suited for message-

passing processing and give very good performance. E.g., for the coding problem

this construction makes it possible to design codes which, under BP decoding,

are not only provably capacity-achieving for a particular channel, but are in

fact universally so, i.e., they are capacity-achieving for the whole class of BMS

channels. A similar construction is possible for the compressive sensing problem.

There is a second, equally important application of the idea, namely to use

180 Spatial Coupling and Nucleation Phenomenon

spatial coupling as a proof technique. Consider e.g. the case of the K-SAT prob-

lem. Also in this case we can use spatial coupling. This means we can construct

spatially-coupled K-SAT formulas, and it is easier to find satisfiable solutions

for such formulas than for the uncoupled ones. But what is the use of this? In

coding, we were in charge of picking the code, and so we can pick coupled ones.

The same thing applies for compressive sensing. We do not have the same degree

of freedom for the constraint satisfaction problem where the formula is given

to us. The idea is the following. If we are able to analyze the performance of a

message-passing algorithm on coupled formulas then we can use the so-called in-

terpolation method to show that this algorithmic threshold is also a lower bound

on the SAT/UNSAT threshold of the uncoupled ensemble. So in this case we use

spatial coupling only as a thought experiment. Indeed, the same method can be

used in the context of coding to prove that the MAP threshold of the uncoupled

formula is at least as large as the area threshold. Together with the upper bound

on the MAP threshold which we derived in Chapter 16 this shows that the MAP

threshold of the uncoupled ensemble is equal to the area threshold.

In the remainder of the chapter we go over our three running examples. In

each case we describe the construction, the performance of the coupled system,

as well as the consequences for our problem at hand.

18.1 Coding

There are many possible ways of constructing coupled graphical models from

uncoupled ones. The “saturation phenomenon” is fairly robust with respect to

the exact way of how we construct coupled models. So the difference lies mostly

in how convenient the construction is either from a practical perspective or for

the purpose of proofs. We present below two generic ways to achieve the spatial

coupling. We start with the “protograph” construction. It has a very good per-

formance and the additional structure is well suited for implementations. Our

second construction is a “random” model. This model is well suited for proofs.

Indeed, in the sequel we exclusively use the random model when it comes to

showing plots and to formulating theorems.

Protograph Construction

To start, consider a protograph of a standard (3, 6)-regular ensemble (see [?, ?] for

the definition of protographs). It is shown in Figure 18.1. There are two variable

nodes and there is one check node. Let M denote the number of variable nodes

at each position. For our example, M = 100 means that we have 50 copies of the

protograph so that we have 100 variable nodes at each position. For all future

discussions we will consider the regime where M tends to infinity.

Next, consider a collection of (2L+1) such protographs as shown in Figure 18.2.

These protographs are non-interacting and so each component behaves just like

18.1 Coding 181

Figure 18.1 Protograph of a standard (3, 6)-regular ensemble.

-L 0 L

Figure 18.2 A chain of (2L+ 1) protographs of the standard (3, 6)-regular ensembles
for L = 9. These protographs do not interact.

a standard (3, 6)-regular component. In particular, the belief-propagation (BP)

threshold of each protograph is just the standard threshold, call it εBP(l = 3, r =

6). Slightly more generally: start with an (l, r = kl)-regular ensemble where l is

odd so that bl/2c = (l − 1)/2 ∈ N.

We will now “coupled” these copies. To achieve this coupling, connect each

protograph to bl/2c protographs “to the left” and to bl/2c protographs “to the

right.” This is shown in Figure 18.3 for the two cases (l = 3, r = 6) and (l =

7, r = 14).

Note that bl/2c extra check nodes are added on each side to connect the

“overhanging” edges at the boundary. This reduces the rate of this ensemble

from 1− l
r = k−1

k to

R(l, r = kl, L) =
(2L+ 1)− (2(L+ bl/2c) + 1)/k

2L+ 1

=
k − 1

k
− 2bl/2c
k(2L+ 1)

,

Note that this rate loss decreases with the length of the chain. Therefore, in

practice we want to pick the length not too small. Of course, this increases the

blocklength and so there is a natural trade-off between the block length and the

rateloss due to the boundary.

In the above construction we had to assume that l was odd and also the

“width” of the connection was linked directly to the degree l. In this case the

construction leads to the very symmetric ensemble. It is not very hard to extend

this construction to cases where l is even and so that “width” of the connection

182 Spatial Coupling and Nucleation Phenomenon

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

Figure 18.3 Two coupled chains of protographs with L = 9 and (l = 3, r = 6) (top)
and L = 7 and (l = 7, r = 14) (bottom), respectively.

is no longer directly linked to l. But instead of following this path, let us directly

go to another extreme and introduce an ensemble which includes much more

randomness.

Random Construction

For the purpose of analysis, the following random ensemble is much betters

suited. Let us assume that r ≥ l, so that the ensemble has a non-trivial design

rate.

We assume that the variable nodes are at positions [−L,L], L ∈ N. At each

position there are M variable nodes, M ∈ N. Conceptually we think of the check

nodes to be located at all integer positions from [−∞,∞]. Only some of these

positions actually interact with the variable nodes. At each position there are
l
rM check nodes. It remains to describe how the connections are chosen.

Rather than assuming that a variable at position i has exactly one connection

to a check node at position [i− bl/2c, . . . , i+ bl/2c], we assume that each of the

l connections of a variable node at position i is uniformly and independently

chosen from the range [i, . . . , i + w − 1], where w is a “smoothing” parameter.

In the same way, we assume that each of the r connections of a check node at

position i is independently chosen from the range [i−w+ 1, . . . , i]. We no longer

require that l is odd.

More precisely, the ensemble is defined as follows. Consider a variable node at

position i. The variable node has l outgoing edges. A type t is a w-tuple of non-

negative integers, t = (t0, t1, . . . , tw−1), so that
∑w−1
j=0 tj = l. The operational

18.1 Coding 183

meaning of t is that the variable node has tj edges which connect to a check

node at position i + j. There are
(
l+w−1
w−1

)
types. Assume that for each variable

we order its edges in an arbitrary but fixed order. A constellation c is an l-tuple,

c = (c1, . . . , cl) with elements in [0, w − 1]. Its operational significance is that if

a variable node at position i has constellation c then its k-th edge is connected

to a check node at position i + ck. Let τ(c) denote the type of a constellation.

Since we want the position of each edge to be chosen independently we impose a

uniform distribution on the set of all constellations. This imposes the following

distribution on the set of all types. We assign the probability

p(t) =
|{c : τ(c) = t}|

wl
.

Pick M so that Mp(t) is a natural number for all types t. For each position i pick

Mp(t) variables which have their edges assigned according to type t. Further,

use a random permutation for each variable, uniformly chosen from the set of all

permutations on l letters, to map a type to a constellation.

Under this assignment, and ignoring boundary effects, for each check position

i, the number of edges that come from variables at position i− j, j ∈ [0, w− 1],

is M l
w . In other words, it is exactly a fraction 1

w of the total number Ml of

sockets at position i. At the check nodes, distribute these edges according to a

permutation chosen uniformly at random from the set of all permutations on

Ml letters, to the M l
r check nodes at this position. It is then not very difficult

to see that, under this distribution, for each check node each edge is roughly

independently chosen to be connected to one of its nearest w “left” neighbors.

Here, “roughly independent” means that the corresponding probability deviates

at most by a term of order 1/M from the desired distribution. As discussed

beforehand, we will always consider the limit in which M first tends to infinity

and then the number of iterations tends to infinity. Therefore, for any fixed

number of rounds of DE the probability model is exactly the independent model

described above.

lemma 18.1 (Design Rate) The design rate of the ensemble (l, r, L, w), with

w ≤ 2L, is given by

R(l, r, L, w) = (1− l

r
)− l

r

w + 1− 2
∑w
i=0

(
i
w

)r
2L+ 1

.

Proof Let V be the number of variable nodes and C be the number of check

nodes that are connected to at least one of these variable nodes. Recall that we

define the design rate as 1− C/V .

There are V = M(2L+ 1) variables in the graph. The check nodes that have

potential connections to variable nodes in the range [−L,L] are indexed from −L
to L+w−1. Consider the M l

r check nodes at position −L. Each of the r edges of

each such check node is chosen independently from the range [−L−w+ 1,−L].

The probability that such a check node has at least one connection in the range

[−L,L] is equal to 1 −
(
w−1
w

)r
. Therefore, the expected number of check nodes

184 Spatial Coupling and Nucleation Phenomenon

at position −L that are connected to the code is equal to M l
r (1 −

(
w−1
w

)r
).

In a similar manner, the expected number of check nodes at position −L + i,

i = 0, . . . , w−1, that are connected to the code is equal to M l
r (1−

(
w−i−1
w

)r
). All

check nodes at positions −L+w, . . . , L−1 are connected. Further, by symmetry,

check nodes in the range L, . . . , L+w−1 have an identical contribution as check

nodes in the range −L, . . . ,−L+w− 1. Summing up all these contributions, we

see that the number of check nodes which are connected is equal to

C = M
l

r
[2L− w + 2

w∑
i=0

(1−
(i
w

)r
)].

Discussion: In the above lemma we have defined the design rate as the normal-

ized difference of the number of variable nodes and the number of check nodes

that are involved in the ensemble. This leads to a relatively simple expression

which is suitable for our purposes. But in this ensemble there is a non-zero prob-

ability that there are two or more degree-one check nodes attached to the same

variable node. In this case, some of these degree-one check nodes are redundant

and do not impose constraints. This effect only happens for variable nodes close

to the boundary. Since we consider the case where L tends to infinity, this slight

difference between the “design rate” and the “true rate” does not play a role.

We therefore opt for this simple definition. The design rate is a lower bound on

the true rate.

Density Evolution

The protograph construction has a slightly better performance if we look at

codes of finite length and also, due to the extra structure, it might be easier to

implement. On the other hand, the random ensemble is easier to deal with when

it comes to proofs. Since asymptotically they behave essentially the same, we

concentrate in the sequel on the random case.

The (l, r, L, w) ensemble is just an LDPC ensemble with some additional struc-

ture. It’s asymptotic performance can hence again be assessed via density evolu-

tion. Therefore, as a first step let us write down the density evolution equations.

The only difference compared to the DE equations of the uncoupled ensemble is

that now we have a potentially different erasure probability for every position.

The state is therefore no longer a scalar quantity but a vector of the length of

the chain.

definition 18.2 (Density Evolution of (l, r, L, w) Ensemble) Let xi, i ∈ Z,

denote the average erasure probability which is emitted by variable nodes at

position i. For i 6∈ [−L,L] we set xi = 0. For i ∈ [−L,L] the FP condition

18.1 Coding 185

implied by DE is

xi = ε
(

1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

xi+j−k
)r−1

)l−1

. (18.1)

If we define

yi =
(

1− 1

w

w−1∑
k=0

xi−k

)r−1

, (18.2)

then (18.1) can be rewritten as

xi = ε
(

1− 1

w

w−1∑
j=0

yi+j

)l−1

.

EXIT Curves

As for uncoupled ensembles we can draw EXIT curves for the coupled case. Recall

that in the uncoupled case, the EXIT curve is a plot of the channel parameter

ε as a function of the EXIT value (1− (1− x)r−1)l, see e.g., Figure 16.4. In the

uncoupled case we had a simple analytical formula for this curve. For the coupled

case, no such formula exists, but one can compute the curves numerically.

Figure 18.4 shows the EXIT curves for the (l = 3, r = 6, L) for L = 1, 2, 4, 8, 16, 32, 64,

and 128. Note that these EXIT curves show a dramatically different behavior

h
E

P
B

ε

εB
P
(3

,
6
)
≈

0
.4

2
9
4

εM
A
P
(3

,
6
)
≈

0
.4

8
8
1

L=1

L=2

Figure 18.4 EBP EXIT curves of the ensemble (l = 3, r = 6, L) for
L = 1, 2, 4, 8, 16, 32, 64, and 128. The BP/MAP thresholds are
εBP/MAP(3, 6, 1) = 0.714309/0.820987, εBP/MAP(3, 6, 2) = 0.587842/0.668951,
εBP/MAP(3, 6, 4) = 0.512034/0.574158, εBP/MAP(3, 6, 8) = 0.488757/0.527014,
εBP/MAP(3, 6, 16) = 0.488151/0.505833, εBP/MAP(3, 6, 32) = 0.488151/0.496366,
εBP/MAP(3, 6, 64) = 0.488151/0.492001, εBP/MAP(3, 6, 128) = 0.488151/0.489924. The
light/dark gray areas mark the interior of the BP/MAP EXIT function of the
underlying (3, 6)-regular ensemble, respectively.

compared to the EBP EXIT curve of the underlying ensemble. These curves ap-

pear to be “to the right” of the threshold εMAP(3, 6) ≈ 0.48815. For small values

of L one might be led to believe that this is true since the design rate of such

186 Spatial Coupling and Nucleation Phenomenon

an ensemble is considerably smaller than 1− l/r. But even for large values of L,

where the rate of the ensemble is close to 1− l/r, this dramatic increase in the

threshold is still true. Empirically we see that, for L increasing, the EBP EXIT

curve approaches the MAP EXIT curve of the underlying (l = 3, r = 6)-regular

ensemble. In particular, for ε ≈ εMAP(l, r) the EBP EXIT curve drops essentially

vertically until it hits zero.

Decoding Wave

“The” key to understanding why spatially coupled ensembles perform so well is

to study their FPs under density evolution. Recall that for uncoupled ensembles

the FPs are scalars. For the coupled case the state of the system is no longer a

scalar but a vector, where the length of the vector is equal to the length of the

chain. Due to this fact, there are some very interesting FPs which appear.

Assume we are operating much above the threshold. Let us assume that we

decode until we are stuck and let us plot the final erasure probability at each

section along the chain. Then it is reasonably to expect that this erasure proba-

bility is equal to the erasure probability which we would observe for an uncoupled

ensemble. The only exception are positions very close to the boundary where the

behavior is a little bit better due to the extra information we have there. The

top picture in Figure 18.6 shows this situation together with the position of the

FP on the EXIT curve. Since the FP is symmetric with respect to the middle of

the chain, only one half is shown. Imagine that we now slowly lower the erasure

probability of the channel. Due to the improved conditions at the boundary, the

“effective” erasure probability at the boundary will at some point be below the

BP threshold of the uncoupled ensemble and the BP decoder will be able to

decode the bits at the boundary. But once these bits are decoded this will lower

the “effective” erasure probability for bits a little bit further into the chain. This

effect propagates like a wave and the whole chain will get decoded. The middle

and the bottom picture in Figure 18.6 show the wave in various stages.

The perhaps the most surprising aspect is that the BP threshold for the cou-

pled chain is exactly the area threshold of the uncoupled one.

¡¡¡¡¡¡¡ .mine Figure 18.6 shows the FP for various parameters of the channel to-

gether with the position of the FP on the EXIT curve. Since the FP is symmetric

with respect to the middle of the chain, only one half is shown.

Main Statement

theorem 18.3 (BP Threshold of the (l, r, L, w) Ensemble) Consider trans-

mission over the BEC(ε) using random elements from the ensemble (l, r, L, w).

Let εBP(l, r, L, w) denote the BP threshold and let R(l, r, L, w) denote the design

rate of this ensemble.

18.1 Coding 187

Figure 18.5 FPs for various parameters of the channel together with the position of
the FP on the EXIT curve.

Figure 18.6 FPs for various parameters of the channel together with the position of
the FP on the EXIT curve.

Then, in the limit as M tends to infinity, and for w sufficiently large

εBP(l, r, L, w) ≤ εMAP(l, r, L, w) ≤ εMAP(l, r)+
w − 1

2L(1−(1−xMAP(l, r))r−1)l
, (18.3)

εBP(l, r, L, w) ≥
(
εMAP(l, r)−w− 1

8

8lr + 4rl2

(1−4w−
1
8)r

(1−2−
1
r)2

)
×
(
1− 4w−1/8

)rl
. (18.4)

188 Spatial Coupling and Nucleation Phenomenon

In the limit as M , L and w (in that order) tend to infinity,

lim
w→∞

lim
L→∞

R(l, r, L, w) = 1− l

r
, (18.5)

lim
w→∞

lim
L→∞

εBP(l, r, L, w) = lim
w→∞

lim
L→∞

εMAP(l, r, L, w)

= εMAP(l, r). (18.6)

Roughly speaking, the above theorems states that the BP threshold of the

coupled chain is equal to its MAP threshold and also to the MAP threshold of the

uncoupled chain. The statements in the theorem are considerably weaker than

what can be observed empirically. In particular, the convergence with respect to

the coupling width is conjectured to be exponential in w.

