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Entanglement-Assisted Capacity of a Quantum
Channel and the Reverse Shannon Theorem
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Abstract—The entanglement-assisted classical capacity of a
noisy quantum channel ( ) is the amount of information per
channel use that can be sent over the channel in the limit of many
uses of the channel, assuming that the sender and receiver have
access to the resource of shared quantum entanglement, which
may be used up by the communication protocol. We show that
the capacity is given by an expression parallel to that for
the capacity of a purely classical channel: i.e., the maximum,
over channel inputs , of the entropy of the channel input plus
the entropy of the channel output minus their joint entropy, the
latter being defined as the entropy of an entangled purification
of after half of it has passed through the channel. We calculate
entanglement-assisted capacities for two interesting quantum
channels, the qubit amplitude damping channel and the bosonic
channel with amplification/attenuation and Gaussian noise.
We discuss how many independent parameters are required to
completely characterize the asymptotic behavior of a general
quantum channel, alone or in the presence of ancillary resources
such as prior entanglement. In the classical analog of entangle-
ment-assisted communication—communication over a discrete
memoryless channel (DMC) between parties who share prior
random information—we show that one parameter is sufficient,
i.e., that in the presence of prior shared random information,
all DMCs of equal capacity can simulate one another with unit
asymptotic efficiency.

Index Terms—Channel capacity, entanglement, quantum infor-
mation, Shannon theory.

I. INTRODUCTION

THE formula for the capacity of a classical channel was de-
rived in 1948 by Shannon. It has long been known that this

formula is not directly applicable to channels with significant
quantum effects. Extending this theorem to take quantum effects
into account has been harder than might have been anticipated;
despite much recent effort, we do not yet have a comprehensive
theory for the capacity of quantum channels. The book [28] and
the survey paper [8] are two sources giving good overviews of
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quantum information theory. In this paper, we advance quantum
information theory by proving a capacity formula for quantum
channels which holds when the sender and receiver have ac-
cess to shared quantum entangled states which can be used in
the communication protocol. We also present a conjecture that
would imply that, in the presence of shared entanglement, to
first order this entanglement-assisted capacity is the only quan-
tity determining the asymptotic behavior of a quantum channel.
A (memoryless) quantum communications channel can be

viewed physically as a process wherein a quantum system in-
teracts with an environment (which may be taken to initially be
in a standard state) on its way from a sender to a receiver; it may
be defined mathematically as a completely positive, trace-pre-
serving linear map on density operators. The theory of quantum
channels is richer and less well understood than that of classical
channels. For example, quantum channels have several distinct
capacities, depending on what one is trying to use them for, and
what additional resources are brought into play. These include
the following.

The ordinary classical capacity , defined as the maximum
asymptotic rate at which classical bits can be transmitted reli-
ably through the channel, with the help of a quantum encoder
and decoder.

The ordinary quantum capacity , which is the maximum
asymptotic rate at which qubits can be transmitted under similar
circumstances.

The classically assisted quantum capacity , which is the
maximum asymptotic rate of reliable qubit transmission with
the help of unlimited use of a two-way classical side channel
between sender and receiver.

The entanglement-assisted classical capacity , which is
the maximum asymptotic rate of reliable bit transmission with
the help of unlimited prior entanglement between the sender and
receiver.
Somewhat unexpectedly, the last of these has turned out to be

the simplest to calculate, because, as we show in Section II, it
is given by an expression analogous to the formula expressing
the classical capacity of a classical channel as the maximum,
over input distributions, of the input : output mutual informa-
tion. Section III calculates entanglement-assisted capacities of
the amplitude damping channel and of amplifying and attenu-
ating bosonic channels with Gaussian noise.
We return now to a general discussion of quantum channels

and capacities, in order to provide motivation for Section IV of
the paper, on what we call the reverse Shannon theorem.
Aside from the constraints and ,

which are obvious consequences of the definitions, the four ca-
pacities appear to vary rather independently. It is conjectured
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TABLE I
CAPACITIES OF SEVERAL QUANTUM CHANNELS

that , but this has not been proved to date. Except in
special cases, it is not possible, without knowing the parame-
ters of a channel, to infer any one of its four capacities from the
other three. This independence is illustrated in Table I, which
compares the capacities of several simple channels for which
they are known exactly. The channels incidentally illustrate four
different degrees of qualitative quantumness: the first can carry
qubits unassisted, the second requires classical assistance to do
so, the third has no quantum capacity at all but still exhibits
quantum behavior in that its capacity is increased by entangle-
ment, while the fourth is completely classical, and so unaffected
by entanglement.
Contrary to an earlier conjecture of ours, we have found chan-

nels for which but . One example is a channel
mapping three qubits to two qubits which is switched between
two different behaviors by the first input qubit. The channel op-
erates as follows. The first qubit is measured in the basis.
If the result is , then the other two qubits are dephased (i.e.,
measured in the , basis) and transmitted as classical bits;
if the result is , the first qubit is transmitted intact and the
second qubit is replaced by the completely mixed state. This
channel has (achieved by setting the first qubit to
) and .
This complex situation naturally raises the question of how

