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Problem 1 (Magnetization of the Ising model on a d-regular graph with large girth). In
this problem we consider the ferromagnetic Ising model on a d-regular graph with large
girth. Using the probabilistic method Erdős and Sachs proved that there exist a graphs Gn,d

on n vertices, with all vertex degrees equal to d and with a girth gn,d ≥ (1− o(1)) logd−1 n
(here o(1) stands for a function that goes to zero as n→ +∞). We recall that the girth is
the length of the shortest loop in the graph.

Consider the Gibbs distribution of the Ising model on Gn,d

µn,d(s) =
1

Zn,d

exp

(
βJ

d

∑
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sisj + βh

n∑
i=1

si

)

The Hamiltonian is given by the contribution of all ferromagnetic interactions associated
to edges {i, j}, and a contribution from a constant magnetic field. The strength of the
interaction is scaled by d for later convenience. Note that J > 0 but h can take both signs.

Recall that the magnetization at a vertex o is defined as 〈so〉n,d where 〈−〉n,d is the usual
Gibbs average. This quantity is non trivial to compute. On the other hand we can run BP
and compute the BP estimates of the magnetization.

(i) The second Griffith-Kelly-Sherman correlation inequality states that for Ising models
with all interaction coefficients and all magnetic fields positive the magnetization
can only decrease when one coefficient decreases. In the present case this inequality
implies that the magnetization decreases when an edge is removed from Gn,d. Now
consider the neighborhood of a vertex o, namely N = {i ∈ Gn,d|dist(o, i) ≤ gn,d− 1}.
Define 〈−〉N the Gibbs average for the Ising model restricted to N . Show that for
h ≥ 0

〈so〉n,d ≥ 〈so〉N
and that for h ≤ 0

〈so〉n,d ≤ 〈so〉N

Hint: for the second inequality use symmetry properties under the operation h→ −h.

(ii) The average 〈so〉N can be computed exactly from the BP recursion. Why? Show that
this recursion is:

m(t) = tanh(βh+ d tanh−1(tanh β
J

d
tanhu(t)))

u(t) = βh+ (d− 1) tanh−1(tanh
βJ

d
tanhu(t−1)), u(0) = h

and that 〈so〉N = m(gn,d−1).

Remark: go back to homework 4 and observe this is the same recursion that you had
derived by “other means”.



(iii) Take now a fixed sequence of graphs Gn,d with respect to n. Observe from above that
for h > 0 and all t,

lim inf
n→+∞

〈so〉n,d ≥ m(t),

and for h ≥ 0
lim sup
n→+∞

〈so〉n,d ≤ m(t).

We want to look at the limit d→ +∞. Show that

lim
d→+∞

lim inf
n→+∞

〈so〉n,d ≥ lim
t→+∞

m
(t)
CW,

and for h ≤ 0 and all t

lim
d→+∞

lim sup
n→+∞

〈so〉n,d ≤ lim
t→+∞

m
(t)
CW,

where m
(t)
CW is the BP-magnetization of the CW model and satisfies the recursion

m
(t)
CW = tanh(β(h+ Jm

(t−1)
CW ))

with the initial condition m
(o)
CW = tanh βh.

Remark: These inequalities suggest the conjecture

lim
d→+∞

lim inf
n→+∞

〈so〉n,d = lim
d→+∞

lim sup
n→+∞

〈so〉n,d = 〈so〉CW

where 〈so〉CW is the true CW magnetization.
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