A very similar statement can be shown to hold for transmission over general

channels. In particular, one can show that these ensembles are good universally

for the whole class of BMS channels.

18.2 Compressive Sensing

The idea of spatial coupling can also be used in compressive sensing to attain

optimal performance by message passing. In a nutshell, the idea is to construct

appropriate sensing matrices that correspond to a “spatially coupled” factor

graph and then to apply an AMP type algorithm. The performance of the al-

gorithm is then analyzed through a state evolution recursion tailored to the

spatially coupled graph. This turns out to be a one-dimensional recursion which

displays similar phenomena than those described for the BEC.

In Chapter 12 our starting point was the Lasso estimator which is a reason-

able starting point to develop a universal algorithm that doe not assume a prior

knowledge of the signal distribution in the class Fε. Recall that the state evolu-

tion equation in Chapter 13 has at most one fixed point. Therefore, intuitively,

one does not expect that any improvement in performance can be obtained by

spatial coupling. This has indeed been corroborated by numerical simulations.

We will therefore turn our attention to a setting where the prior distribution of

the signal is known.

AMP when the prior is known

We assume that the signal distribution is from the class Fε and that it is known.

In other words p0(x) = (1 − ε)δ0(x) + εφ0(x) for a known φ0(x) (for example a

Gaussian distribution). As explained in Chapter 4, in this setting the optimal

estimator is the MMSE estimator (4.30). In Chapter 7 we went through the be-

lief propagation equations in Example 12. This approach can be systematically

developed in order to recursively compute the BP-estimate. Furthermore, fol-

lowing the same route as in Chapter 12, these message-passing equations can be

18.2 Compressive Sensing 189

simplified in order to arrive at an AMP algorithm that is very similar to (12.16).

By skimming through the previous chapters one can almost guess the form of

the new algorithm.

In (12.16) the update of the AMP-estimate uses the soft thresholding function

η(y, λ) found by solving the scalar Lasso problem. The reader should not be too

surprised that now the AMP updates involve a thresholding function given by the

MMSE estimator of the scalar case. Consider a scalar measurement y = x+ νz

of “signal” x affected by Gaussian noise with variance ν2 (so Z ∼ N(0, 1)) the

thresholding function is

η0(y, ν) = E[X|X + νZ = y] =

∫
dxx p0(x)e−

(y−x)2

2ν2∫
dx p0(x)e−

(y−x)2
2ν2

.

We stress that η0(y, ν) is not universal and depends on the prior. Here ν plays

the role of a threshold level analogous to λ in the Lasso case. It will be adjusted

at each AMP iteration. The mean square error for this optimal estimator (of the

scalar problem) is the MMSE function1

mmse(ν−2) = E
[
(X − E[X|X + νZ])2

]
=

∫
dx p0(x)

∫
dz

e−
z2

2

√
2π

(x− η0(x+ νz, ν))2.

The AMP updates are the same than in Chapter 12 except η is replaced by η0,

x̂
(t+1)
i = η0

(
x

(t)
i +

m∑
a=1

Aair
(t)
a , ν(t)

)
, (18.7)

r(t)
a = ya −

n∑
j=1

Aaj x̂
(t−1)
j + b(t)rt−1

a . (18.8)

If you go back to the derivation of the Onsager term in Chapter 12 you will see

that it can be traced back to a derivative of the soft thresholding function. You

can guess that now

b(t) =
1

δn

n∑
i=1

η′0
(
x

(t−1)
i +

m∑
a=1

Aair
(t−1)
a , ν(t)

)
. (18.9)

Similarly recall that in Chapter 13 we expressed the threshold level ν(t) thanks

to the MSE through (13.8). Here one arrives at the same conclusion, namely

(ν(t))2 = σ2 +
1

δ
(τ (t))2, (18.10)

where τ (t)2 is the average (normalized) MSE of the AMP algorithm (τ (t))2 =

limn→+∞
1
nE‖x̂

(t) − x0‖2. We can track its evolution thanks to the recursion

(same as (13.10) with correct η0-function)

(τ (t+1))2 = mmse((ν(t))−2). (18.11)

1 By convention the argument of the MMSE function is a signal-to-noise-ratio, here ν−2.

190 Spatial Coupling and Nucleation Phenomenon

In hindsight one can develop an interpretation for this equation: at time t + 1

the total quadratic error (τ (t+1))2 for the AMP estimate is given by the MMSE

of a scalar signal with effective noise variance σ2 + 1
δ (τ (t))2 at time t.

Let us summarize. Equations (18.11) and (18.10) give the evolution of the

MSE and the threshold level. These quantities can be precomputed. Equations

(18.8) and (18.9) define the AMP algorithm, and allow to compute the estimates

for the signal.

Construction of the measurement matrix

Let us first explain the general idea. In the standard case considered so far, the

measurement matrices have iid entries Aai ∼ N (0, 1√
m

) so that ”their factor

graph” is a complete bipartite graph with m checks and n variables. The ratio

δ = m/n is the sampling rate. Inspired by the construction of spatially coupled

codes one may try to use matrices associated to a spatial chain of L complete

bipartite graphs coupled across a window of size w. This turns out to be a

successful idea! The sampling rate is still equal to δ in the bulk of the chain.

At the boundary one has to add extra check nodes or equivalently one has to

oversample. Indeed, in order to create a seed that gets the nucleation process

started one needs a good estimate of the first few components of the signal. The

increase in sampling rate is negligible in the thermodynamic limit.

In practice, because the AMP algorithm updates purely local quantities (the

BP messages flowing along edges have been eliminated), one can forget about the

factor graph and specify directly the sensing matrix. You can convince yourself

that the sensing matrix described here has a factor graph that is a chain of

coupled complete bipartite graphs. There are many possible constructions and

ways to optimize the finite length performance. But these issues will not concern

us here, and we discus a similar construction which is similar to the one presented

in the coding case.

The signal has n components in total and we make m measurements. The

measurement matrix has n columns and m rows. Think of n given and m to

be determined later. Partition the columns in L groups2 c ∈ {1, . . . , L} with N

columns each, so N = n/L. Consider L + w − 1 groups of rows r ∈ {−(w −
2), . . . , 0, 1, . . . , L}, each with M = δN rows. The total number of measurements

is m = (w−1)M+ML = δn(1+(w−1)/L). The contribution of the oversampling

rate to the total rate m/n = δ(1 + (w − 1)/L) vanishes for large L.

Now consider an (L+ w − 1)× L matrix of variances Jrc. A simple choice is

Jr,c =

{
1

2w−1 if c ∈ {r − w + 1, . . . , r + w − 1}
0 otherwise

Here we use a simple square-like and symmetric shape function for Jr,c. One can

generalize this to Jr,c = ρJ (ρ|r − c|) with ρ = (2w − 1)−1 and a shape function

2 One can visualize the groups as positions along the chain.

18.2 Compressive Sensing 191

J (z) that is positive, supported on [−1,+1] and
∫ +1

−1
dz J (z) = 1. Let us also

note that taking larger variances for the seeding part of the matrix may lead to

better performance. In the sequel all equations are valid for general choices of

Jr,c.

To specify the matrix elements of Aai, we introduce the notation R(a) and

C(i) for the groups (r and c) to which row a and column i belong. A simple

choice is to take iid entries

Aai ∼ (0,
1

M
JR(a),C(i))

We notice that by construction we have the normalization
∑
iA

2
ai ≈ 1, as in

the standard (uncoupled) case. This matrix has a band structure with a band of

height and width wM ×wN . However the correct regime in which the spatially

coupled model is used is N >> L so effectively the matrix is ”full”.

Spatially coupled AMP

The starting point - the BP equations - are exactly the same except they are

applied to a bigger factor graph. The derivation of the coupled AMP algorithm

then proceeds in the usual way by retaining only important terms in the regime

N → +∞ and L fixed.

It turns out that the resulting equations have a few extra complications.

Namely, due to coupling, the sensing matrix elements get ”renormalized” and the

threshold level as well as the Onsager term get ”averaged”. The AMP equations

now read

x̂
(t+1)
i = η0

(
x

(t)
i +

m∑
a=1

Q
(t)
R(a),C(i)Aair

(t)
a , ν

(t)
C(i)

)
(18.12)

r(t)
a = ya −

n∑
j=1

Aaj x̂
(t−1)
j + b

(t)
R(a)r

t−1
a (18.13)

where

b
(t)
R(a) =

1

δ

L∑
c=1

JR(a),cQ
t−1
R(a),c

{
1

N

∑
i s.tC(i)=c

η′0
(
x

(t)
i +

m∑
b=1

Q
(t)
R(b),C(i)Abir

(t)
b , ν

(t)
C(i)

)}

The threshold levels ν
(t)
C(i) and the weights QR(a),C(i) depend only on the local

MSE (τ
(t)
c)2 = limN→+∞

1
N

∑
i s.tC(i)=c E‖x̂

(t)
i − x0,i‖22. These quantities can

all be pre-computed from state evolution. The threshold level is given by (a

generalization of (18.10))

(ν(t)
c)−2 =

∑
r

Jr,c
(
σ2 +

1

δ

∑
c

Jr,c(τ
(t)
c)2

)−1
, (18.14)

This equation says that the threshold for estimates of the signal components in

group c is given by an average of the signal to noise ratios for measurements in

192 Spatial Coupling and Nucleation Phenomenon

the groups r ∈ {c−w+ 1, . . . , c+w− 1}, and the later are themselves given by

an average of the local MSE in the groups c ∈ {r − w + 1, . . . , r + w − 1}. The

sensing matrix gets renormalized by weights

Qr,c =

(
σ2 + 1

δ

∑
c Jr,c(τ

(t)
c)2

)−1∑
r Jr,c

(
σ2 + 1

δ

∑
c Jr,c(τ

(t)
c)2

)−1 .

Finally, the local MSE evolves as

(τ (t+1)
c)2 = mmse((ν(t)

c)−2), c = 1, . . . , L (18.15)

Equations (18.14)-(18.15) are the one dimensional state evolution recursion and

can be used to derived the performance of AMP on the spatially coupled model.

The reader should ponder on this recursion and realize that its structure is

perfectly analogous to the DE recursion in coding for the BEC.

Analysis of Performance and Phase Diagram

The discussion in this paragraph is valid for a fairly wide class of functions φ0(x),

but a good exercise for the reader is to verify the claims for a Gaussian φ0(x).

This can be done analytically for the uncoupled case and numerically in the

coupled case. Notice that in this case η0(y, s) can be explicitly be computed.

Consider the recursion (18.11) and look at the corresponding fixed point equa-

tion. Let

δ̃(p0) ≡ sup
ν
{ν−2mmse(ν−2)} > ε

Here the equality is definition. The inequality is a fact, which follows by remark-

ing limν→0 ν
−2mmse(ν−2) = ε. For a sampling rate δ > δ̃(p0) there exists only

one fixed point solution (τgood)2 = O(σ2). This corresponds to correct recon-

struction in the small noise limit σ → 0. Now, decrease the sampling rate in the

range ε < δ < δ̃(p0). One finds two or more stable fixed points (as well as unsta-

ble ones) for all σ2 > 0. Besides the ”good” fixed point satisfies (τgood)2 = O(σ2)

there is a ”bad” one, i.e. (τbad)2 = Θ(1) as σ → 0. Under the (natural) initial

condition (τ0)2 = +∞ one always tends to (τbad)2. This means that the noise

sensitivity limσ→0MSE/σ2 diverges, and exact reconstruction is not possible

even for very small noise. In this context δ̃(p0) is the algorithmic threshold of

AMP. The analogous quantity in our coding model is εBP and it the CW model

it is the spinodal point.

This threshold is lower than the Lasso (or l1) threshold derived in Chapter 13.

This is not too surprising since the later concerns the worst case distribution for

p0 ∈ Fε. It is instructive to compute the phase diagram and plot the optimal,

Lasso and AMP phase transition lines in the (ε, δ) plane.

Let us now turn our attention to the coupled model. The performance is an-

alyzed through the one dimensional recursion (18.14)-(18.15) which gives the

evolution of the MSE profile τ
(t)
c , as a function of time t and position along the

18.3 K-SAT 193

chain c = 1, . . . , L. For δ > δ̃(p0) the local MSE tends to (τc,good)2 = O(σ2)

uniformly along the chain. The advantage brought by spatial coupling appears

for a sampling rate in the range ε < δ < δ̃(p0). For L → +∞ and fixed w ≥ 2

there is a δ̃(p0, w) < δ̃(p0) such that for δ > δ̃(p0, w) the local MSE per position

is bounded by O(σ2), and in particular the noise sensitivity remains finite. Be-

cause of the oversampling of the first few signal components, the MSE falls down

to a level O(σ2) for these components, and then an estimation wave propagates

along the chain. Eventually the local MSE converges to the good fixed point for

all positions τgood,c = O(σ2). Furthermore one observes that δ̃(p0, w) → ε as

w → +∞. In other words in the regime N >> L >> w >> 1 the dynamical

AMP threshold saturates towards the optimal phase transition threshold. Figure

?? illustrates the phase diagram and the phase transition lines in teh (ε, δ) plane

for various values of L and w.

18.3 K-SAT

For the random K-SAT problem we discussed several algorithms. The best one

is BP-guided decimation. We described this algorithm and its empirical perfor-

mance in Chapter 15. If we apply spatial coupling to this algorithm we see no

boost in performance. This does not mean that spatial coupling does not help for

this problem. It just means that BP-guided decimation is not the right setting for

the nucleation phenomenon. The “right” setting is in fact a more sophisticated

algorithm called survey propagation.

Rather than pursuing this avenue, let us go to a simpler algorithm, namely the

UCP algorithm which we discussed in Chapter 14. We will see that spatially cou-

pled formulas have a significantly higher threshold under UCP than uncoupled

ones. Combined with the interpolation method this gives good lower bounds on

the SAT/UNSAT threshold of uncoupled systems.

Construction

As for the case of coding, there are various ways of constructing coupled K-SAT

formulas. E.g., Figure 18.7 shows the equivalent of a protograph ensemble for

the case K = 3 where each clause at position i has exactly one connection to a

variable at position i, i+ 1, and i+ 2.

For the purpose of analysis it is again more convenient to consider a random

ensemble. As before, let w be a window size. Then, for each clause at position i

and for each of its K connections we independently and uniformly pick a variable

at a position in the range [i, i + w − 1] and connect it to this variable with a

uniformly chosen sign. This is the ensemble which we consider in the sequel.

194 Spatial Coupling and Nucleation Phenomenon

0 L− w

0 L− w L− 1

Figure 18.7 A “protograph”-like coupled K-SAT ensembles or K = 3.

Performance under the UCP Algorithm

Let us now focus on the UC algorithm for the coupled formulas. As for the un-

coupled case, the UC algorithm consists of two main steps: free and forced. The

operation of the algorithm at a forced step is clear: remove all the unit-clauses

until no further unit-clause exists. However, at a free step, depending on how

we might want to use the chain structure of the formula, we can have different

schedules for choosing a free variable. For a coupled formula, the schedule within

which we are choosing a variable in a free step is important

Consider for instance the following naive schedule – at a free step, pick a

variable uniformly at random from all the remaining variables and fix it by

flipping a coin. Computer experiments indicate that this naive schedule has no

threshold gain compared to the un-coupled ensemble. This is not surprising since

this schedule does not exploit the spatial (chain) structure of the formula. Hence,

in order for the UC algorithm to have a threshold improvement over the coupled

ensemble, we need to come up with schedules that exploit the additional spatial

structure of the formula. We proceed by illustrating one such successful schedule.

In the very beginning of the algorithm, all the check nodes have degree K and

there are no unit clauses. Hence, we are free to fix the variables in the first few

steps of the algorithm. Let us fix the variables from the left-most position (i.e.,

the boundary). If we do this then we are creating in effect a seed at the boundary

of the chain. Continuing this action at the free steps, we will eventually create

unit clauses and at these forced steps a natural choice is just to clear all the

unit clauses. However, when we are confronted with a free step, we will again

try to help this seed to grow inside the chain, i.e., we always fix variables from

the left-most possible position. Consequently, the schedule that we apply is as

follows.

• At a free step, pick a variable randomly from the left-most position at which

variables exists and fix it permanently by flipping a fair coin.

• At a forced step, remove unit clauses as long as they exist.