many independent parameters are needed to characterize the
important asymptotic, capacity-like properties of a general
quantum channel. A full understanding of quantum channels
would enable us to calculate not only their capacities, but more
generally, for any two channels and , the asymptotic
efficiency (possibly zero) with which can simulate ,
both alone and in the presence of ancillary resources such as
classical communication or shared entanglement.
One motivation for studying communication in the presence

of ancillary resources is that it can simplify the classification of
channels’ capacities to simulate one another. This is so because
if a simulation is possible without the ancillary resource, then
the simulation remains possible with it, though not necessarily
vice versa. For example, and represent a channel’s asymp-
totic efficiencies of simulating, respectively, a noiseless qubit
channel and a noiseless classical bit channel. In the absence of
ancillary resources these two capacities can vary independently,
subject to the constraint , but in the presence of un-
limited prior shared entanglement, the relation between them
becomes fixed: , because shared entanglement al-
lows a noiseless 2-bit classical channel to simulate a noiseless
1-qubit channel and vice versa (via teleportation [6] and super-
dense coding [9]).

We conjecture that prior entanglement so simplifies the com-
plex landscape of quantum channels that only a single free pa-
rameter remains. Specifically, we conjecture that in the presence
of unlimited prior entanglement, any two quantum channels of
equal could simulate one another with unit asymptotic effi-
ciency. Section IV proves a classical analog of this conjecture,
namely, that in the presence of prior random information shared
between sender and receiver, any two discrete memoryless clas-
sical channels (DMCs) of equal capacity can simulate one an-
other with unit asymptotic efficiency. We call this the classical
reverse Shannon theorem because it establishes the ability of
a noiseless classical DMC to simulate noisy ones of equal ca-
pacity, whereas the ordinary Shannon theorem establishes that
noisy DMCs can simulate noiseless ones of equal capacity.
Another ancillary resource—classical communication—also

simplifies the landscape of quantum channels, but probably not
so much. The presence of unlimited classical communication
does allow certain otherwise inequivalent pairs of channels to
simulate one another (for example, a noiseless qubit channel
and a 50% erasure channel on four-dimensional Hilbert space),
but it does not render all channels of equal asymptotically
equivalent. So-called bound-entangled channels [21], [15] have

, but unlike classical channels (which also have )
they can be used to prepare bound-entangled states, which are
entangled but cannot be used to prepare any pure entangled
states. Because the distinction between bound-entangled and
unentangled states does not vanish asymptotically, even in the
presence of unlimited classical communication [32], bound-en-
tangled and classical channels must be asymptotically inequiv-
alent, despite having the same .
The various capacities of a quantum channel may be de-

fined within a common framework

(1)

Here is a generalized capacity; is an encoding subpro-
tocol, to be performed by Alice, which receives an -qubit state
belonging to some set of allowable inputs to the entire pro-

tocol, and produces possibly entangled inputs to the channel
; is a decoding subprotocol, to be performed by Bob, which

receives (possibly entangled) channel outputs and produces an
-qubit output for the entire protocol; finally,

is the fidelity of this output relative to the input , i.e., the
probability that the output state would pass a test determining
whether it is equal to the input (more generally, the fidelity of
one mixed state relative to another is ).
Different capacities are defined depending on the specification
of , , and . The classical capacities and are defined
by restricting to a standard orthonormal set of states, without
loss of generality the “Boolean” states labeled by bit strings

; for the quantum capacities and ,
is the entire -dimensional Hilbert space . For the simple
capacities and , the Alice and Bob subprotocols are com-
pletely positive trace-preserving maps from to the input
space of , and from the output space of back to .
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For and , the subprotocols are more complicated, in the
first case, drawing on a supply of ebits (maximally entangled
pairs of qubits) shared beforehand between Alice and Bob, and
in the latter case making use of a two-way classical channel be-
tweenAlice and Bob. The definition of thus includes interac-
tive protocols, in which the channel uses do not take place all
at once, but may be interspersed with rounds of classical com-
munication.
The classical capacity of a classical DMC is also given by

an expression of the same form, with restricted to Boolean
values; the encoder , decoder , and channel all being
restricted to be classical stochastic maps; and the fidelity
being defined as the probability that the (Boolean) output of

is equal to the input . We will sometimes in-
dicate these restrictions implicitly by using upper case italic let-
ters (e.g., ) for classical stochastic maps, and lower case italic
letters (e.g., ) for classical discrete data. The definition of clas-
sical capacity would then be

(2)

A classical stochastic map, or classical channel, may be defined
in quantum terms as one that is completely dephasing in the
Boolean basis both with regard to its inputs and its outputs. A
channel, in other words, is classical if and only if it can be rep-
resented as a composition

