ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 3 Homework 3 Statistical Physics for Communication and Computer Science March 6, 2013

The goal of this homework is to discuss the statistical mechanical formulation of the random K-SAT problem. We consider the ensemble of random formulas $\mathcal{F}(n,K,M)$ defined in chapter one (in class). The clause density will be denoted $\alpha = M/n$. In the first problem you will write the Hamiltonian and the statistical mechanical measures in the spin language. In the second problem you will derive a very elementary upper bound on the sat-unsat phase transition threshold α_s . Hint: there are no big calculations in this homework.

Given a formula $F \in \mathcal{F}(n, K, M)$ consider the following cost function:

$$\mathcal{H}_F(x_1,...,x_n)$$
 = number of clauses violated by the assignment $x_1,...,x_n$. (1)

This is our Hamiltonian or energy function (x_i the Boolean variables).

Problem 1 (Hamiltonian, microcanonical measure, finite temperature Gibbs measure). Introduce the "spin" variables $s_i = (-1)^{x_i}$ that take values in $\{-1, +1\}$. Furthermore if clause c_a contains x_i associate $J_{ai} = +1$, and if it contains \bar{x}_i associate $J_{ai} = -1$. Thus full edges have $J_{ai} = +1$ and dashed edges have $J_{ai} = +1$, and J_{ai} are Bernoulli(1/2).

(a) Verify that each clause contributes a term

$$\prod_{i \in c_a} \left(\frac{1 + s_i J_{ia}}{2}\right) \tag{2}$$

and then, write down the Hamiltonian or energy function in the spin language.

- (b) Explain in one sentence which are dynamical variables and which are the frozen (or equivalently quenched) random variables in the problem.
- (c) Show that the following counts the number of solutions of F

$$Z = \sum_{s_1, \dots, s_n \in \{-1, +1\}^n} \prod_{a=1}^M \left(1 - \prod_{i \in c_a} \left(\frac{1 + s_i J_{ia}}{2} \right) \right)$$
 (3)

- (d) Convince yourself that the microcanonical measure for the zero-energy surface is nothing else than the uniform measure over solutions of F. Also, convince yourself that Z is the partition function (normalization factor) of the microcanonical zero-energy measure. Note that this measure is well defined only if F admits at least one solution.
- (d) Now take the Hamiltonian found in question (a) and write down the Gibbs measure for inverse temperature β . Note that this measure has the advantage that it is always well defined, i.e even if F does not have a solution. Consider the free energy $f_F(\beta)$ (normalized by the number of variables) for a fixed formula F. Show that

$$\lim_{\beta \to +\infty} \beta^{-1} f_F(\beta) = \frac{1}{n} \min_{x} \mathcal{H}(\underline{x})$$
 (4)

This formula is interesting because if we succeed in computing the free energy and if its zero temperature limit is non zero, then we can deduce that F is unsat. The catch is that computing the free energy is a difficult problem.

Problem 2 (Crude upper bound on α_s). Below \mathbb{P} and \mathbb{E} are with respect to the random ensemble $\mathcal{F}(n, K, M)$. Consider the partition function Z of the microcanonical ensemble.

- a) Show the Markov inequality $\mathbb{P}[F \text{ satisfiable}] \leq \mathbb{E}[Z]$.
- **b)** Show that

$$\mathbb{E}[Z] = 2^n (1 - 2^{-K})^M. \tag{5}$$

c) Deduce the upper bound

$$\alpha_s < \frac{\ln 2}{|\ln(1 - 2^{-K})|}.\tag{6}$$

For K=3 this yields $\alpha_s(3) < 5.191$. It is conjectured that $\alpha_s(3) \approx 4.26$: this value is the prediction of the highly sophisticated cavity method of spin glass theory. The asymptotic behavior of this simple upper bound for $K \to +\infty$ is $2^K \ln 2$, which is known to be tight. However, the large K corrections obtained by this bound are not tight.