Computer experiments show that this schedule indeed exhibits a threshold

improvement over the un-coupled ensemble. E.g., for the coupled 3-SAT problem,

experiments suggest that the threshold of the UC algorithm is around 3.67. This

18.3 K-SAT 195

is a significant improvement compared to the threshold of UC for the un-coupled

ensemble which is 8
3 .

To prove that indeed this schedule leads to this threshold we use again the

Wormald method. This means, we write down a set of differential equations which

describe the expected progress of the algorithm. Not surprisingly, the number of

differential equations we need scales linearly in the chain length.

Phases, Types, and Rounds

For the coupled ensemble, the analysis of the evolution of UC is much more in-

volved than the un-coupled ensemble. This is because of the fact that the schedule

we have used prefers the left-most variable position in a free step. Hence, the

number of variables in different positions will evolve differently. As an example,

one can easily see that during the algorithm, the first position that all its vari-

ables are set is the left-most position (i.e., position 0). After the evacuation of

position 0, position 1 becomes the left-most position of the graph and hence, the

second position that becomes empty of variables is position 1. Continuing in this

manner, the last position that is evacuated is position L + w − 2. With these

considerations, we consider L+w−1 phases for this algorithm (see Figure 18.8).

At phase p ∈ {0, 1, · · · , L+w − 2}, all the variables at positions prior to p have

been set permanently and as a result, at a free step we will pick a variable from

position p.

This statistical asymmetry in the number of variables at each position also

affects the the behavior of the number of check nodes in each position. As a

result, we consider types for the check nodes. For instance, consider a degree two

check node. It is easy to see that the probability that this degree two check node

is hit (removed or shortened) is greatly dependent on the position of variables

that it is connected to. This means that, dependent on the variable positions

to which they are connected, we have different types of degree two check nodes.

Clearly, the same statement holds for clauses of degree three, four, etc.

Let us now formally define the ingredients needed for the analysis. The no-

tation we use here is slightly hard to swallow immediately. Thus, for the sake

of maximum clarity, we try to uncover the details as smoothly as possible. We

consider rounds for this algorithm. Each round consists of one free step followed

by the forced steps that follow it. More precisely, at the beginning of each round

we perform a free step and then we clear out all the unit-clauses as long as they

exist (forced steps). We let time t be the number of rounds passed so far. This

time variable will be called round time. The relation between t and the natural

time (the total number of permanent fixes) is not linear. We also let Li(t) be the

number of literals left in variable position i ∈ {0, 1, · · · , L+ w − 2}.
We now define the check types. Consider a coupled K-SAT formula to begin

with. For such a formula there are L sets of check nodes placed at positions

{0, 1, · · · , L}. Let us consider a specific position i ∈ {0, 1, · · · , L} and look at the

check nodes at position i. Each of these check nodes can potentially be connected

196 Spatial Coupling and Nucleation Phenomenon

Figure 18.8 A schematic representation of how the literals at each of the positions
vary in time. The horizontal axis corresponds to time t which is the number of free
steps. Here we have L = 11 and w = 3. This plot corresponds to an implementation of
the UC algorithm on a random coupled instance. The blue numbers below the plot
are the phases of the algorithm. In the beginning of the algorithm, we are in phase 0.
This phase lasts until all the literals in the first position are peeled off and as a result
`0(t) reaches 0. We then go immediately to phase 1 and this phase lasts till `1(t)
reaches 0 and so on. We have in total L+ w − 1 = 13 phases.

to any set of K variables resting in variable positions {i, i + 1, · · · , i + w − 1}.
Some thought shows that there are various types of check nodes depending on

the variable positions that they are connected to. For example, there is a type of

check nodes for which all of the K edges go only into a single variable position

j ∈ {i, i + 1, · · · , i + w − 1} or there is a type for with some of its edges go

to position i and the rest go to position i + 1 and so on. Also, as we proceed

through the UC algorithm, some of these checks are shortened to create new

types of checks with degrees less than K. We now explain a natural way to

encode these various types.

By C(t, i, τ) we mean the number of check nodes at check position i ∈ {0, 1, · · · , L}
that have type τ at round tme t. The type τ = (τ0, · · · , τw−1) is a w-tuple and

indicates that relative to position i, how many edges the check has in (variable)

positions i, i+1, · · · , i+w−1. The best way to explain τ is through an example.

Let us assume w = 4 and consider the set of check nodes at check position 20

that are only connected to variable positions 20, 22, 23 in the following way. For

each of these check nodes there are exactly two edges going to position 20, and

1 edge going to position 22 and 1 edge going to position 23 (thus each of these

checks have degree 4). Figure 18.9 illustrates a generic check node of this set.

We denote the number of these checks at time t by C(t, 20, (1, 0, 2, 1)). In

18.3 K-SAT 197

Figure 18.9 A schematic representation of checks which contribute to
C(t, 20, (1, 0, 2, 1)). All the check nodes that contribute to C(t, i, τ), were initially (at
time 0) degree K check nodes resting at check position i. However, the algorithm has
evolved in a way that these check nodes have been deformed (possibly shortened or
remained unchanged) to have a specific type τ .

other words, the type is computed as follows: the check position number that

the check rests in is 20. This check is connected to a variable at position 20, and

2 variables at position 22, and a variable at position 23. So, relative to the check

position 20, we see the edge-tuple (1, 0, 2, 1). Let us now repeat and generalize:

By C(t, i, τ) we mean the number of check nodes, at time t, which rest in position

i, and τ is a w-tuple that indicates relative to variable position i, the number

of edges that go to positions i, i+ 1, · · · , i+ w − 1, respectively. One can easily

see that by summing up elements of the w-tuple τ = (τ0, · · · , τw−1), we find the

degree of the corresponding check type. We denote the degree of a type τ by

deg(τ). It is also easy to see that there are
(
d+w−2
d−1

)
different types of degree d

for d ∈ {2, 3, · · · ,K}. We are now ready to write the differential equations. Our

approach is as follows. Assume the phase of the algorithm is p and we are in a

round t. At a free step, we fix a variable at position p (free step). This will create

a number of forced steps in each of the positions p, p+ 1, · · · , L+w− 1. We first

compute the average of these forced fixes in each variable position as a function

of the number of degree two check nodes. Using these averages, we then update

the average number of check and variable nodes at each position. We proceed by

explaining a key property for the analysis.

The Differential Equations

Now, having the vector β we can find how the number of variables and checks

evolve. For all i ≥ 0,

∆Li(t) = Li(t+ 1)− Li(t) = −2βi(t). (18.16)

To see how the check types evolve, we note that for a given check type there are

two kinds of flows to be considered. A negative flow going out and a positive

flow coming in from the checks of higher degrees. In this regard, for a type

τ = (τ0, · · · , τw−1) with deg(τ) < K let ∂τ be the set of types of degree deg(τ)+1

198 Spatial Coupling and Nucleation Phenomenon

such that by removing one edge from them we reach to the type τ . The set ∂τ

consists of w types which we denote by τd, d ∈ {0, 1, · · · , w − 1}, such that

τd = τ + (0, · · · ,
d
1, · · · , 0), (18.17)

where + denotes vector addition in the field of reals. Thus, if deg(τ) < K, we

obtain

∆C(t, i, τ) = −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
+

w−1∑
d=0

(1 + τd)βi+d(t)
C(t, i, τd)

Li+d(t)
. (18.18)

The right-hand side of (18.18) has two parts. The first part corresponds to the

flow that is going out of C(t, i, τ) and has negative sign. The right part is the

incoming flow from the check nodes of higher degrees. In the case where deg(τ) =

K, we only have an outgoing flow since no check node with higher degrees exist.

Hence, for the case deg(τ) = K we can write

∆C(t, i, τ) = −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

Li+d(t)
. (18.19)

We now write the initial conditions for the variables and check types. Firstly,

note that Li(0) = 2N . In the beginning of the algorithm, all checks are of degree

K, thus for types τ such that deg(τ) < K, we have C(0, i, τ) = 0. For deg(τ) = K

we have

C(0, i, τ) = αN

(
K

τ0,τ1,··· ,τw−1

)
wK

. (18.20)

In order to write the differential equations, we re-scale the (round) time by N ,

i.e.

t← t

N
, (18.21)

and also normalize all our other numbers by N , i.e.,

c(t, ·, ·) =
C(Nt, ·, ·)

N
and `i(t) =

Li(Nt)

N
. (18.22)

We then obtain for i ∈ {0, 1, · · · , L+ w − 2},

d`i(t)

dt
= −2βi(t). (18.23)

For i ∈ {0, 1, · · · , L− 1} and deg(τ) < K we have

dc(t, i, τ)

dt
= −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

`i+d(t)
+

w−1∑
d=0

(1 + τd)βi+d(t)
c(t, i, τd)

`i+d(t)
, (18.24)

and otherwise if deg(τ) = K we have

dc(t, i, τ)

dt
= −2

w−1∑
d=0

βi+d(t)
τdc(t, i, τ)

`i+d(t)
. (18.25)

18.3 K-SAT 199

K 3 4 5

αUC(K) 2.66 4.50 7.58

αUC,L=50,w=3(K) 3.67 7.81 15.76

Table 18.1 First line: The thresholds for UCP on the uncoupled ensemble. Second line:
UCP threshold for a coupled chain with w = 3, L = 50.

The vector β̄ is also found as follows. For p being the current phase, we have

β(t) = (β0(t), · · · , βL+w−2(t))T = (I −A)−1ep, (18.26)

where A = [Ai,j](L+w−1)(L+w−1) has the form

Ai,j =
1

`j(t)

∑i
k=i−w+1 2c(t, k, πi−k,i−k) i = j,∑i
k=j−w+1 c(t, k, πi−k,j−k) 0 <| i− j |< w,

0 otherwise

(18.27)

Finally, the initial conditions are given by:

`i(0) = 2, for 0 ≤ i ≤ L+ w − 2

c(0, i, τ) =

{
α

(K
τ0,τ1,··· ,τw−1

)
wK

if deg(τ)= K and 0 ≤ i ≤ L− 1,

0 otherwise
(18.28)

Numerical Implementation

We have implemented the above set of differential equations in C. We define

the threshold αUC,L,w(K) as the highest density for which the spectral norm

(largest eigenvalue) of the matrix A is strictly less than one throughout the whole

algorithm. A practical point to notice here is that, for the sake of implementation,

we assume a phase p finishes when its corresponding variable `p(t) goes below

a (very) small threshold ε > 0. In our implementations, we have typically taken

ε = 10−5. However, it can be made arbitrarily small as long as the computational

resources allow.

Table 18.1 shows the value of αUC,L,w(K) with L = 50 and w = 3 for different

choices of K. As we observe from Table 18.1, for the UC algorithm with the

specific schedule mentioned above, there is a significant threshold improvement

over the un-coupled ensemble.

For L = 50, w = 3,K = 3 and several values of α, we have plotted in Fig-

ure 18.10 the evolution of largest eigenvalue of A as a function of round time t.

In order to characterize analytically the ultimate threshold for the UC algo-

rithm when L and w grow large, we proceed by further analyzing the set of

differential equations.

200 Spatial Coupling and Nucleation Phenomenon

0 1
4

1

α = 3.2 α = 3.4

0 1
4

1

α = 3.5

0 1
4

1

α = 3.66

0 1
4

1

Figure 18.10 The largest eigenvalue of the matrix A, plotted versus the round time t
(the number of rounds divided by the total number of variables NL). The plots
correspond to an actual implementation of the UC algorithm for the 3-SAT coupled
ensemble with L = 50 and w = 3. As we observe, for α < 3.67, there is a gap between
the largest eigenvalue of A and the value 1 throughout the UC algorithm. By
increasing α this gap shrinks to 0. For α = 3.66 (the right-most plot) this gap is
around 0.006.

19 Variational Formulation and the
Bethe Free Energy

In our previous lectures we have discussed how we can analyze the performance of

various low-complexity algorithms, in particular algorithms of message-passing

type. We have seen that in the limit of infinite system size, such algorithms have

threshols and we were able to characterize these thresholds quantitatively. Such

thresholds are often called dynamical thresholds since they are associated to the

dynamics of a process (for us this is the algorithm).

But there is typically also a static phase transition. This corresponds to a

phase transition which describes a change of the system behavior itself, inde-

pendent of any algorithmic question. E.g., in coding we can ask how much noise

we can add so that with high probability there is a unique codeword which is

“compatible” with the received information. In communicatons jargon, this cor-

responds to the MAP threshold. For compressive sensing we can ask how the

number of measurements has to scale with the number of unknowns so that

with high probability there is a unique sparse vector which is compatible with

the measurements. Finally, in K-SAT we can ask how many constraints we can

have per Boolean variable so that with high probability a random formula is

satisfiable. This is usally refered to as the SAT-UNSAT threshold.

Why are we interested in these quantities? Some systems are given to us and

we cannot change them (e.g., K-SAT). In this case it is important to know

how well a computationally unbounded system could do in order to gauge how

well our algorithm is performing. But often we are actually in control of the

system itself. E.g., think of the coding problem or also compressive sensing. It is

typically us who designs the code or the measurement matrix. So in these cases

it is important to know that the system itself is designed in such a way that at

least in principle (if we had unbounded computational resources at our disposal)

it has a good performance (comparable to the optimal one). E.g., in coding we

can then compare the MAP threshold to the ultimate limit, namely the Shannon

threshold and hopefully these two thresholds are close.

As we will see, there are two basic themes which appear. First, static thresholds

are in general much harder to compute than the dynamical ones. This is why we

have postponed this discusson towards the end. In a few cases we will be able

to derive rigorous quantitative statements. In some other ones, we will have to

be content with computations which are believed to yield the correct value but

fall short of a mathematical proof. The second, perhaps more surprising theme

202 Variational Formulation and the Bethe Free Energy

is that the analysis of the static threshold can often be done by looking at the

behavior of the message-passing algorithm! Why message-passing, a sub-optimal

algorithm, should have any bearing on the behavior of the optimal algorithm is

at first glance puzzling.

As we will see, the key object which connects these two themese is the so-called

Bethe free energy. It is an “approximation” to the true free energy which itself

depends on the fixed points of the message-passing algorithm. In some instances

the static thresholds predicted by the Bethe free energy can be shown to be

indeed correct.

Let us discuss this in more detail. Computing the true free energy for general

graphical models (or statistical mechanics models) is an impossible task. An

important approximation philosophy is the so-called ”mean-field theory.” In this

theory, when looking at the interactions of a “spin” with the rest of the system,

we only take into account very close neighbors exactly, but model influences of

the remaining system simply by a “mean field,” i.e., a field which models the

average influence of this part of the system. For models defined on sparse graphs

that are locally tree-like, a very good form of mean filed theory was developed by

Bethe and Peierls. This leads to the so-called Bethe free energy approximation.

We note that this is already a “sophisticated” version of the most basic mean

field theory.

As we will see the Bethe-Peierls theory involves fixed point equations that are

the same as those occurring in Belief-Propagation. Their use and to some extent

interpretation are however different. Note that there is a clash of initials (BP)

that is solely due to an historical accident. We hope that this will not cause

major confusions.

In this chapter we treat in detail the case of graphical models with a discrete

alphabet X . As a direct application we will look more closely at the cases of

coding and K-SAT. For models with a continuous alphabet such as those occur-

ing in the context of compressive sensing the ideas are conceptually the same,

but the calculations have to be slightly adapted. We consider a general Gibbs

measure of the form

µ (s) =
1

Z

∏
a

fa (x∂a) , (19.1)

where the variables xi ∈ X , i = 1, . . . , n and fa, a = 1, . . . ,m are kernel functions

associated to check nodes which depend on x∂a = {xi, i ∈ ∂a}. In Chapter 7

we discussed the sum-product algorithm that computes BP-marginals for such

measures. Recall that these are the exact marginals when the graph is a tree.

Similarly we will see that on a tree the free energy

f = − 1

βn
lnZ, (19.2)

can be expressed exactly in terms of the marginals of the measure. This is the

starting point of the formalism developped in this chapter.

19.1 The Gibbs measure on trees 203

Figure 19.1 Induction procedure: G is the original tree to which we add check c
connected to i such that the new graph is a tree

19.1 The Gibbs measure on trees

Consider the (exact) marginals

νi (xi) =
∑
∼xi

µ (x1, ..., xN) , νa (x∂a) =
∑
∼x∂a

µ (x1, ..., xN) .

As explained in Chapter 7 on a tree these can be computed exactly by the

sum-product algorithm. More is true.

Lemma 19.1.1 The Gibbs measure on a tree can be expressed in terms of its

marginals as follows,

µ (x) =
∏
a

νa (x∂a)
∏
i

(νi (xi))
1−di (19.3)

where di is the degree of node i.