(3)

of the completely dephasing channel on the input Hilbert
space, followed by a general quantum channel , followed by
the completely dephasing channel on the output Hilbert
space (a completely dephasing channel is one that makes a von
Neumann measurement in the Boolean basis and resends the
result of the measurement). Dephasing only the inputs, or only
the outputs, is in general insufficient to abolish all quantum
properties of a quantum channel .
The notion of capacity may be further generalized to define a

capacity of one channel to simulate another channel . This
may be defined as

(4)

where and are, respectively, Alice’s andBob’s subprotocols
which together enable Alice to receive an input in (the
tensor product of copies of the input Hilbert space of
the channel to be simulated) and, making forward uses of
the simulating channel , allow Bob to produce some output
state, and is the fidelity of this output
state with respect to the state that would have been generated by
sending the input through .
These definitions of capacity are all asymptotic, depending on

the properties of in the limit . However, several of
the capacities are given by, or closely related to, nonasymptotic
expressions involving input and output entropies for a single
use of the channel. Fig. 1 shows a scenario in which a quantum

Fig. 1. A quantum system in mixed state is sent through the noisy channel
, which may be viewed as a unitary interaction with an environment .

Meanwhile, a purifying reference system is sent through the identity channel
. The final joint state of has the same entropy as the final state of
the environment.

system , initially in mixed state , is sent through the channel,
emerging in a mixed state . It is useful to think of the initial
mixed state as being part of an entangled pure state where
is some reference system that is never operated upon physi-

cally. Similarly, the channel can be thought of as a unitary inter-
action between the quantum system and some environment
subsystem , which is initially supplied in a standard pure state
, and leaves the interaction in a mixed state . Thus,

and are completely positivemaps relating the final states of the
channel output and environment, respectively, to the initial state
of the channel input, when the initial state of the environment is
held fixed. The mnemonic superscripts indicate, when
necessary, to what system a density operator refers.
Under these circumstances, three useful von Neumann en-

tropies may be defined: the input entropy

the output entropy

and the entropy exchange

The complicated left-hand side of the last equation represents
the entropy of the joint state of the subsystem which has
been through the channel, and the reference system , which
has not, but may still be more or less entangled with it. The
density operator is the quantum analog of a joint
input : output probability distribution, because it has and
as its partial traces. Without the reference system, the notion

of a joint input : output mixed state would be problematic, be-
cause the input and output are not present at the same time, and
the no-cloning theorem prevents Alice from retaining a spare
copy of the input to be compared with the one sent through
the channel. The entropy exchange is also equal to the final en-
tropy of the environment , because the tripartite system

remains throughout in a pure state; making its two com-
plementary subsystems and always isospectral. The rela-
tions between these entropies and quantum channels have been
well reviewed by Schumacher and Nielsen [30] and by Holevo
and Werner [18].
By Shannon’s theorem, the capacity of a classical channel

is the maximum, over input distributions, of the input : output
mutual information; in other words, the input entropy plus the
output entropy less the joint entropy of input and output. The
quantum generalization of mutual information for a bipartite
mixed state , which reduces to classical mutual information
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when is diagonal in a product basis of the two subsystems,
is

where

and

In terms of Fig. 1, the classical capacity of a classical channel
(cf. (3)) can be expressed as

(5)

where is the class of density operators on the channel’s
input Hilbert space that are diagonal in the Boolean basis.
The third term (entropy exchange), for a classical channel ,
is just the joint Shannon entropy of the classically correlated
Boolean input and output, because the von Neumann entropies
reduce to Shannon entropies when evaluated in the Schmidt
basis of , with respect to which all states are diagonal. The
restriction to classical inputs can be removed, because
any nondiagonal elements in would only reduce the first term,
while leaving the other two terms unchanged, by virtue of the
diagonality-enforcing properties of the channel.
Thus, the expression

(6)

is a natural generalization to quantum channels of a classical
channel’s maximal input : output mutual information, and it is
equal to the classical capacity whenever is classical, as de-
fined previously in this section.
One might hope that this expression continues to give the

classical capacity of a general quantum channel , but that is
not so, as can be seen by considering the simple case of
a noiseless qubit channel. Here, the maximum is attained on a
uniform input mixed state , causing the first two terms
each to have the value 1 bit, while the last term is zero, giving
a total of 2 bits. This is not the ordinary classical capacity of
the noiseless qubit channel, which is equal to 1 bit, but rather its
entanglement-assisted capacity . In the next section, we
show that this is true of quantum channels in general, as stated
by the following theorem.