Proof We prove (19.3) by induction over number the number m of check nodes.

For m = 1 the unique clause is connected to variable nodes with di = 1. Thus

(19.3) is trial in this case. Now, we assume (19.3) is true for a tree graph G with

m check nodes and prove that it also holds for the new Gibbs measure

µnew

(
x∂c\i, x1, ..., xn

)
=

1

Znew

fc (x∂c)
∏
a

fa (x∂a) (19.4)

obtained when one adds one check node c connected to a variable node i in such

a way that the new graph1 is a tree. The original tree G and the new tree are

depicted on figure19.1

Consider the conditional probability Pr
(
x∂c\i | x1, ..., xn

)
of an assignement

x∂c\i given x1, . . . , xn. We observe that

Pr
(
x∂c\i | x1, ..., xn

)
= Pr

(
x∂c\i | xi

)
=
νnew,c (x∂c)

νnew,i (xi)
.

1 We do not discuss the somewhat trivial case where the new check is disconnected.

204 Variational Formulation and the Bethe Free Energy

Figure 19.2 Factor graph for the marginal distribution (19.6). We select an arbitrary
check b ∈ ∂i \ c.

Therefore, denoting by νnew (x1, ..., xn) the marginalisation of (19.4) over the

variables x∂c\i,

µnew

(
x∂c\i, x1, ..., xn

)
= Pr

(
x∂c\i | x1, ..., xN

)
νnew (x1, ..., xn)

= νnew,c (x∂c) (νnew,i (xi))
−1νnew (x1, ..., xn) . (19.5)

Now, by definition of ν (x1, ..., xn) we have

νnew (x1, ..., xN) =
1

Znew

∑
x∂c\i

fc (x∂c)
∏
a

fa (x∂a)

=
1

Znew

f̃c (xi)
∏
a

fa (x∂a) . (19.6)

where we have set
∑
x∂c\i

fc (x∂c) = f̃c (xi). This distribution has the factor

graph depicted on figure 19.2 This tree still has m + 1 check nodes. However c

can be absorbed in any arbitrarily selected check b ∈ ∂i \ c:

νnew (x1, ..., xn) =
1

Znew

f̃c (xi)
∏
a

fa (x∂a)

=
1

Znew

f̃c (xi) fb (x∂b)
∏
a 6=b

fa (x∂a)

=
1

Znew

f̃b (x∂b)
∏
a 6=b

fa (x∂a)

where we have set f̃c (xi) fb (x∂b) = f̃b (x∂b). We recognize this expression as a

Gibbs measure defined on a tree with m check nodes, so that we can apply the

induction hypothesis

νnew(x1, . . . , xn) =
∏
a

ν̃new,a (x∂a)
∏
i

(νnew,i (xi))
1−di .

Here νnew,a and νnew,i are the marginals of νnew. But clearly, they are also the

marginals of νnew in (19.4). Combining this last formula with (19.5) yields the

desired result.

19.2 The free energy on trees 205

19.2 The free energy on trees

We begin with a general and important expression for the free energy which is

universally valid, and in particular is not restricted to trees. This formula is best

understood when the Gibbs measure (19.1) is expressed in its traditional physics

form

µ (x) =
1

Z
exp (−βH (x)) . (19.7)

The formal relation between the Hamiltonian and the kernel functions is

βH (x) = −
∑
a

ln fa(x∂a) (19.8)

Replacing (19.7) in the definition of the freee energy (19.2) one easily finds for

the un-normalized free energy F ≡ nf ,

F = 〈H〉 − β−1S [µ] (19.9)

where

〈H〉 =
∑

x1,...,xN

H (x1, ..., xN)µ (x1, ..., xN)

S [µ] = −
∑

x1,...,xN

µ (x1,..., xN) lnµ (x1, ..., xN) .

Here 〈H〉 is the average value of the Hamiltonian. Physically this represents the

total average internal energy that the system possesses, and is commonly called

the internal energy. S[µ] is called the Gibbs entropy. This is nothing else than

a special form of Shannon’s entropy written down for the Gibbs measure. In

thermodynamics one shows that the free energy is the amount of work that a

system can perform. Equ. (19.9) says that this is equal to the the total internal

energy minus an unsuable part equal given by the temperature times the entropy.

We now apply formula (19.9) to the Gibbs measure on a tree graph. This leads

to

proposition 19.1 On a tree graphical model the (un-normalized) free energy

F = nf can be expressed in terms of its marginals as

F =
∑
a

∑
x∂a

νa (x∂a) ln
νa (x∂a)

fa (x∂a)
+
∑
i

(1− di)
∑
xi

νi (si) ln νi (xi) (19.10)

Proof Using (19.8) the internal energy contribution yields

〈H〉µ = −
∑
a

∑
x1,...,xN

µ (x1, ..., xN) ln fa(x∂a)

= −
∑
a

∑
x∂a

ν (x∂a) ln fa (x∂a) .

Note that this formula is completely general and does not depend on having a

tree graph.

206 Variational Formulation and the Bethe Free Energy

To compute the contribution of the enetropy we use (19.3) in lemma 19.1.1.

This gives

S [µ] = −
∑
a

∑
x1,...,xN

µ (x1, ..., xN) (ln νa (x∂a))

+
∑
i

(1− di)
∑

x1,...,xN

µ (x1, ..., xN) ln (νi (xi))

= −
∑
a

∑
x∂a

νa (x∂a) ln νa (x∂a) +
∑
i

(1− di)
∑
xi

νi (xi) ln νi (xi)

Combining the the energetic and entropic contributions gives (19.10)

In chapter 7 we learned how to compute the marginals in terms an exact

message passing equations on the tree. Recall that we have two types of messages:

those flowing from variable to check nodes µi→a(xi) and those flowing from check

to variables node µa→i(xi). The exact marginals are given by

νi (xi) =

∏
a∈∂i µ̂a→i (xi)∑

xi

∏
a∈∂i µ̂a→i (xi)

νa (x∂a) =
fa (x∂a)

∏
i∈∂a µi→a (xi)∑

x∂a
fa (x∂a)

∏
i∈∂a µi→a (xi)

.

and the messages by the sum-product equations by

µi→a (xi) =
∏

b∈∂ira
µ̂b→i (xi)

µ̂a→i (xi) =
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj)

Moreover the messages are uniquely defined by their “initial” values at the leaf

nodes. Recall, when the leaf node is a check the outgoing message equals fa(x∂a)

when the leaf node is a check, and equals 1 when the leaf node is a variable.

Using these expressions in (19.10), a straightforward calculation leads to the

alternative expression for the free energy

proposition 19.2 On a tree graphical model the (un-normalized) free en-

ergy F = nf can be expressed in terms of the BP messages as a sum of three

contributions associated to variable nodes, check nodes and edges

F =
∑
i

Fi +
∑
a

Fa −
∑
(i,a)

Fia,

19.3 Bethe free energy for general graphical models 207

where the three contributions are

Fi = ln

{∑
xi

∏
b∈∂i

µ̂b→i (xi)

}
Fa = ln

{∑
x∂a

fa (x∂a)
∏
i∈∂a

µi→a (xi)

}
Fia = ln

{∑
xi

µi→a (xi) µ̂a→i (xi)

}
We stress that in this formula the messages do not have to be normalized.

Indeed they were not normalized in the first place in the sum-product equations.

The anxious reader can check that F is invariant under the renormalizations

µ̂a→i → ẑa→iµ̂a→i and µi→b → ẑi→aµi→a for any arbitrary numbers ẑa→i and

zi→a.

19.3 Bethe free energy for general graphical models

We now turn our attention to general graphical models of the type (19.1) with a

factor graph that is not necessarily a tree, and introduce a definition. We assign

to each edge two ditributions µi→a(si) and µa→i(si). The set of all distributions

forms two vectors denoted by µ and µ̂. The notation is the same than for the

BP messages for reasons that will become clear, however the reader should bear

in mind that conceptually these are general distributions, not necessarily equal

to the BP messages (for one thing the BP equations do not necessarily have a

unique solution). The Bethe free energy is by definition the functional

FBethe

[
µ, µ̂

]
=
∑
i

Fi [{µi→b, b ∈ ∂i}] +
∑
a

Fa [{µi→a, i ∈ ∂a}]

−
∑
ai

Fai [{µi→a,µ̂a→i}] . (19.11)

with the three contributions associated to variable and check nodes, and edges.

Fi = ln

{∑
sj

∏
b∈∂i

µ̂b→i (si)

}
(19.12)

Fa = ln

{∑
s∂a

fa (s∂a)
∏
i∈∂a

µi→a (si)

}
(19.13)

Fai = ln

{∑
si

µj→a (si) µ̂a→j (si)

}
. (19.14)

what is the idea behind this definition? The Bethe free energy exactly gives

the true free energy for factor graphs that are trees. For a loopy factor graph

it may seem a reasonable idea to propose the Bethe free energy as an ansatz

(an educated guess) that hopefully approximates the true one. However there

208 Variational Formulation and the Bethe Free Energy

are various problems that immediately arise. The most urgent is: how does one

choose the messages? The BP equations do not necessarily have a unique solution

for loopy graphs. The rule of thumb is to take the messages that minimize the

Bethe functional. Were does this rule of thumb come from? In the standard

physics variationnal approaches the true free energy is always lower than the

ansatz. Then minimizing the ansatz over a set of open parameters is the best

possible choice. This is not true for the Bethe free energy, so the usual rule of

thumb has be considered with a grain of salt. We stress that there is no general

inequality that states that the true free energy is always smaller than the Bethe

functional. In general, quantifying the difference between the true and minimal

bethe free energy is a hard problem about which we do not know much.

The discussion above suggests that a first important step is to look at station-

nary points of the Bethe functional. One then discovers the follwing important

result.

proposition 19.3 The stationary points of the Bethe free energy satisfy the

sum-product message passing equations and conversely the solutions of the sum-

product equations are stationary points of the Bethe free energy.

Proof For a finite system with a discrete alphabet the Bethe free energy func-

tional is really a function of many variables, namely µi→a(xi), µa→i(xi) for

xi ∈ X . Thus the stationnarity conditions are simply

∂FBethe

∂µi→a (xi)
= 0,

∂FBethe

∂µ̂a→i (xi)
= 0

For the first derivative there is a contribution from Fa and Fia,

∂FBethe

∂µi→a (xi)
=

ν̂a→i (xi)∑
xi
µi→a (xi) µ̂a→i (xi)

−
∑
∼xi fa (x∂a)

∏
j∈∂ari µj→a (xj)∑

x∂a
fa (x∂a)

∏
j∈∂a µj→a (xj)

,

and for the second one the contribution comes from Fi and Fia,

∂FBethe

∂µ̂a→i (xi)
=

νi→a (xi)∑
xi
µi→a (xi) µ̂a→i (xi)

−
∏
b∈∂ira µ̂b→i (xi)∑
xi

∏
b∈∂i µ̂b→i (xi)

.

If we set the two derivatives to zero we find

µ̂a→i (xi) ∝
∑
∼xi

fa (x∂a)
∏

j∈∂ari
µj→a (xj)

µi→a (xi) ∝
∏

b∈∂ira
µ̂b→i (xi) .

which are equivalent to the sum-product equations. Conversely it is easy to

revert these calculations and show that the sum-product equations imply the

stationnarity condition.

19.4 Application to coding 209

19.4 Application to coding

We explained in Chapter 7 that the posterior measure used for MAP decoding

is

1

Z(h)

∏
a

1

2
(1 +

∏
i∈∂a

si)

n∏
i=1

ehisi .

where si ∈ X = {−1,+1}. There are two types of kernel functions

fi(si) = ehisi , and fa({si, i ∈ ∂a}) =
1

2
(1 +

∏
i∈∂a

si), (19.15)

associated to leaf checks and usual parity checks. An example with the corre-

sponding factor graph is shown in figure 7.6.

The messages flowing on edges connecting variable nodes and parity checks

can be parametrized as

µi→a (si) ∝ ehi→asi , µ̂a→i (si) ∝ eĥa→isi ∝ 1 + si tanh ĥa→i.

The messages flowing on edges connecting leaf checks and variable nodes are

ehisi ,
∏
a∈∂i

eĥa→isi ∝
∏
a∈∂i

(1 + si tanh ĥa→i).

As pointed out above the normalization factors of teh messages cancel out in The

Bethe free energy. This is why our parametrization only involves proportionality

relations.

Replacing these messages in expressions (19.12)-(19.14) it is possible to per-

form exactly all sums over the spins, and express the Bethe free energy as func-

tion of (h, ĥ) = {hi→a, ĥa→i}. We give the main steps of this calculation. From

(19.12) the contribution of variable nodes is

Fi = ln

{ ∑
si=±1

ehisi
∏
a∈∂i

(1 + si tanh ĥa→i)e
hisi

}
= ln

{
ehi

∏
a∈∂i

(1 + tanh ĥa→i) + e−hi
∏
a∈∂i

(1− tanh ĥa→i)

}
. (19.16)

From (19.13), for parity checks we have

Fa = ln

{∑
s∂a

1

2
(1 +

∏
i∈∂a

si)
∏
i∈∂a

(1 + si tanhhi→a)

}
.

Observe that∑
s∂a

∏
i∈∂a

(1 + si tanhhi→a) =
∏
i∈∂a

∑
si=±1

(1 + si tanhhi→a)

= 2|∂a|

210 Variational Formulation and the Bethe Free Energy

and ∑
s∂a

∏
i∈∂a

si
∏
i∈∂a

(1 + si tanhhi→a) =
∏
i∈∂a

∑
si=±1

(si + tanhhi→a)

= 2|∂a|
∏
i∈∂a

tanhhi→a.

Now we compute the contribution of checks. The contribution of parity checks

is

Fa = ln

{
1

2
(1 +

∏
i∈∂a

tanhhi→a)

}
+ |∂a| ln 2. (19.17)

There is also a contribution from leaf check nodes that happens to be given by

(19.16), and also happens to cancel with the contribution of edges connecting

variable and leaf check nodes. There remains the contribution of edges connecting

variable and parity check nodes

Fai = ln

{ ∑
si=±1

(1 + si tanhhi→a)(1 + si tanh ĥa→i)

}
= ln

{
1 + tanhhi→a tanh ĥa→i

}
+ ln 2. (19.18)

The Bethe free energy is given by the sum of the three types of contributions

(19.16), (19.17) and (19.18)

FBethe(h, ĥ) =
∑
i

ln

{
ehi

∏
a∈∂i

(1 + tanh ĥa→i) + e−hi
∏
a∈∂i

(1− tanh ĥa→i)

}
+
∑
a

ln

{
1

2
(1 +

∏
j∈∂a

tanh hj→a)

}

+
∑
ai

ln

{
1 + tanhhi→a tanh ĥa→i)

}
(19.19)

As an exercise the reader can check that the stationary points of the Bethe

functional satisfy the BP equations, in other wordshi→a = hi +
∑
b∈∂i\a ĥb→i

ĥa→i = tanh−1

{∏
j∈∂a\i tanh hj→a

}
We will see that the average over the channel outputs and the graph ensemble

of the Bethe free energy allows to derive the so-called replica-symmetric (RS)

formula for the average free energy2. It is known that for a large class of LDPC

codes and BMS channels the RS free energy is equal to the exact free energy.

2 The adjective “replica-symmetric” is due to historical reasons. indeed these formulas were
first derived thanks to the so-called replica method which we do not cover in this course.
The approach of the replica method is algebraic in nature but mathematically more

mysterious.

19.5 Application to compressive sensing 211

In particular it allows to correctly predict the MAP noise threshold. In the next

chapters we will derive the RS formula with the specific application of the BEC

in mind, and partly prove that the RS formula is exact.

19.5 Application to compressive sensing

To do.

19.6 Application to K-SAT

Recall from Chapter 4 the partition function of K-SAT (at finite temperature)

which counts the number of solutions.

Z =
∑

s1,...,sn∈{−1,+1}n

M∏
a=1

(
1− (1− e−β)

∏
i∈a

(1 + siJia
2

))
. (19.20)

The Bethe free energy here serves as a first ansatz for −(βn)−1 lnZ. Recall that

for β = +∞, Z counts the number of solutions. Thus as long as there exist at

least one solution and lnZ is well defined for β = +∞ one can also use the Bethe

formula to write down an ansatz for the entropy of the uniform measure over

solutions (the Boltzman entropy!).

To compute the Bethe free energy we replace the kernel function

fa({xi, i ∈ ∂a}) = 1− (1− e−β)
∏
i∈a

(1 + siJia
2

)
.

in (19.12)-(19.14) and use the parametrization (15.8) introduced in Chapter 15.