Theorem 1: Given a quantum channel , then the entangle-
ment-assisted capacity of the quantum channel is equal to
the maximal quantum mutual information

(7)

Here, the capacity is defined as the supremum of (1) when
ranges over Boolean states and , over all protocols where

Alice and Bob start with an arbitrarily large number of shared
EPR pairs,1 but have no access to any communication channels
other than .
Another capacity theorem which has been proven for

quantum channels is the Holevo–Schumacher–Westmoreland
1It is sufficient to use standard Einstein–Podolsky–Rosen (EPR) pairs—maxi-

mally entangled 2-qubit states—as the entanglement resource because any other
entangled state can be efficiently prepared from EPR pairs by the process of en-
tanglement dilution using an asymptotically negligible amount of forward
classical communication [27].

theorem [19], [31], which says that if the signals that Bob
receives are constrained to lie in a set of quantum states ,
where Alice chooses (for example, by supplying input state
to the channel ) then the capacity is given by

(8)

This gives a means to calculate a constrained classical capacity
for a quantum channel if the sender is not allowed to use
entangled inputs: the channel’s Holevo capacity being
defined as the maximum of over all possible sets
of input states . We will be using this theorem extensively
in the proof of our entanglement-assisted capacity bound.
In our original paper [7], we proved the formula (6) for certain

special cases, including the depolarizing channel and the era-
sure channel. We did this by sandwiching the entanglement-as-
sisted capacity between two other capacities, which, for certain
channels, turned out to be equal. The higher of these two capaci-
ties we called the forward classical communication cost via tele-
portation ( ), which is the amount of forward classical
communication needed to simulate the channel by teleporting
over a noisy classical channel. The lower of these two bounds
we called , which is the capacity obtained by using the noisy
quantum channel in the superdense coding protocol. We have
that . Thus, if for
a channel, we have obtained the entanglement-assisted capacity
of the channel. In order for this argument to work, we needed the
classical reverse Shannon theorem, which says that a noisy clas-
sical channel can be simulated by a noiseless classical channel
of the same capacity, as long as the sender and receiver have ac-
cess to shared random bits. We needed this theorem because the
causality argument showing that EPR pairs do not increase the
capacity of a classical channel appears to work only for noise-
less channels. We sketched the proof of the classical reverse
Shannon theorem in our previous paper, and give it in full in
this paper.
In our previous paper, the bounds and are both

computed using single-symbol protocols; that is, both the su-
perdense coding protocol and the simulation of the channel by
teleportation via a noisy classical channel are carried out with
a single use of the channel. The capacity is then obtained using
the classical Shannon formula for a classical channel associated
with these protocols. In this paper, we obtain bounds using mul-
tiple-symbol protocols, which perform entangled operations on
many uses of the channel. We then perform the capacity compu-
tations using the Holevo–Schumacher–Westmoreland formula
(8).

II. FORMULA FOR ENTANGLEMENT-ASSISTED
CLASSICAL CAPACITY

Assume we have a quantum channel which maps a Hilbert
space to another Hilbert space . Let be the clas-
sical capacity of the channel when the sender and receiver have
an unbounded supply of EPR pairs to use in the communication
protocol. This section proves that the entanglement-assisted ca-
pacity of a channel is the maximum quantum mutual informa-
tion attainable between the two parts of an entangled quantum
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state, one part of which has been passed through the channel.
That is, restating (7)

(9)

where denotes the von Neumann entropy of a density ma-
trix , denotes the von Neumann entropy of
the output when is input into the channel, and
denotes the von Neumann entropy of a purification of
over a reference system , half of which has been sent
through the channel while the other half has been sent
through the identity channel (this corresponds to the portion of
the entangled state that Bob holds at the start of the protocol).
Here, we have and . All pu-
rifications of give the same entropy in this formula,2 so we
need not specify which one we use. As pointed out earlier, the
right-hand side of (9) parallels the expression for capacity of a
classical channel as the maximum, over input distributions, of
the input : output mutual information.
Lindblad [26], Barnum et al. [3], and Adami and Cerf [12]

characterized several important properties of the quantum
mutual information, including positivity, additivity, and the
data processing inequality. Adami and Cerf argued that the
right-hand side of (9) represents an important channel property,
calling it the channel’s “von Neumann capacity,” but they did
not indicate what kind of communication task this capacity
represented the channel’s asymptotic efficiency for doing. Now
we know that it is the channel’s efficiency for transmitting
classical information when the sender and receiver share prior
entanglement.
In our demonstration that (9) is indeed the correct expres-

sion for entanglement-assisted classical capacity, the first sub-
section gives an entanglement-assisted classical communication
protocol which can asymptotically achieve the rate RHS for
any . The second subsection gives a proof of a crucial lemma on
typical subspaces needed in the first subsection. The third sub-
section shows that the right-hand side of (9) is indeed an upper
bound for . The fourth subsection proves several entropy
inequalities that are used in the third subsection.

A. Proof of the Lower Bound
In this section, we will prove the inequality

(10)

We first show the inequality

(11)

for the special case where , where , is the
identity matrix, and is a maximally entangled state. We then
use this special case to show that the inequality (11) still holds
when is any projection matrix. We finally use the case where
is a projection matrix to prove the inequality in the general case
of arbitrary , showing (10); we do this by taking to be the
projection onto the typical subspace of , and using and

in the inequality (11).
2This is a consequence of the fact that any two purifications of a given density

matrix can be mapped to each other by a unitary transformation of the reference
system [22].