Let ∂Jiai the the set of checks connected to i by an edge such that Jia = −1

(dashed) or Jia = 1 (full). The resulting expressions are easily found to be

FBethe(h, ĥ) =
∑
i

Fi({hj→a, j ∈ ∂a}) +
∑
a

Fa({ĥb→i, i ∈ ∂b}) (19.21)

−
∑
ia

Fia(hi→a, ĥa→i) (19.22)

212 Variational Formulation and the Bethe Free Energy

with

Fi = ln

{ ∏
a∈∂−i

(1− tanh ĥa→i)
∏
a∈∂+i

(1 + tanh ĥa→i)

+
∏
a∈∂−i

(1 + tanh ĥa→i)
∏
a∈∂+i

(1− tanh ĥa→i)

}
(19.23)

Fa = ln

{
1− (1− e−β)

∏
i∈∂a

1− tanhhi→a
2

}
(19.24)

Fai = ln

{
1 + tanhi→a tanh ĥa→i

}
(19.25)

Again, the reader can easily check that the stationnary points of FBethe(h, ĥ)

satisfy the BP equations presented in Chapter 15 ((15.11)-(15.15) are written

down for β = +∞).

In the next chapter we discuss an important application of these formulas.

When −βFBethe[ξ, ξ̂]/n is averaged over the graph ensemble one get a specific

prediction for the entropy of the K-SAT ensemble. This prediction is not consis-

tent with rigorous upper bounds on the SAT-UNSAT threshold. This means that

the Bethe formulas and the corresponding BP equations are not good enough to

inform us on the SAT-UNSAT transition. But this is not the end of the story.

We will see that it is necessary to further develop the approach taken in this

chapter and wander into the cavity method.

20 Replica Symmetric Free Energy
Functionals

The main idea behind density or state evolution analysis of message passing al-

gorithms is to track their average behaviour. This allows to analyze their perfor-

mance and derive their algorithmic (or dynamic) phase transition thresholds. But

we also saw that one can guess the (static) phase transition threshold through a

Maxwell construction. For example for coding, at least for the BEC, we defined

an EXIT curve computable from DE, on which a Maxwell construction gives the

MAP threshold. However we did not provide any clear general principle for de-

ciding what are the correct variables1for which the Maxwell construction works.

For the CW model the guess was quite trivial, for the BEC and compressive

sensing it was less so. For K-SAT we have to postpone the discussion after the

cavity method is introduced.

We will see in this chapter that by carrying the variational approach one step

further we will be able to provide some clues for these questions. In particular

we will be able to provide certain guiding lines determining the static phase

transition threshold, and the variables on which the Maxwell construction works.

In fact the variational approach allows to reformulate the Maxwell construction

in a less ambiguous and useful way.

We have seen that the sum-product or BP equations are the stationarity con-

ditions for the Bethe free energy. We will see in this chapter that the density and

state evolution equations are the stationarity conditions of an averaged form

of an averaged form of the Bethe free energy. This averaged form is called

the replica symmetric free energy functional. The adjective ”replica symmet-

ric” mostly comes from historical reasons but, it has a meaning which we will

explain once we have gone through the cavity method. We will explain how this

functional allows to predict the algorithmic as well as static phase transition

thresholds. Until recently this prediction was rigorously proved only in some-

what special cases or was supported by bounds. Recent proof techniques such

as the interpolation method and spatial coupling have allowed to provide rela-

tively simple and intuitive proofs in the cases of coding and compressive sensing.

Such proof techniques are the subject of chapter 21. For K-SAT we will see that

the predictions of the replica symmetric free energy functional are wrong. In-

1 In physics parlance determining the ”correct variables” for the description of a phase

transition is part of a more general and deep problem, called the determination of the
order parameter (see notes).

214 Replica Symmetric Free Energy Functionals

stead of being a curse this makes the subject even more fascinating. We will see

in Chapter 22 that the correct thresholds and Maxwell constructions are given

by pushing the notions of Bethe and replica free energy functionals ”one level

up”. That these predictions are correct for K-SAT and other similar constraint

satisfaction problems is still an open and alive problem.

We refrain from giving a completely general definition of the replica symmetric

free energy functional because this immediately leads to cumbersome notations.

Rather we directly treat our three paradigms in the next paragraphs. In fact

each one has its own features and going through each of them allows to cover

most essential cases.

20.1 Coding

We first discuss the general definition of the replica symmetric free energy func-

tional for the regular Gallager (l, r) ensemble over a BMS channel pY |X , and then

specialize to the case of the BEC where the functional simply becomes a function

of a real variable. Recall the notation c(.) for the distribution of half-loglikehod

ratios h(y) = 1
2 ln pY |X(y|1)/pY |X(y| − 1).

Replica symmetric functionals for BMS channels

The main idea is to pretend that in expression (19.19) the messages hi→a, are

iid random variables distributed according to a trial distribution x(.), and that

ĥa→i are dependent random variables defined through the BP equation

ĥa→i = tanh−1

{ ∏
j∈∂a\i

tanh hj→a

}

Then one averages (19.19) which yields a functional of x(.).

Let us give the formal definition. Here x(.) is a fixed trial probability distri-

bution over R. Pick r iid copies of H ∼ x(.), and call them Hk, k = 1, . . . r.

Let

Ĥ = tanh−1
{ r∏
k=1

tanh Hj

}
(20.1)

Pick l iid copies Ĥk, k = 1, . . . l. Let

f(h,H, Ĥ) = ln

{
eh

l∏
k=1

(1 + tanh Ĥk) + e−h
k∏
a=1

(1− tanh Ĥk)

}

+
l

r
ln

1

2

{
1 +

r∏
k=1

tanhHk

}
− l ln

{
1 + tanhH tanh Ĥ

}

20.1 Coding 215

The RS free energy functional is defined as:

fRS[x(.)] = E[f(h,H, Ĥ]

where the expectation is with respect to h ∼ c(.) and H ∼ x(.) (and Ĥ ∼ x̂(.)

the induced distribution that depends on x(.)). For an irregular LDPC ensemble

(l, r) are random and one has an extra average over their distribution. The RS

entropy functional is defined as

hRS[x(.)] = −fRS[x(.)] + E[h] (20.2)

The motivation for introducing the functional hRS[x(.)] will become clear in the

next paragraph (see equ. (20.4)).

How to determine the MAP threshold

Recall that the (true) average free energy is given by the thermodynamic limit

− limn→+∞ E[lnZ]/n where Z is the partition function for coding (4.7). The

replica symmetric formula states that

− lim
n→+∞

1

n
E[lnZ] = inf

x∈S
fRS[x(.)] (20.3)

In this formula S is the space of (Nishimori) symmetric distributions (see Chapter

4). That the infimum can be restricted to this space of distributions is a special

feature coming from channel symmetry. Such formulas relating a free energy

to a replica functional have been long standing conjectures since the mid 70’s

in the field of spin glass models (on sparse and complete graph models) but

much progress have been made in the last fifteen years towards their proofs. The

present one is a case where we have a partial proof that combines interpolation

methods with spatial coupling. This will be sketched in the subsequent chapter.

In the next sub-section we take a closer look at (20.3) for the BEC, and show

that it is equivalent to the Maxwell construction.

The MAP threshold is defined as the smallest ε such that lim infn→∞ E[H(X |
Y (ε))/n]>0 (see definition 16.2). Recall also the relationship (4.39)

1

n
E[H(X | Y (ε))] = − 1

n
E[lnZ] + E[h] (20.4)

Equation (20.3) has two consequences. One can replace lim inf by lim in the

definition of the MAP threshold, but more importantly,

lim
n→+∞

1

n
E[H(X | Y (ε))] = sup

x∈S
hRS[x(.)] (20.5)

and

εMAP = inf{ε ∈ [0, 1] : sup
x∈S

hRS[x(.)]>0}

In order to concretly calculate the MAP threshold one has to solve the varia-

tional problem consisting in minimizing (or maximizing) the replica symmetric

216 Replica Symmetric Free Energy Functionals

free energy (or entropy). It is easy to write down the stationary point conditions

(homework) and one finds the density evolution fixed point equations (see Equ.

(10.20)-(10.21))

x = c⊗ x̂⊗(l−1), x̂ = x⊕(r−1) (20.6)

Remark that x̂(.) is the distribution of Ĥ in Equ. (20.1). This is not surprising:

the stationary points of the Bethe free energy are given by the BP equations and

the stationary points of the replica functional are given by the density evolution

equations. Once stationary points, i.e. fixed points of (20.1) have been found

one selects the one that yields the largest hRS[x(.)] (or smallest fRS[x(.)]) and

determines εMAP. Since in practice fixed points are found by iterative methods,

it is fortunate that we only need to find stable fixed points. Indeed the maximum

of hRS[x(.)] (or minimum of fRS[x(.)]) is necessarily a stable fixed point.

But that is not all. We already know that allow to determine the BP threshold.

The BP threshold is the smallest noise for which a non-trivial fixed point is

reached under iterations initialized with x(.) = c(.). Therefore this information

is also contained in the RS functional. The BP threshold is the smallest noise

such that the RS functional has a non trivial stationary point.

To summarize, the RS functional contains all the information we want. In

particular it allows to deduce the DE equations. To determine the BP threshold

it suffices to solve the DE equation. But, to evaluate the MAP threshold we have

to solve the DE equations and to evaluate corresponding largest RS entropy or

smallest RS free energy.

In the next paragraph we specialize this discussion to the case of the BEC.

This will also allow us to derive the Maxwell construction in a more principled

way.

20.2 Explicit Case of the BEC

A bit transmitted through the BEC is either perfectly transmitted with proba-

bility ε or earsured with probability 1− ε. This implies that c(h) = εδ(h) + (1−
ε)δ∞(h), and that we can restrict the RS functionals to distributions parametrized

as

x(H) = xδ(H) + (1− x) δ∞(H)

where x is the erasure probabaility emanting from variables. This also implies

that x̂(Ĥ) = x̂δ(Ĥ)+(1−x̂)δ∞(Ĥ) with x̂ = 1−(1−x)r−1 the erasure probability

emanating from checks. With this parametrization one can compute each term

in the RS expression for the free energy. One easily finds the contributions of

“check nodes”

E[ln
1

2
(1 +

r∏
k=1

tanHk)] = (1− x)r ln 2− ln 2

20.2 Explicit Case of the BEC 217

and “edges“

E[ln(1 + tanH tan Ĥ)] = (1− x)(1− x̂) ln 2

For the BEC, one should include the term E[h] in (20.2) directly in the contribu-

tion of ”variable nodes“ in order to avoid working with infinite quantities. One

finds

E[ln(

l∏
k=1

(1 + tanh Ĥk) + e−2h
l∏

k=1

(1− tanh Ĥk))]

= (1− ε)
l∑

e=0

(
l

e

)
x̂e(1− x̂)l−e ln 2l−e + ε

l−1∑
e=0

(
l

e

)
x̂e(1− x̂)l−e ln 2l−e

+ ε

(
l

l

)
x̂l(1− x̂)l−l ln 2

=

l∑
e=0

(
l

e

)
x̂e(1− x̂)l−e(l − e) ln 2 + εx̂l ln 2

= (1− x̂)

l∑
e=0

x̂e
d

dy
yl−e |y=1−x̂ ln 2 + εx̂l ln 2

= (1− x̂)
d

dy
(x̂+ y)l |y=1−x̂ ln 2 + εx̂l ln 2

= l(1− x̂) ln 2 + εx̂l ln 2

Putting these results together one finds the replica symmetric entropy function

for the BEC

hRS(x; ε)

ln 2
= (

l

r
− l)(1− x)r + l(1− x)r−1 + ε(1− (1− x)r−1)l − l

r

According to (20.3) the conditionnal entropy is given by

lim
n→+∞

1

n
E[H(X | Y (ε))] = max

0≤x≤1
hRS(x; ε) (20.7)

and the MAP threshold can be calculated from εMAP = inf{ε : max0≤x≤1 hRS(x; ε) >

0}. It is immediate to check that the stationnary points are given by the usual

density evolution fixed point equation x = ε(1− (1− x)r−1)l−1.

As pointed out before, the function −hRS contains all the information about

the BP and MAP thresholds, so it is very useful to have an idea of the shape of

the RS function. Figure ?? shows −hRS as a function of x, for various values of

ε.2 We prefer to plot minus the RS entropy function3 because this quantity is the

free energy (up to an irrelevant term) and is better suited to make the physical

analogies more transparent. For all ε there is a trivial minimum at x = 0, which

2 This plot is generic only for regular ensembles with l ≥ 3. Irregular ensembles can have a
richer behavior and the corresponding discussion is more complicated. The case l = 2 is

somewhat special because εBP = εMAP.
3 To avoid any confusion let us stress that there is no reason why hRS(x) should be

non-negative. It is only max0≤x≤1 hRS(x) that has to be non-negative.

218 Replica Symmetric Free Energy Functionals

is also the trivial stable fixed point of DE. For ε < εBP this minimum is unique

(hence global). At ε = εBP the function develops a flat inflexion point and a second

(local) minimum as well as a (local) maximum branch of. The local minimum

is the stable non-trivial fixed point of density evolution, xst(ε), and the local

maximum is the unstable fixed point xun(ε). As one increases ε further the local

minimum at xst(ε) decreases until it touches the horizontal axis for εMAP. At this

threshold value there are two global minima, hRS(0; εMAP) = hRS(xst(εMAP; εMAP).

Finally, ε > εMAP it is xst(ε) that becomes the unique global minimum.

To summarize, one should retain from this discussion that the RS function con-

tains all the information we want. The BP threshold is found by searching values

of ε where the function develops flat inflexion points, and the MAP threshold is

found by looking at values of ε where the two minima are at the same height.

The reader should go back to the exact solution of the CW model in Chapter 5

and notice the intimate structural analogies with the present situation. The CW

free energy is given by a variational problem min−1≤m≤1 f(m) whose solutions

determine both the phase transition (”MAP”) threshold h = 0 and the spinodal

(”BP”) points ±hsp.

We conclude this paragraph by casting (20.7) in an equivalent form. For ε >

εMAP the derivative of the right hand side of max0≤x≤1 hRS(x; ε) equals

d

dε
hRS(xst; ε) =

∂

∂ε
hRS(xst; ε) +

∂

∂x
hRS(xst; ε)

dxst

dε

=
∂

∂ε
hRS(xst; ε)

The second equality is valid because xst is a stationnary point of hRS and dxst

dε

is finite for ε ∈]εMAP, 1]. This last point can be checked rather explicitly for the

BEC but for other channels this is much more difficult. We obtain

d

dε
lim

n→+∞

1

n
E[H(X | Y (ε))] =

{
0, ε < εMAP

∂
∂εhRS(xst(ε); ε) = (1− (1− xst(ε))

r−1)l, ε > εMAP

Note that for ε > εMAP the derivative of the conditional entropy coincides with

the EXIT curve introduced somewhat arbitrarily in Chapter 16.

20.3 Back to the Maxwell Construction

The Maxwell construction identifies the MAP threshold εMAP with the area

threshold εA on the EXIT curve. We are now in a position to show that this iden-

tity is equivalent to the equality of the two minima of −hRS(x; ε) when ε = εMAP.

Apart from the conceptual importance of this result, this shows that for coding

a proof of the Maxwell construction boils down to the one of the RS formula.

Consider ε > εBP. The non-trivial minimum and maximum of −hRS(x; ε),

namely xst(ε) and xun(ε), form a curve in the (ε, x)-plane. This curve is pre-

cisely (ε(x), x) where ε(x) = x/(1 − (1 − x)r−1)l−1 (since the stationary points

20.4 Compressive Sensing 219

of −hRS(x; ε) are given by DE). Now consider the path starting from (εMAP, 0) to

(+∞, 0) on the horizontal axis and then along the curve till (ε(x), x) for some x.

Look at the total change in RS entropy along this path. We have

hRS(x; ε(x))− hRS(0; εMAP) =

∫
path

dhRS =

∫ x

0

dx
d

dx
hRS(x; ε(x))

=

∫ x

0

dx(
∂

∂x
hRS(x; ε(x)) + ε′(x)

∂

∂ε
hRS(x; ε(x)))

=

∫ x

0

dxε′(x)
∂

∂ε
hRS(x; ε(x))

=

∫ x

0

dxε′(x)(1− (1− x)r−1)l

The last integral is recognized as the trial entropy P (x), the area under the EXIT

curve (ε(x), (1− (1− x)r−1)l) (see (16.7)).