The coding protocol we use for the special case given above,
where , is essentially the same as the protocol used for
quantum superdense coding [9], which procedure yields the en-
tanglement-assisted capacity in the case of a noiseless quantum
channel. The proof that the formula (11) holds for ,
however, is quite different from and somewhat more compli-
cated than the proof that superdense coding works. Our proof
uses Holevo’s formula (8) for quantum capacity to compute the
capacity achieved by our protocol. This protocol is the same as
that given in our earlier paper on [7], although our proof is
different; the earlier proof only applied to certain quantum chan-
nels, such as those that commute with teleportation.
We need to use the generalization of the Pauli matrices to

dimensions. These are the matrices used in the -dimensional
quantum teleportation scheme [6]. There are of these ma-
trices, which are given by , for the matrices and
defined by their entries as

and (12)

as in [2]. To achieve the capacity given by (11) with ,
Alice and Bob start by sharing a -dimensional maximally en-
tangled state . Alice applies one of the transformations
to her part of , and then sends it through the channel . Bob
gets one of the quantum states . It is
straightforward to show that averaging over the matrices
effectively disentangles Alice’s and Bob’s pieces, so we obtain

(13)

where . The entropy of this quantity is the first term
of Holevo’s formula (8), and gives the first two terms of (11).
The entropy of each of the states is

, since each of the is a purifica-
tion of . This entropy is the second term of Holevo’s formula
(8), and gives the third term of (11). We thus obtain the formula
when .
The next step is to note that the inequality (11) also holds if

the density matrix is a projection onto any subspace of .
The proof is exactly the same as for . In fact, one can
prove this case by using the above result. By restricting to
the support of , which we can denote by , and by restricting
to act only on , we obtain a channel for which
.

We now must show that (11) holds for arbitrary . This is the
most difficult part of the proof. For this stepwe need a littlemore
notation. Recall that we can assume that any quantum map
can be implemented via a unitary transformation acting on the
system and some environment system , where
starts in some fixed initial state. We introduce , which is the
completely positive map taking to by first applying
and tracing out everything but . We then have

(14)

where is a density matrix over and is a purification of
. Recall (from footnote 2) that this does not depend on which
purification of is used.
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As our argument involves typical subspaces, we first give
some facts about typical subspaces. For technical reasons,3 we
use frequency-typical subspaces. For any and there is a large
enough such the Hilbert space contains a typical sub-
space (which is the span of typical eigenvectors of ) such
that

1) ;

2) The eigenvalues of satisfy

3) .

Let be the typical subspace corresponding to ,
and let be the normalized density matrix proportional to
the projection onto . It follows from well-known facts about
typical subspaces that

We can also show the following lemma. We delay giving the
proof of this lemma until after the proof of the theorem.

Lemma 1: Let be a noisy quantum channel and a density
matrix on the input space of this channel. Then we can find a
sequence of frequency typical subspaces corresponding to

, such that if is the unit trace densitymatrix proportional
to the projection onto , then

(15)

Applying the lemma to the map onto the environment simi-
larly gives

(16)

Thus, if we consider the quantity

(17)

we see that it converges to

(18)

which the identity (14) shows is equal to the desired quantity
(9). This concludes the proof of the lower bound.
One more matter to be cleared up is the form of the prior en-

tanglement to be shared by Alice and Bob. The most standard
form of entanglement is maximally entangled pairs of qubits
(“ebits”), and it is natural to use them as the entanglement re-
source in defining . However, (9) involves the entangled state
, which is typically not a product of ebits. This is no problem,

because, as Lo and Popescu [27] showed, many copies of two
entangled pure states having an equal entropy of entanglement
can be interconverted not only with unit asymptotic efficiency,
but in a way that requires an asymptotically negligible amount
of (one-way) classical communication, compared to the amount
of entanglement processed. Thus, the definition of is inde-
pendent of the form of the entanglement resource, so long as it
3Our proof of Lemma 1 does not appear to work for entropy-typical subspaces

unless these subspaces are modified by imposing a somewhat unnatural-looking
extra condition. This will be discussed later.

is a pure state. As it turns out, the lower bound proof does not
actually require construction of itself, but merely a sequence
of maximally entangled states on high-dimensional typical sub-
spaces of tensor powers of . These maximally entangled
states can be prepared from standard ebits with arbitrarily high
fidelity and no classical communication [5].

B. Proof of Lemma 1
In this section, we prove the followng statement.

Lemma 1: Suppose is a density matrix over a Hilbert space
of dimension , and and are two trace-preserving com-

pletely positive maps. Then there is a sequence of frequency-
typical subspaces corresponding to such that

(19)

(20)

and
(21)

where is the projection matrix onto normalized to have
trace .

For simplicity, we will prove this lemma with only the condi-
tions (19) and (20). Altering the proof to also obtain the condi-
tion (21) is straightforward, as we treat the map in exactly the
same manner as the map , and need only make sure that both
formulas (20) and (21) converge.
Our proof is based on several previous results in quantum in-

formation theory. For the proof of the direction in (20), we
show that a source producing states with average density matrix

can be compressed into qubits
per state, with the property that the original source output can
be recovered with high fidelity. Schumacher’s theorem [23],
[29] shows that the dimension needed for asymptotically faithful
encoding of a quantum source is equal to the entropy of the
density matrix of the source; this gives the upper bound on

For the proof of the direction of (20), we
need the theorem of Hausladen et al. [17] that the classical ca-
pacity of signals transmitting pure quantum states is the entropy
of the density matrix of the average state transmitted (this is
a special case of Holevo’s formula (8)). We give a communi-
cation protocol which transmits a classical message containing

bits using pure states. By applying the the-
orem of Hausladen et al. to this communication protocol, we
deduce a lower bound on the entropy .

Proof: We first need some notation. Let the eigenvalues
and eigenvectors of be and , with . Let the
noisy channel map a -dimensional space to a -dimen-
sional space. Choose a Krauss representation for , so that

where and . Then we have
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We let

(22)

and
(23)

so that

(24)

We need notation for the eigenstates and eigenvalues of
. Let these be and , . Finally, we

define the probability , , , by

(25)

This is the probability that if the eigenstate of is sent
through the channel and measured in the eigenbasis of ,
that the eigenstate will be observed. Note that

(26)

We now define the typical subspace . Most previous
papers on quantum information theory have dealt with entropy-
typical subspaces. We use frequency-typical subspaces, which
are similar, but have properties thatmake the proof of this lemma
somewhat simpler.
A frequency-typical subspace of associated with the

density matrix is defined as the subspace spanned by
certain eigenstates of . We assume that has all positive
eigenvalues. (If it has some zero eigenvalues, we restrict to the
support of , and find the corresponding typical subspace of

, which will now have all positive eigenvalues.) The
eigenstates of are tensor product sequences of eigenvectors
of , that is, . Let be one of these
eigenstates of . We will say is frequency typical if each
eigenvector appears in the sequence approximately
times. Specifically, an eigenstate is -typical if

(27)

for all ; here is the number of times that appears
in . The frequency-typical subspace is the subspace of

that is spanned by all -typical eigenvectors of .
We define to be the projection onto the subspace , and
to be this projection normalized to have trace , that is,

.
From the theory of typical sequences [14], for any density

matrix , any , and , one can choose large enough
so that

1) ;

2) the eigenvalues of satisfy

where , and ( ) is the
maximum (minimum) eigenvalue of ;

3) .

The property 1) follows from the law of large numbers, and 2),
3) are straightforward consequences of 1) and the definition of
typical subspace.
We first prove an upper bound that for all , and for suffi-

ciently large

(28)

for some constant . We will do this by showing that for any
, there is an sufficiently large such that we can take a typical
subspace in and project signals from a
source with density matrix onto it, such that
the projection has fidelity with the original output of the
source. Here, (and , ) will be a linear function of (with
the constant depending on , ). By projecting the source on

, we are performing Schumacher compression of
the source. From the theorem on possible rates for Schumacher
compression (quantum source coding) [23], [29], this implies
that

(29)

The property 3) for typical subspaces then implies the result.
Consider the following process. Take a typical eigenstate

of . Now, apply aKrauss element to each symbol
of , with element applied with probability .
This takes

(30)

to one of possible states . Each state is associated with a
probability of reaching it; in particular, the state

(31)

is produced with probability

(32)

Notice that, for any , if the and are defined as in
(31) and (32), then

(33)

where the sum is over all in (31).
We will now see what happens when is projected onto a

typical subspace associated with . We get
that the fidelity of this projection is

(34)
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where the sum is taken over all -typical eigenstates of
. Now, we compute the average fidelity (using the prob-

ability distribution ) over all states produced from a given
-typical eigenstate

(35)

Here the last step is an application of (25). The above quantity
has a completely classical interpretation; it is the probability
that if we start with the -typical sequence , and
take to with probability , that we end up with a
-typical sequence of the .
We will now show that the projection onto of the

average state generated from a -typical eigenstate of
has expected trace at least . This will be needed for

the lower bound, and a similar result, using the same calcula-
tions, will be used for the upper bound. We know that the orig-
inal sequence is -typical, that is, each of the eigenvectors

appears approximately times. Now, the process of first
applying to each of the symbols, and then projecting the re-
sult onto the eigenvectors of , takes to with
probability . We start with a -typical sequence , so we
have

(36)

where . Taking the state to
, and using (26), we get

(37)

where . The quantity is determined by
the sum of independent random variables whose values are
either or . Let the expected average of these variables be

. Chernoff’s bound [1] says that for such a variable
which is the sum of independent trials, and is the

expected value of

Together, these bounds show that

(38)

If we take , then by Chernoff’s bound, for every
there are sufficiently large so that is -typical with

probability .