Let us highlight the main points of this discussion. The natural definition of

the EXIT curve in parametric form is,

(ε(x),
∂

∂ε
hRS(x; ε(x))).

and satisfies

hRS(x; ε(x))− hRS(0; εMAP) =

∫ x

0

dxε′(x)
∂

∂ε
hRS(x; ε(x)).

The right hand side is the area under the EXIT curve and the left hand side

is the corresponding change in entropy. On one hand the area threshold is by

definition εA = ε(xA) such that the area under the EXIT curve vanishes, and on

the other hand the MAP threshold is εMAP = ε(xMAP) such that the minima of

−hRS are at the same height hRS(xMAP; ε(xMAP)) − hRS(0; εMAP) = 0. Therefore

these two thresholds are identical.

20.4 Compressive Sensing

Write RS free energy (can be derived by integrating out state evolution). Illus-

trate thresholds it predicts. Discuss that RS is exact. Do it for Lasso or for know

prior case ?

20.5 K-SAT

Recall that in Chapter 19 we gave the Bethe expression for the free energy of

K-SAT. From this expression one also gets a Bethe formula for the entropy

density. There is natural RS functional associated to this formula, which leads

to a natural conjecture for the entropy density. We will see that, contrary to

220 Replica Symmetric Free Energy Functionals

coding and compressive sensing, the conjecture cannot be fully correct.4 This is

one of the main motivations for developping a better theory, namely the cavity

method.

The construction of the natural RS functional for K-SAT proceeds like in the

coding case: one takes as a starting point the Bethe expression (19.21) and treats

the messages hi→a as independent random variables distributed according to a

trial distribution Q(.). The message passing equation (15.15),

ĥa→i = −1

2
ln

{
1−

∏
j∈∂a\i

1− tanhhj→a
2

}
(20.8)

induces the distribution Q̂(.). In the coding case we discussd the case of regular

Gallager (l, r) ensembles. One difference here is that while the check nodes have

degree K, the variable node degrees are (asymtotically) Poisson distributed with

average degree αK.

Here is the formal definition of the RS functional for the entropy. Fix a trial

distribution Q(.) on R. Pick K iid copies of the random variable H ∼ Q(.). Call

them H1, . . . ,HK . Define the random variable

Ĥ = −1

2
ln

{
1−

K−1∏
k=1

1− tanhHk

2

}
. (20.9)

Pick two Poisson distributed integers p and q with average αK, and pick p + q

iid copies of Ĥk, k = 1, . . . , p+ q. Let

s(H, Ĥ, p, q) = ln

{ p∏
k=1

(1− tanh Ĥk)

p+q∏
k=p+1

(1 + tanh Ĥk)

+

p∏
k=1

(1 + tanh Ĥk)

p+q∏
k=p+1

(1− tanh Ĥk)

}

+ ln

{
1−

K∏
k=1

1− tanhHk

2

}
− ln

{
1 + tanhH tanh Ĥ

}
The RS entropy functional is defined as

sRS(Q(.)) = E[s(H, Ĥ, p, q)] (20.10)

where the expectation is over all random variables p, q,H, Ĥ.

The replica symmetric prescription for computing the entropy density is to

4 While in coding and compressive sensing it is quite hard to prove the RS formulas are

exact, in K-SAT it is relatively easier to prove that they cannot be correct or at least fully
correct.

20.6 Notes 221

take

sRS(α) ≡ sup
Q(.)

sRS(Q(.))

The stationnary points of (20.10) yields an integral equation for Q(.). Similarly

to coding, this can be split in two integral equations linking Q(.) and Q̂(.) where

Q̂(.) is the distribution of Ĥ. These two equations can equivalently be written

as (homework)

H
d
=

p∑
k=1

Ĥk −
p+q∑

k=p+1

Ĥk, Ĥ
d
= −1

2
ln

{
1−

K−1∏
k=1

1− tanhHk

2

}
.

where
d
= means equality in distribution. The second relation is of course the same

as (20.9), and you will derive the first one in the homeworks. These equations can

be solved numerically (e.g. by the population dynamics method of homework).

This allows to find the maximizer of the RS functional and compute sRS(α).5

Figure ?? shows that sRS(α) for K = 3. the function decreases as the clause

density increases, and vanishes at α ≈ 4.677. Thus the present replica symmetric

analysis predicts that there exist exponentially many solutions at least until this

value of α, and that in particular the SAT-UNSAT threshold should be larger.

However it is known that this is wrong. For example in problem ?? we guide

you through the proof of αsat-unsat ≤ 4.666 for K = 3. In fact, as we will see

in Chapter 22 the cavity method proposes that the RS formula is exact till a

threshold value αc < αsat-unsat, called the “condensation threshold”, and that

another one called RSB formula6 holds in the range αc < α < αsat-unsat. At the

condensation threshold there is a genuine phase transition: limn−1E lnZ is not

analytic, in other words the same (analytic) formula cannot hold both above

and below αc. For K = 3 we have αc ≈ 3.86 and αsat-unsat ≈ 4.26. None of these

claims have been proven so far.

20.6 Notes

A few words about the concept of order paramter. Like for many physical con-

cepts there is no rigid definition, and finding the correct order parameter is an

art validated by experiment. Depending on the problem at hand this can seem

more or less obvious like in fluids (the volume per particle) or in magnetism

(the magnetization), but can be much more subtle like in superconductivity (the

”wave function” of Cooper pairs). The Higgs field is the order parameter associ-

ated to the electroweak phase transition that occurred at an early epoch of the

universe. The recently discovered Higgs bosons are elementary excitations of this

5 Note the global maximum necessarrily corresponds to a stable fixed point and therefore
iterative methods to solve the density evolution equations can find it. Similarly global

minima of the free energy necessarily correspond to stable fixed point of density evolution.
6 As we will see “B” stands for broken.

222 Replica Symmetric Free Energy Functionals

field, much like spin flips are elementary excitations associated to magnetization.

As we will see K-SAT is one of these problems for which the guess of the order

parameter requires a stretch of imagination: probability distributions of random

probability distributions.

Problems

20.1 RS analysis for K-SAT Derive the density evolution equations for K-SAT.

Use population dynamics (as seen in homeworks of Chapter ??) to compute the

RS prediction for αsat-unsat.

20.2 Upper bounds on the SAT-UNSAT threshold. Upper bounds for the SAT-

UNSAT threshold, we call it αs, are usually derived by counting arguments.

The first exercise develops the simplest such argument. In the second exercise

you will study a more subtle counting argument which leads to an important

improvement7. This method can be further refined and has led to better bounds.

An assignment is a tuple x = (x1, . . . , xn) where xi = 0, 1 of n variables. The

total number of possible clauses with k variables is equal to 2k
(
n
k

)
. A random

formula F is constructed by picking, with replacement, uniformly at random, m

clauses. Thus there are (2k
(
n
k

)
)m possible formulas.

We set m = αn and think of n and m as tending to ∞ with α fixed. This is

the regime displaying a SAT-UNSAT threshold.

It is useful to keep in mind that P[A] = E[1(A)] where 1(A) is the indicator

function of event A. In what follows probabilities and expectations are with

respect to the random formulas F .

20.3 Crude upper bound by counting all satisfying assignments Let

S(F) be the set of all assignments satisfying F and let |S(F)| be its cardinality.

Since F is a random formula, |S(F)| is an integer valued random variable.

a) Show the Markov inequality P[F satisfiable] ≤ E[|S(F)|].

b) Fix an assignement x. Show that P[x satisfiesF] = (1− 2−k)m. Then deduce

that

E[|S(F)|] = 2n(1− 2−k)m.

c) Deduce the upper bound

αs <
ln 2

| ln(1− 2−k)|
.

For k = 3 this yields αs < 5.191.

20.4 Bound by counting a restricted set of assignments] We define the

set Sm(F) of maximal satisfying assignments as follows. An assignment x ∈
Sm(F) iff:

• x satisfies F ,

7 by Kirousis, Kranakis, Krizanc and Stamatiou, Approximating the Unsatisfiability
Threshold of Random Formulas, in Random Struct and Algorithms (1998).

20.6 Notes 223

• for all i such that xi = 0 (in x), the single flip xi → 1 yields an assignment -

call it xi - that violates F .

a) Show that if F is satisfiable then Sm(F) is not empty. Hint: proceed by

contradiction.

b) Show as in the first exercise the Markov inequality P[F satisfiable] ≤ E[|Sm(F)|]

c) Show that

E[|Sm(F)|] = (1− 2−k)m
∑
x

P[∩i:xi=0 (xi violatesF) | x satisfiesF].

d) Fix x. The events Ei ≡ (xi violatesF) are negatively correlated, i.e

P[∩i:xi=0Ei | x satisfiesF] ≤
∏
i:xi=0

P[Ei | x satisfiesF]

For the full proof which uses a correlation inequality (of FKG type) we refer to

the reference given above. Here is a rough intuition for the inequality. First note

that if xi = 0 and xi violates F , there must be some set Si of clauses (in F) that

are satisfied only by this variable xi = 0 (this set might contain only one clause).

This restricts the possible formulas contributing to the event Ei. Second note

that sets Si, Sj corresponding to different such variables xi = 0, xj = 0 must be

disjoint. This ”repulsion” between the sets Si and Sj puts even more restrictions

on the possible formulas, compared to a hypothetical situation where the events

(and thus the sets Si and Sj) would have been independent.

e) Now show that

P[Ei | x satisfiesF] = 1−
(

1−
(
n−1
k−1

)
(2k − 1)

(
n
k

))m.
Hint: note that in the event Ei there must be at least one clause containing

xi = 0 and containing other variables that do not satisfy it.

f) Deduce from the above results that limn→0 P[F satisfiable] = 0 as long as α

satisfies

(1− 2−k)α(2− e−
αk

2k−1) < 1.

The improvement compared with the first exercise resides in the factor e
− αk

2k−1 .

A numerical evaluation for k = 3 yields the bound αs < 4.667.

21 Interpolation Method

21.1 Guerra bounds for Poissonian degree distributions

21.2 RS bound for coding

21.3 RS and RSB bounds for K sat

21.4 Application to spatially coupled models: invariance of free
energy, entropy ect...

22 Cavity Method: Basic Concepts

Message passing and spatial coupling techniques have been very successful in

providing efficient algorithms in the realm of coding and compressive sensing.

Furthermore the variational method has allowed us to derive the phase diagram

for these models, and the Maxwell construction ties the two approaches together.

On the other hand these methods are not as successful for constraint satisfaction

problems such as K-SAT. For example, plain BP does not allow to find solutions

and had to be supplemented by a decimation process. BP guided decimation finds

solutions up to some density, but it is not clear if this limitation corresponds to

some sort of fundamental dynamic threshold, similar to the BP threshold say.

Also (for the moment) we are not able to find the SAT-UNSAT threshold by a

sort of Maxwell construction or spatial coupling technique. At the same time the

RS entropy functional does not count correctly the number of solutions.

The success of message passing marginalization is related to the absence of

long range correlations between dynamical variables. In constraint satisfaction

problems such as K-SAT long range correlations are present and it is not pos-

sible to only take into account a tree like neighborhood of a node when its

marginal is computed. The boundary conditions at the leaf nodes of the tree

like neighborhood somehow matter. Often, in statistical mechanics, when long

range correlations are present, the key to the analysis comes from the concept of

extremal measure and convex decomposition of the Gibbs measure into extremal

measures. While these notions are relatively well understood and mathemati-

cally precise for low dimensional deterministic Ising models on regular grids, the

mathematical theory in the context of spin glass type models is still very much

of an open challenge. As we will see the cavity method boldly pushes the idea

of convex decomposition of the Gibbs distribution to its limit in the sense that

we will have to deal with a convex superposition with an exponentially large

number of extremal measures. Once this is accepted, the theory, although tech-

nically challenging, flows. Indeed it turns out this convex superposition defines

a new factor graph model which can again be analyzed by the message passing,

variational free energy and spatial coupling techniques. That we can again apply

these techniques ”one level up” is one of the fascinating aspects of the subject.

226 Cavity Method: Basic Concepts

22.1 Notion of Pure State

The concept of extremal measure or pure state has not been introduced nor

used explicitely yet, but this is the time to do so. We start by a very brief

discussion in the context of the Ising model because this is the simplest best

understood non-trivial paradigmatic situation. We then turn our attention to

the CW model, for which this notion is somewhat special due to the absence of

geometry, but allows to introduce a very useful heuristic point of view that lends

itself to generalizations.

A diggression on the Ising model

The construction of infinite volume Gibbs measures is a non-trivial problem

whose mathematical theory is developped mainly for Ising type models on regu-

lar grids, say Zd. Here we summarize very briefly and informally the main picture

for the classical two dimensional Ising model with nearest neighbord ferromag-

netic interactions. for which the theory is fully controlled, and the interested

reader will find pointers to the litterature in the notes. The phase diagram of

this model is qualitatively the same as the one of CW. The mathematical theory

of the Gibbs states for infinite volume starts with the Gibbs distribution on a

finite square grid Λ ⊂ Zd with specified boundary conditions. The boundary

conditions amount to fix the spin assignments on vertices of ∂Λ. One computes

the infinite volume limit of all marginals, given the boundary conditions, and

the set of these marginals defines the infinite volume Gibbs state. For any point

of the (T, h) plane the set of all possible infinite volume Gibbs states is convex.

Away from the coexistence line this set is trivially a point i.e, the infinite volume

limits of the marginals is independent of boundary conditions. On the coexis-

tence line the set of infinite volume limits is non-trivial. It has two extremal

measures obtained by the all +1 and all −1 boundary conditions, and in partic-

ular 〈si〉± = ±m 6= 0. All other states on the coexistence line are of the form

〈−〉w = w〈−〉+ + (1 − w)〈−〉−. Extremal states have correlations that satisfy

the exponential decay property; this holds when the state is unique and for the

+ and − states. For example, |〈sisj〉± − 〈si〉±〈sj〉±| ≤ const e−|i−j|/ξ(T) where

ξ(T) is a finite correlation length.1 On the other hand mixed states with w 6= 0, 1

have long range order which means lim|i−j|→+∞(〈sisj〉w − 〈si〉w〈sj〉w) 6= 0. As

a good exercise one can check that the clustering property of pure states implies

this limit is equal to 4w(1− w)m2.

The CW model revisited

On the complete graph there is no boundary so we simply start with the model

on a finite graph with a fixed constant magnetic field. We saw in Chapter 5 that

1 This length diverges when T approaches the critical temperature.

22.1 Notion of Pure State 227

in the (T, h) plane there is a the coexistence line on which the magnetization

can take two different values in the sense that limh→0± limn→+∞〈si〉 = ±m 6= 1.

The magnetization is uniquely defined away from this line in the sense that

it is an analytic function of h and T . It is not difficult to show that this fea-

ture is shared by any average 〈si1 . . . sik〉, for any finite set of spins. In this

sense the infinite Gibbs state is unique and ”pure” away from the coexistence

line, and is not unique on this line. There, one can define two ”pure states”

〈si1 . . . sik〉± = limh→0± limn→+∞〈si1 . . . sik〉, and also any convex superposition

〈−〉w = w〈−〉++(1−w)〈−〉− for 0 < w < 1. For the CW model the ”pure” states

satisfy an extreme form of clustering where variables decouple in thermodynamic

limit. For example for k = 2 〈sisj〉± − 〈si〉±〈sj〉± = 0.2 Genuine superpositions

(mixed states) have correlations that do not vanish in the thermodynamic limit.

For example, the decoupling property implies 〈sisj〉w−〈si〉w〈sj〉w = 4w(1−w)m2

on the coexistence line for any i 6= j. Remark for the Ising model the same rela-

tion is obtained for |i− j| → +∞.

For the CW model there is a one to one correspondence between ”pure states”

and minima of the free energy function f(m) appearing in the variational ex-

pression for −n−1 lnZ. This is an extremely simple instance of the landscape

picture discussed in the next paragraph.

The landscape picture

For spin glass models the situation is not ”as simple”. It is not known how to

define a mathematically sound notion of extremal state. For models on complete

or sparse locally tree like graphs one heuristic and intuitive approach identifies

the extremal states with global or quasi-global minima of the TAP or Bethe

type free energy functionals3. Let (µ
(p)
i→a, µ̂

(p)
a→i) = (µ(p), µ̂(p)) be the correspond-

ing solutions of the sum-product equations where p indexes the minima. From

these mesages one can reconstruct marginals ν(p)(.) which define the “extremal

measure“. To distinguish this measure from the usual notion of extremal state

and to avoid confusions we will call this an extremal or pure Bethe measure.