Now, we are ready to complete the upper bound argument.
We will be using the theorem about Schumacher compression
[23], [29] that if, for all sufficiently large , we can compress
states from a memoryless source emitting an ensemble of pure
states with density matrix onto a Hilbert space of dimension

, and recover them with fidelity , then .
We first need to specify a source with density matrix

. Taking a random -typical eigenstate of
(chosen uniformly from all -typical eigenstates), and

premultiplying each of the tensor factors by with the
probability to obtain a vector , gives us the desired
source with density matrix . We next project a
sequence of outputs from this source onto the typical sub-
space . Let us analyze this process. First, we will
specify a sequence of particular -typical eigenstates

. Because each of the components
of this state is -typical, is a -typical eigenstate of

. Consider the ensemble of states generated from any
particular -typical by applying the matrices to .
It suffices to show that this ensemble can be projected onto

with fidelity ; that is, that

(39)

This will prove the theorem, as by averaging over all -typical
states we obtain a sourcewith densitymatrix
whose projection has average fidelity . This implies, via the
theorems on Schumacher compression, that

(40)

where ; here is the
maximum (minimum) nonzero eigenvalue of . If we let
go to as goes to , we obtain the desired bound. For

this argument to work, we need to make sure that is bounded
independently of ; this follows from the Chernoff bound.
We need now only show that the projection of the states
generated from onto the typical subspace

has trace at least . We know that the original
sequence is -typical, that is, each of the eigenvectors
appears approximately times. Thus, the same argument
using the law of large numbers that applied to (35) also holds
here, and we have shown the upper bound for Lemma 1.
We now give the proof of the lower bound. We use the same

notation and some of the same ideas and machinery as in our
proof of the upper bound. Consider the distribution of ob-
tained by first picking a random typical eigenstate of ,
and applying a matrix to each symbol of , with ap-
plied to with probability . This gives an ensemble
of quantum states with associated probabilities such that

(41)

The idea for the lower bound is to choose randomly a set of
size from the vectors , according to the
probability distribution . We take for some constant
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to be determined later. We will show that with high proba-
bility (say, ) the selected set of vectors satisfy the
criteria of Hausladen et al. [17] for having a decoding observ-
able that correctly identifies a state selected at random with
probability . This means that these states can be used to
send messages with rate , showing that
the density matrix of their equal mixture

has entropy at least . However, the
weighted average of these density matrices over all sets is

where each is weighted according to its probability of ap-
pearing. By concavity of von Neumann entropy,

By making sufficiently large, we can make , , and arbi-
trarily small, and so we are done.
The remaining step is to give the proof that with high prob-

ability a randomly chosen set of size of the obeys the
criterion of Hausladen et al. The Hausladen et al. protocol for
decoding [17] is first to project onto a subspace, for which we
will use the typical subspace , and then use the square
rootmeasurement on the projected vectors. Here, the square root
measurement corresponding to vectors , , is the pos-
itive operator valued measeure (POVM) with elements

where

Here, we use . Hausladen et al. [17] give
a criterion for the projection onto a subspace followed by the
square-root measurement to correctly identify a state chosen at
random from the states . Their theorem only gives
the expected probability of error, but the proof can easily be
modified to show that the probability of error in decoding
the th vector is at most

(42)

where and .
We have already shown that the expectation of the first term

of (42), , is small, for obtained from any typical
eigenstate of .We need to give an estimate for the second
term of (42). Taking expectations over all the , , we
obtain, since all the are chosen independently

(43)

where is the number of random codewords we choose
randomly. We now consider a different probability distribution
on the , which we call . This distribution is obtained by
first choosing an eigenstate of with probability propor-
tional to its eigenvalue (rather than choosing uniformly among
-typical eigenstates of ), and then applying a Krauss el-
ement to each of its symbols to obtain a word (as be-
fore, is applied to with probability ). Observe
that , where . This holds
because the difference between the two distributions and
stems from the probability with which an eigenstate of
is chosen; from the properties of typical subspaces, the eigen-
value of every typical eigenstate of is no more than

, and the number of such eigenstates is at most
. Thus, we have

(44)

where the last inequality follows from property 2) of typical
subspaces, which gives a bound on the maximum eigenvalue of

Thus, if we make , we have the desired
inequality (42), and the proof of Lemma 1 is complete.

We used frequency-typical subspaces rather than entropy-
typical subspaces in the proof of Lemma 1; this appears to be
the most natural method of proof. Holevo [20] has found a more
direct proof of Lemma 1, which also uses frequency-typical
subspaces. Frequency-typical sequences are commonly used in
classical information theory, although they have not yet seen
much use in quantum information theory, possibly because the
quantum information community has not had much exposure
to them. One can ask whether Lemma 1 still holds for en-
tropy-typical subspaces. This is not only a natural question, but
might also be a method of extending Lemma 1 to the case where

is a countable-dimension Hilbert space, a case where
the method of frequency-typical subspaces does not apply. The
difficulty with using entropy-typical subspaces in our current
proof is that an eigenstate of which is entropy-typical
but not frequency-typical will in general not be mapped to a
mixed state having most of its mass close to the
typical eigenspace of . This means that the Schumacher
compression argument is no longer valid. One way to fix the
problem is to require an extra condition on the eigenvectors
of the typical subspace which implies that most of their mass
is indeed mapped somewhere close to the typical eigenspace
of . We have found such a condition (automatically
satisfied by frequency-typical eigenvectors), and believe this
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may indeed be useful for studying the countable-dimensional
case.