One has to think of it as a ”proxy“ for an ideal notion of pure state. When

message passing iterations converge one expects that there are a small number

of fixed points with well defined bassins of attraction and the number of pure

Bethe states is small. However when these iterations do not converge this may

be due to the presence of a very large number of fixed points, and thus to a

very large number of minima in the Bethe free energy. In such situations one

expects a large number of pure Bethe states. This happens in the TAP approach

to the SK model for the region of the phase diagram below the AT line. This

2 The CW model is a bit special in this respect because the complete graph wipes out any

trace of geometry. For finite n and any h one has 〈sisj〉 − 〈si〉〈sj〉 = O(n−1). Since there is

a unit distance between any two variables, one may interpret this as a exponential decay of
correlations on a length scale O(1/ lnn).

3 It is debated wether such an approach is valid for low dimensional spin glasses e.g the
Edwards-Anderson model

228 Cavity Method: Basic Concepts

also happens in K-SAT for clause densities slightly above the ones found by BP

guided decimation. The reason for the failure of BP guided decimation is the

proliferation of minima in the Bethe free energy. Free energy functions with a

proliferation of numerous minima are often called free energy landscapes. Figure

?? serves as a useful mental picture summarizing these ideas.

22.2 The Level-One Model

The convex decomposition ansatz

We formalize the heuristic landscape picture. The cavity method assumes that:

(i) The Gibbs distribution is a convex sum of ”pure states“; (ii) Pure states are

identified with the Bethe measures corresponding to minima of the free energy;

(iii) The weights of the convex superposition are determined by the Bethe free

energy minima. We write

µ (x) =

N∑
p=1

e−xF
(p)

Z(x)
µ(p)(x), Z(x) =

N∑
p=1

e−xF
(p)

(22.1)

The sum runs over p which indexes the minima {µ(p)
a→i, µ̂

(p)
a→i} = (µ(p), µ̂(p)) of

the Bethe free energy functional. The weights are determined by the free energy

of these minima F (p) = FBethe (µ(p), µ̂(p)). The ”pure“ Bethe measures µ(p)(x)

are defined through the collection of all their marginals, which themselves are

determined from (µ(p), µ̂(p)). The role of x, called the ”Parisi parameter“, turns

out to be quite subtle.4 For the moment one can think of it as a multiplicative

”renormalization” of the temperature. In a large portion of the phase diagram

the naive choice x = 1 is correct. However we will see that there are regions of

the phase diagram where values 0 < x < 1 are forced upon us.

Level-one auxiliary model

In order to make technical progress with the convex decomposition ansatz we

make one more assumption. One expects that at low temperatures when there

are an exponential number of minima, these are exponentially more numerous

than maxima and saddle points. Therefore we assume: (iv) the sum over p runs

over all stationnary points of the Bethe free energy i.e, fixed points solutions of

the sum-product equations.

The partition function (22.1) can be thought of as the one of a statistical

mechanics system with dynamical variables (µ(p), µ̂(p)) and effective Hamiltonian

4 The notation x is traditional and should not be confused with the one for configurations x.
This parameter was first introduced by parisi in the context of the replica approach. There

its role is even more mysterious an appears as an integer that is anlytically continued to

values in]0, 1[.

22.3 Message passing, Bethe free energy and complexity one level up 229

given by the Bethe free energy. Using assumption (iv) we are led to study the

Gibbs probability distribution of an auxiliary model, called the ”level-one model“

µ1(µ, µ̂) =
1

Z1(x)
e−xFBethe (µ,µ̂)

1sp(µ, µ̂) (22.2)

and

Z1(x) =
∑
µ,µ̂

e−xFBethe (µ,µ̂)
1sp(µ, µ̂) (22.3)

The indicator function 1sp(µ, µ̂) selects solutions of the sum product fixed point

equations. Recall that in the sum-product equations and the Bethe free energy

the normalization of the messages is arbitrary. In order for the sum in (22.3) to

be well defined we have to fix a normalization. We will take the most natural

one, namely
∑
xi
µi→a(xi) =

∑
xi
µ̂a→i(xi) = 1. With this normalization the

sum product equations used in subsequent calculations read

µi→a(xi) =

∏
b∈∂i\a µ̂b→i(xi)∑

xi

∏
b∈∂i\a µ̂b→i(xi)

(22.4)

µ̂a→i(xi) =

∑
∼xi fa(x∂a)

∏
j∈∂a\i µj→a(xi)∑

x∂a
fa(x∂a)

∏
j∈∂a\i µj→a(xi)

(22.5)

Let us immediately give a few definitions that will be useful to us later on.

Averages with respect to (22.2) are denoted by the usual bracket notation 〈−〉1.

The level-one free energy is defined as usual f1(x) = − 1
nx lnZ1(x). As in Chapter

3, the free energy allows to compute numerous other quantities by differentiations

with respect to the inverse temperature, here with respect to x. The level-one

internal energy is u1(x) = 〈FBethe 〉1/n = ∂
∂xf1(x). The Shannon-Gibbs entropy

associated to (22.2) is equal to Σ(x) = x2 ∂
∂xf1(x) = u1(x)− x−1Σ(x).

Choice of the Parisi parameter

Small paragraph to be written. Explain briefly. Interpret Σ(x).

22.3 Message passing, Bethe free energy and complexity one level
up

Message passing

We now show how the level-one model is solved in practice. The main idea is

to first recognize that the model is defined on a sparse factor graph and apply

again the sum-product and Bethe formulas. If Γ = (V,C,E) is the original factor

graph, then the level-one model has the factor graph Γ1 = (V1, C1, E1) described

on Fig. 22.1. We use the shorthand notation 1i and 1̂a for the indicator functions

230 Cavity Method: Basic Concepts

Figure 22.1 On the left, an exemple of an original graph Γ. On the right its
corresponding graph Γ1 for the level-one model.

Figure 22.2 Messages are labbeled with m if they outgoing from a Parisi variable node
are and with m̂ if they are outgoing from a Parisi function node.

forcing equations (22.4)-(22.5). Thus 1(µ, µ̂) =
∏
i 1i

∏
a 1̂a. A variable node

i ∈ V , becomes a function node i ∈ C1, with the function

ψi = e−xFi
∏
a∈∂i

1i. (22.6)

A function node a ∈ C remains a function node a ∈ C1 with factor

ψa = e−xFa
∏
i∈∂a

1̂a. (22.7)

An edge (a, i) ∈ E, becomes a variable node (a, i) ∈ V1. There is also an extra

function node attached to each variable node of the new graph, or equivalently

attached to each edge of the old graph. The corresponding function is

ψai = e+xFai . (22.8)

With these definitions (22.2) can be written as

µ1(µ, µ̂) =
1

Z1(x)

∏
i∈V

ψi
∏
a∈C

ψa
∏
ai∈E

ψai. (22.9)

The sum product equations for (22.9) involve four kind of messages shown on

figure 22.2. Messages flowing from a new function node to a new variable node

satisfy (the symbol ' means equal up to a normalization factor)

m̂a→ai '
∑

∼(µi→a,µ̂a→i)

ψa
∏

aj∈∂a\ai

maj→a

= exFai
∑

∼(µi→a,µ̂a→i)

1̂a(µ̂a→i)e
−x(Fa−Fai)

∏
aj∈∂a\ai

maj→a

22.3 Message passing, Bethe free energy and complexity one level up 231

and

m̂i→ai '
∑

∼(µi→a,µ̂a→i)

ψi
∏

bi∈∂i\ai

m̂bi→i

= exFai
∑

∼(µi→a,µ̂a→i)

1i(µi→a)e−x(Fi−Fai)
∏

bi∈∂i\ai

m̂bi→i

Messages from a new function node to a new variable node satisfy

mai→i ' exFaim̂a→ai, mai→a ' exFaim̂i→ai.

Notice that mai→i and mai→a are independent of µ̂a→i and µi→a respectively;

this allows us to simplify the message passing equations. To achieve the simpli-

fication define two distributions

Qi→a(µi→a) = mai→a, Q̂a→i(µ̂a→i) = mai→i

These flow on the edges of the original factor graph Γ = (V,C,E) and are called

cavity messages. It is easy to see that they satisfy

Q̂a→i(µ̂a→i) '
∑
µ

1̂a(µ̂a→i)e
−x(Fa−Fai)

∏
j∈∂a\i

Qj→a(µj→a) (22.10)

Qi→a(µi→a) '
∑
µ̂

1i(µi→a)e−x(Fi−Fai)
∏

b∈∂i\a

Q̂b→i(µ̂b→i). (22.11)

These are the cavity equations, an instance of sum-product equations for the

level-one model. Note that the cavity equations do not make any reference to

the graph Γ1 and we can now revert to the original one. As usual, if the graph

was a tree, these equations give the exact marginals of (22.2).

The x dependent exponentials are sometimes called reweighting factors. Their

explicit expression will be useful later on,

e−(Fi−Fai) =
∑
xi

∏
b∈∂i\a

µ̂b→i(xi), e−(Fa−Fai) =
∑
x∂a

fa(x∂a)
∏

∂j∈a\i

µj→a(xi)

(22.12)

Note that these are in fact the normalization factors in (22.4)-(22.5).

Bethe free energy and complexity

The Bethe free energy functional of the level-one model is a functional of the

cavity messages Qi→a, Q̂a→i. We could derive it as in Chapter ?? by first deriving

the exact free energy f1(x) on a tree, and then take this expression as a defition

for general graph instances. But we can also guess the fomula. It is basically

given by the usual definition, but with the extra feature that it must contain

the reweighting factors. Moreover its stationary points must yield (??). This is

enough information to guess that

FBethe(Q, Q̂) =
∑
i∈V
Fi +

∑
a∈C
Fa −

∑
ai∈E

Fai (22.13)

232 Cavity Method: Basic Concepts

where

Fi({Q̂b→i}b∈∂i) = − 1

x
ln

{∑
µ̂

e−xFi
∏
b∈∂i

Q̂b→i

}
,

Fa({Qj→a}j∈∂a) = − 1

x
ln

{∑
µ

e−xFa
∏
j∈∂a

Qj→a

}
,

Fai(Qi→a, Q̂a→i) = − 1

x
ln

{∑
µ,µ̂

e−xFaiQi→aQ̂a→i

}
.

The complexity functional within the Bethe formalism is given by ΣBethe =

x2 ∂
∂xFBethe. Explicitly,

ΣBethe(Q, Q̂) =
∑
i∈V

Σi +
∑
a∈C

Σa −
∑
ai∈E

Σai (22.14)

where

x−1Σi({Q̂b→i}b∈∂i) = −Fi +

∑
µ̂ Fie

−xFi
∏
b∈∂i Q̂b→i∑

µ̂ e
−xFi

∏
b∈∂i Q̂b→i

,

x−1Σa({Qj→a}j∈∂a) = −Fa +

∑
µ Fae

−xFa
∏
j∈∂aQj→a∑

µ e
−xFa

∏
j∈∂aQj→a

,

x−1Σai(Qi→a, Q̂a→i) = −Fai +

∑
µ,µ̂ Faie

−xFaiQi→aQ̂a→i∑
µ,µ̂ e

−xFaiQi→aQ̂a→i
.

One can interpret the Bethe complexity as the difference of the Bethe free energy

of the level-one model and a Bethe expression for the internal energy of the level

one model,

x−1ΣBethe = FBethe − 〈FBethe〉cav. (22.15)

The bracket 〈−〉cav is a natural average that can be read off from the above

formulas.

Simplifications for x = 1

As alluded to before x = 1 plays a specially important role. So it is fortunate that

a large portion of the formalism above can be simplified by eliminating entirely

the need for reweighting factors. This makes the replica analysis much simpler

and allows to make much simpler and precise numerical computations (e.g. by

population dynamics) .

Let us first discuss the level-one Bethe free energy. Replacing (19.12), (19.13)

and (19.14) into (22.13) one finds

FBethe(Q, Q̂)|x=1 = FBethe(µ
av, µ̂av) (22.16)

22.3 Message passing, Bethe free energy and complexity one level up 233

which is the usual Bethe free energy expressed in terms of ”average messages”,

µav

i→a(xi) =
∑
µi→a

µi→a(xi)Qi→a(µi→a), µ̂av

a→i(xi) =
∑
µ̂a→i

µ̂a→i(xi)Q̂a→i(µ̂a→i).

Remarkably, the average messages satisfy the usual sum-product equations,

µav

i→a(xi) '
∑
xi

∏
b∈∂i\a

µ̂av

b→i(xi), µ̂av

i→a(xi) '
∑
x∂a

fa(x∂a)
∏

j∈∂a\i

µav

j→a(xj).

One way to prove this is to notice that5 δQi→aFBethe = (δµav
i→a

FBethe)µi→a(xi) and

δQ̂i→aFBethe = (δµ̂av
i→a

FBethe)µ̂i→a(xi). Therefore if (Q, Q̂) is a stationary point of

FBethe|x=1 then (µav, µ̂av) is a stationary point of FBethe. Thus the cavity equations

for (Q, Q̂) imply the sum-product equations for (µav, µ̂av). This conclusion can

also be reached by a direct calculation starting from the cavity equations for

x = 1 .

Conceptually µav
i→a(xi) and µ̂av

i→a(xi) are very natural messages to consider.

Suppose for the sake of the argument that Q(µi→a) and Q̂(µ̂i→a) are the true

marginals of the level-one model. Then the average messages are the Gibbs av-

erages of the dynamical variables of the level-one model (much like the magne-

tization is the Gibbs average of the spin variable). In other words if we sample

among the set of solutions of the sum-product equations according to the weight

e−FBethe/Z1(x = 1) these are the expected messages that we get. From these

expected messages one can reconstruct a Bethe measure which one can hope to

be a good proxy for the convex superposition. However this is not a pure Bethe

measure. As a consequence the marginals of this Bethe measure do not allow

us to correctly sample from pure states µ(p)(x). In particular for K-SAT they

do not allow us to find solutions, and this is why BP guided decimation does

not succeed above a certain density. When it does succeed this means that the

the convex decomposition is essentially dominated by a unique Bethe measure

(which is pure). The correct sampling procedure that suitably addresses these

points is Survey Propagation guided decimation discussed in Chapter ??.

We now turn to the Bethe complexity (22.15) for x = 1. For the free energy

contribution we already have the simplification (22.16), so we only have to show

how to eliminate the reweighting factors from the internal energy contribution.

5 Formally δRG is an infinitesimal variation of G with respect to R.

234 Cavity Method: Basic Concepts

Replacing (19.12) in 〈Fi〉cav we find

〈Fi〉cav =

∑
µ̂ ln

{∑
xi

∏
b∈∂i µ̂b→i(xi)

}∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i∑

µ̂

∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i

=

∑
µ̂ ln

{∑
xi

∏
b∈∂i µ̂b→i(xi)

}∑
xi

∏
b∈∂i µ̂b→i(xi)Q̂b→i∑

xi

∏
b∈∂i µ̂

av

b→i(xi)

=
∑
µ̂

ln

{∑
xi

∏
b∈∂i

µ̂b→i(xi)

}∑
xi

νav

i (xi)
∏
b∈∂i

R̂b→i(µ̂b→i|xi)

In the last equality we have defined the probability distributions

νav

i (xi) =

∏
b∈∂i µ̂

av

b→i(xi)∑
xi

∏
b∈∂i µ̂

av

b→i(xi)
, R̂b→i(µ̂b→i|xi) =

µ̂b→i(xi)Q̂b→i
µ̂av

b→i(xi)

Replacing (19.13) in 〈Fa〉cav we find

〈Fa〉cav =

∑
µ ln

{∑
x∂a

∏
i∈∂a µi→a(xi)

}∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)Qi→a∑

µ

∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)Q̂i→a

=

∑
µ ln

{∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)

}∑
x∂a

fa(x∂a)
∏
i∈∂a µi→a(xi)Qi→a∑

x∂a
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)

=
∑
µ

ln

{∑
x∂a

fa(x∂a)
∏
i∈∂a

µi→a(xi)

}∑
x∂a

νav

a (x∂a)
∏
i∈∂a

Ri→a(µi→a|xi)

with the distributions

νav

a (x∂a) =
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)∑

x∂a
fa(x∂a)

∏
i∈∂a µ

av
i→a(xi)

, Ri→a(µi→a|xi) =
µi→a(xi)Qi→a
µav
i→a(xi)

Replacing (19.14) in 〈Fai〉cav we find

〈Fai〉cav =

∑
µ,µ̂ ln

{∑
xi
µ̂a→i(xi)µi→a(xi)

}∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a∑

µ,µ̂

∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a

=

∑
µ,µ̂ ln

{∑
xi
µ̂a→i(xi)µi→a(xi)

}∑
xi
µ̂a→i(xi)Q̂a→iµi→a(xi)Qi→a∑

xi
µ̂av
a→i(xi)µ

av
i→a(xi)

=
∑
µ,µ̂

ln

{∑
xi

µ̂a→i(xi)µi→a(xi)

}∑
xi

νai(xi)R̂a→i(µ̂a→i|xi)Ri→a(µi→a|xi)

where

νav

ai(xi) =
µ̂av
a→i(xi)µ

av
i→a(xi)∑

xi
µ̂av
a→i(xi)µ

av
i→a(xi)

22.4 Application to K-SAT 235

So far we have shown that the Bethe complexity can be expressed in terms of

the average messages µ̂av
a→i and µav

i→a and the conditional distributions R̂a→i(µ̂a→i|xi)
and Ri→a(µi→a|xi). We have already seen that the average messages satisfy the

usual sum-product equations. We will now show that the conditional distribu-

tions satisfy similar equations.

Multiplying the cavity equations (22.10)-(22.11) by µa→i(xi) and µ̂a→i(xi),

and using the expressions of the reweighting factor (22.12) we get for x = 1

µi→a(xi)Qi→a(µi→a) '
∑
µ̂

1i(µi→a)
∏

b∈∂i\a

µ̂b→i(xi)Q̂b→i(µ̂b→i)

µ̂a→i(xi)Q̂a→i(µ̂a→i) '
∑
∼xi

fa(x∂a)
∑
µ

1̂a(µ̂a→i)
∏

j∈∂a\i

µj→a(xj)Qj→a(µj→a)

If we normalize each member of these equalities the proportionality relations be-

come equalities. Here normalizing means dividing by the sums of the numerators

over µi→a and µ̂i→a. One finds a closed set of equations linking the conditional

distributions,

Ri→a(µi→a|xi) =
∑
µ̂

1i(µi→a)
∏

b∈∂i\a

R̂b→i(µ̂b→i|xi) (22.17)

R̂a→i(µ̂a→i|xi) =
∑
∼xi

πa,i(x∂a\i|xi)
∑
µ

1̂a(µ̂a→i)
∏

j∈∂a\i

Rj→a(µj→a|xj) (22.18)

where

πa,i(x∂a\i|xi) =
fa(x∂a)

∏
j∈∂a\i µ

av
j→a(xj)∑

∼xi fa(x∂a)
∏
j∈∂a\i µ

av
j→a(xj)

These equations are quite similar to standard sum-product equations and are

much easier to solve than the original cavity equations.

22.4 Application to K-SAT

We work at finite temperature for reasons that will become clear below. It is

straightforward to apply the general theory to K-SAT using the parametrization

of messages (15.8). With this parametrization the sum-product equations become

(15.11)-(15.15) (with the necessary modification for finite temperatures) so to

write the cavity equations (22.10)-(22.11) we make the replacements

1i → δ

(
hi→a −

∑
b∈Sia

ĥb→i +
∑
b∈Uia

ĥb→i)

and

1̂a → δ

(
ĥa→i +

1

2
ln

{
1− (1− e−β)

∏
j∈∂a\i

1− tanhj→a
2

})
.

236 Cavity Method: Basic Concepts

Furthermore all sums become integrals (dropping subscripts)
∑
µQ(µ) · · · →∫

dhQ(h) . . . and
∑
µ̂ Q̂(µ̂) · · · →

∫
dĥQ̂(ĥ)

To get the general expressions for the level-one Bethe free energy and complex-

ity (22.13), (22.14) one uses Fi, Fa and Fai given in (19.23)-(19.25) and replaces

sums by integrals as just indicated.

For the simplified formulas when x = 1 we introduce averaged messages

tanhhav

i→a =

∫
Q(hi→a) tanhhi→a, tanh ĥav

i→a =

∫
Q̂(hi→a) tanh ĥi→a

which satisfy the finite temperature version of message passing equations (15.11)-

(15.15). With these average messages the level-one Bethe free energy is the same

than (19.21), i.e. it is given by the RS expression. The other set of message pass-

ing equations (22.17), (22.18) are obtained by replacing indicator functions by

Dirac functions as above, xi → si, and (dropping subscripts)
∑
µR(µ|xi) · · · →∫

dhR(h|xi) . . . ,
∑
µ R̂(µ̂|xi) · · · →

∫
dĥR̂(ĥ|xi) With all these ingredients

one also writes down the Bethe complexity for x = 1. This is left as an exercise.

22.5 Replica Symmetry Broken Analysis for K-SAT

General analysis

The phase diagram of K-SAT is derived from the cavity equations and the Bethe

formulas through a ”density evolution type” analysis done at the level of the

cavity messages Qi→a(.), Q̂i→a(.). One can write down formal equations linking

probability distributions of the cavity messages Q(Q(.)) and Q̂(Q̂(.)) which are

often called replica symmetry broken (1-RSB) equations. The associated average

level-one free energy functional is the 1-RSB free energy.6 Let us illustrate the

1RSB replica formula for the free energy in more detail.

Fix a trial distribution Q(Q(.)). Take K − 1 iid copies of the random distri-

bution Q(.) and define the random variable Q̂(.) [compute reweighting factor in

here]

Q̂(ξ̂)
distr
=

∫ K−1∏
k=1

dξkQ(hk)

(
2−

K−1∏
k=1

1− tanhhk
2

)x
(22.19)

×
δ

(
ĥ+ 1

2 ln

{
1− (1− e−β)

∏K−1
k=1

1−tanhhk
2

})
∫ ∏K−1

k=1 dξkQ(hk)

(
2−

∏K−1
k=1

1−tanhhk
2

)x (22.20)

This random distribution is distributed according to Q̂(Q̂(.)). Pick two Poisson

integers p and q of mean αK/2 and p + q iid copies of the random distribution

6 Historically these equations were first derived in the context of the replica method and

involve breaking the symmetry between replicas of the original system, hence the name.

22.5 Replica Symmetry Broken Analysis for K-SAT 237

Q̂(.). Let

f(Q(.), Q̂(.), p, q)

= x−1 ln

{∫ p+q∏
k=1

dĥkQ̂k(ĥk)

(p∏
k=1

(1− tanh ĥk)

p+q∏
k=p+1

(1 + tanh ĥk)

+

p∏
k=1

(1 + tanh ĥk)

p+q∏
k=p+1

(1− tanh ĥk)

)x}

+ x−1 ln

{∫ K∏
k=1

dhkQk(hk)

(
1− (1− e−beta)

K∏
k=1

1− tanhhk
2

)x}
− x−1 ln

{∫
dhQ(h)dĥQ̂(ĥ)

(
1 + tanhh tanh ĥ

)x}
The 1-RSB free energy functional is defined as

f1RSB(Q(.);x) = E[f(Q(.), Q̂(.), p, q)]

where the expectation is with respect to Q, Q̂, p, q. The stationnary point equa-

tion of the 1RSB functional yield the 1RSB fixed point equations for the dis-

tributions Q(.), Q̂(.). These are the DE equations corresponding to the cavity

message passing equations: one of them is precisely (22.19). The derivation of

the second one is left as an exercise to the reader.

The interpolation method allows to prove the following theorem,

theorem 22.1 For any trial distribution Q(.) and any 0 < x < 1, the thermo-

dynamic limit of the free energy of SAT exists, and moreover is lower bounded

by the 1RSB formula

lim
n→+∞

1

n
E[lnZ] ≤ f1RSB(Q(.);x)

The 1RSB conjecture states that taking the supremum over Q(.) and x on the

right hand side yields an equality. We point out that this conjecture is surprizing

from the standpoint of deterministic mean field models because for such models

the variational expression for the free energy always involves a minimization (e.g.

in the CW model). Here the free energy of K-SAT is given by a variational prin-

ciple involving a maximization over trial parameters, rather than a minimization.

This feature is in fact generic for replica formulas was already encountered in the

early days of of the replica method. Note that it has nothing to do with the fact

that the solution is RS or RSB. Now, for coding the RS variational expression for

the free energy involves a minimization: this is surprizing from the standpoint

of replica formulas! A look at the derivation of the bounds in the interpolation

method (Chapter 21) shows that this can be traced to the channel or Nishimori

symmetry.

Accepting the 1RSB conjecture teaches us something about the correct choice

of the Parisi parameter x. Indeed recall that the complexity is the Gibbs-Shannon

238 Cavity Method: Basic Concepts

K αd αd,80,3 αc αc,80,3 αs αs,80,3

3 3.86 3.86 3.86 3.86 4.267 4.268

4 9.38 9.55 9.55 9.56 9.93 10.06

Table 22.1 Thresholds of individual and coupled K-SAT model for L = 80 and w = 3.
Note that for 3-SAT teh dynamical and condensation thresholds are the same. The
condensation and SAT-UNSAT thresholds correspond to non analyticities of the entropy
and ground state energy and remain unchanged (for L→ +∞). Already for w = 3 the
dynamical threshold saturates very close to αc and αs.

entropy of the level-one model Σ(x) = x2 ∂
∂x2 f1(x). In place of f1(x) we use the

1RSB free energy formula (for the optimal Q(.)), a function of x that can be

computed by population dynamics. As long as Σ(x) ≥ 0 for 0 < x < 1 the optimal

x is given by x = 1. We will see that this happens as long as α < αc, where αc is

called the condensation threshold. When α > αc we get Σ(x) ≥ 0, 0 < x < x∗(α),

and Σ(x) ≤ 0, x∗(α) < x < 1, so that the optimal value of the parisi parameter

is x = x∗(α). As we will see in the next chapter at the SAT-UNSAT density

we have x∗(αs) = 0; for this value of the Parisi parameter the 1RSB formulas

also simplify and yield the survey propagation formulas. This discussion shows

that the condensation threshold can be obtained from the 1RSB complexity

computed for x = 1. The same quantity will also give us the dynamical threshold

αd = inf{α|Σ(x = 1) > 0}. This is sufficient motivation for giving the simplified

1RSB formulas for x = 1.

Analysis for x = 1

explain that free energy is RS free energy. Give the complexity and the fixed

point equations without reweighting factor. Give population dynamic pseudo

code.

22.6 Dynamical and Condensation Thresholds

The most important feature of the convex decomposition ansatz is the number of

pure Bethe states involved. The RSB analysis of the level-one model predicts the

existence of two sharply defined thresholds αd and αc at which the nature of the

convex decomposition (22.1) changes drastically. The values of these thresholds

are given in Table 22.1 and compared to the SAT-UNSAT threshold for a few

values of K. Note that K = 3 is not generic because αd = αc. Figure 22.3 gives

a pictorial view of the transitions associated with the decomposition (22.1). The

goal of this paragraph is to explain this picture.

As already explained for α < αc we have Σ(x) ≥ 0 for all x ∈ [0, 1] and the

correct value of the Parisi paramter is x = 1. The entropy is given by the RS

22.6 Dynamical and Condensation Thresholds 239

αd αc α

Figure 22.3 Pictorial representation of the decomposition of the Gibbs distribution
into a convex superposition of extremal states. Balls represent extremal states (their
size represents their internal entropy). For α < αd there is one extremal state. For
αd < α < αc there are exponentially many extremal states (with the same internal
free enetropy) that dominate to the convex superposition. For α > αc there is a finite
number of extremal states that dominate the convex superposition.

formula. In particular this function is analytic for α < αc and therefore there is

no thermodynamic static phase transition in this range. Above the condensation

threshold the correct choice of the Parisi parameter x = x∗(α) forces the com-

plexity to vanish. The Gibbs measure is supported by a finite number of pure

Bethe states. Because of the change in x the entropy is not given by the same

analytic function below and above αc. therefore the condensation threshold is a

thermodynamic static phase transition.

The complexity Σ(x = 1) has a non trivial behavior below the condensation

threshold. It vanishes for α < αd, jumps to a positive value at αd and is con-

cave decreasing with increasing α till it becomes negative just above αc. What

is the interpretation of this result? Recall that the complexity is the growth rate

for the number of pure Bethe states in the convex decomposition of the Gibbs

measure, and the weights of this decomposition are given by the entropies of

the pure states. For densities below the dynamical threshold the Gibbs mea-

sure is supported by one pure Bethe state. It is not excluded that there exist

other ones of exponentially smaller weights. For densities between the dynam-

ical and condensation thresholds an exponential number of pure Bethe states

of identical entropy contribute to the convex sum. On the other hand beyond

teh condensation threshold the measure is supported by only a finite number of

pure Bethe states with equal entropy. All other states have exponentially smaller

weights (the cavity method also predicts that the statistics of these weights is a

Poisson-Dirichlet process). As already stressed the entropy is insensitive to the

dynamical threshold, and thsi is not a static phase transition threshold. Rather,

as its name indicates one expects that the proliferation of pure states affects the

dynamics of algorithms local algorithms. In this course we have seen indications

that this indeed occurs for BP guided decimation. In fact BP decimation fails

slightly below αd. This is not believed to be an inconsistency of the theory, but

rather a consequence of the fcat that during teh decimation process the graph

ensemble changes and therefore the threshold for BP guided decimation is set

240 Cavity Method: Basic Concepts

by a different graph ensemble. It is believd that for Markov Chain Monte Carlo

algorithms such as Glauber dynamics the equilibration time diverges exactly at

αd. This has been checked in simpler models.

It is interesting to consider the spatially coupled version of the K-SAT model.

The same cavity theory can be applied and the RSB equations solved with the ap-

propriate boundary conditions. this allows to determine the dynamical and con-

densation thresholds of the spatially coupled model (see table 22.1). The numeri-

cal observations suggest that the condensation threshold remains invariant in the

limit of an infinite chain. This is consistent with its interpretation as a singularity

of the entropy. In fact one can prove by the interpolation method that the en-

tropy of the infinite coupled chain and underlying uncoupled model are the same,

and therefore αc is the same for both models, namely limL→+∞ αc(w,L) = αc.

On the other hand it is observed that the dynamical threshold saturates towards

the condensation threshold in the limit of an infinite chain and a large coupling

range, namely limw→+∞ limL→+∞ αd(w,L) = αc. These results are conssistent

with the interpretation of the dynamical threshold as an algorithmic barrier and

the condensation threshold as a static phase transition threshold.

In section ?? we indicated that in Ising models there is an intimate connection

between the decay of correlations and the extremality of the Gibbs measure. This

is also true for constarint satisfaction models defined on random graph ensembles.

However the correct correlation functions have to be used. In the present context

two type of correlation functions have been discovered. Point-to-set correlations

defined as

C(i, B) =
∑
x∂B

ν(x∂B(ν(xi|x∂B)− ν(xi))
2

where B is the set {xj |{dist(xi, xj) ≥ d}. Within the cavity method one can

compute limd→+∞ limn→+∞ C(i, B and finds that the limit vanishes α < αd,

while it remains strictly positive for α > αd. Moreover for all α < αc and all

randomly chosen bounded set of variables

E[(ν(xi1 , . . . xik)− ν(xi1) . . . ν(xik))2] = O(
1

n
)

This is similar to the decoupling property we discussed for the CW model. At

αc this decoupling property breaks down.

23 Cavity Method: Survey Propagation

We have seen BP guided decimation does not find solutions beyond αd. This

chapter is an application of the cavity theory to find solutions of K-sat for

densities beyond dynamical threshold. With level one model we learned about

αd and αc. But have not yet computed αs. We will aplly level one model with

x = 0. RSB analysis with x = 0 leads to SP equations. Allows to compute αs.

Older point of view this was called “energetic cavity method”. With decimation

process we find solutions up densities close to αs.

23.1 Survey propagation equations

Simplifify equations of previous chapter for x = 0. Derive equations.

23.2 Connection with the energetic cavity method

Briefly explain min sum point of view. Different level one model. Notion of SP

complexity.

23.3 RSB analysis and sat-unsat threshold

Compute internal entropy and SP complexity. They both yield the sat-unsat

threshold.

23.4 Survey propagation guided decimation

Algorithm. Experiments.

24 Summary of Part III

blabla

Notes

References

[1] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms.

Cambridge Univ. Press, 2003.

[2] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A. Spielman, and V. Stemann,

“Practical loss-resilient codes,” in Proc. of the 29th annual ACM Symposium on

Theory of Computing, 1997, pp. 150–159.

References 245

authorsAuthor index subjectSubject index