C. Proof of the Upper Bound
We prove an upper bound of

(45)

where is a purification of .
As in the proof of the lower bound, this proof works by first

proving the result in a special case and then using this special
case to obtain the general result. Here, the special case is when
Alice’s protocol is restricted to encode the signal using a unitary
transformation of her half of the entangled state . This special
case is proved by analyzing the possible protocols, applying the
capacity formula (8) of Holevo and Schumacher andWestmore-
land [19], [31], and then applying several entropy inequalities.
First, consider a channel with entanglement-assisted ca-

pacity . By the definition of entanglement-assisted capacity,
for every , there is a protocol that uses the channel and some
block length , that achieves capacity , and that does the
following.
Alice and Bob start by sharing a pure entangled state , in-

dependent of the classical data Alice wishes to send. (Protocols
where they start with a mixed entangled state can easily be sim-
ulated by ones starting with a pure state, although possibly at
the cost of additional entanglement.) Alice then performs some
superoperator on her half of to get , where

depends on the classical data she wants to send. She then
sends her half of through the channel formed by the
tensor product of uses of the channel . Bob then possibly
waits until he receives many of these states

, and applies some decoding procedure to them.
This follows from the definition of entanglement-assisted ca-

pacity (1) using only forward communication.Without feedback
from Bob to Alice, Alice can do no better than encode all her
classical information at once, by applying a single classically
chosen completely positive map to her half of the entangled
state , and then send it to Bob through the noisy channel .
(If, on the contrary, feedback were allowed, it might be advanta-
geous to use a protocol requiring several rounds of communica-
tion.) Note that the present formalism includes situations where
Alice does not use the entangled state at all, because the map

can completely discard all the information in .
In this section, we assume that is a unitary transforma-

tion . Once we have derived an upper bound assuming that
Alice’s transformations are unitary, wewill use this upper bound
to show that allowing her to use nonunitary transformations does
not help her. This is proved using the strong subadditivity prop-
erty of von Neumann entropy; the proof (Lemma 2) will be de-
ferred to the next section.
The next step in our proof is to apply the Holevo formula

(8) to the tensor product channel . Let de-
note the tensor product of many uses of the channel. For the
th signal state, Alice sends her half of through
the channel , and Bob receives . Bob’s
state can be divided into two parts. The first of these is his
half of , which, after Alice’s part is traced out, is always in

state . The second part is the state Alice sent through the
channel, which, after Bob’s part is traced out, is in state
where . Bob is trying to decode information
from the output of many blocks, each containing uses of the
channel, together with his half of the associated entangled states,
i.e., from many blocks of the form . Since
these blocks are not entangled each other, the Holevo–Schu-
macher–Westmoreland theorem [19], [31] applies, and the ca-
pacity is given by (8), considering these blocks to be the signal
states. The first term of (8) is the entropy of the average block,
and this is bounded by

(46)

The first term in (46) is the entropy of the average state that
Bob receives through the channel, i.e., , and the
second term is the entropy of the state that Bob retained all the
time, i.e., . That the sum of the two terms is a bound for
the entropy follows from the subadditivity property of von Neu-
mann entropy that the entropy of a joint system is bounded from
above by the sum of the entropies of the two systems [28]. We
can use for the second term because Alice is using a uni-
tary transformation to produce from her half of the entangled
state she shares with Bob, so the entropy
is the same for all . Since we assume that Alice and Bob share
a pure quantum state, the entropy of Bob’s half is the same as
the entropy of Alice’s half. Although this is not the most ob-
vious expression for this second term of (46), it will facilitate
later manipulations.
The second term of (8) is the average entropy of the state Bob

receives, and this is

(47)

where is a purification of . This formula holds because
Alice’s andBob’s joint state after Alice’s unitary transformation

is still a pure state, and so their joint state is a purification
of .
We thus get

(48)

However, by Lemma 3, that we prove in the next section, the
last two terms in this formula are a concave function of , so
we can move the sum inside these terms, and we get

(49)

where

Finally, the expression (9) for is additive (this will be dis-
cussed in the next section), so that

(50)
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Using this, we can set in (49), thus replacing
by . Since this equation holds for any , we obtain the
desired formula (45).

D. Proofs of the Lemmas
This subsection discusses three lemmas needed for Section

II-C. The first of these shows that without loss of capacity, Alice
can use a unitary transform for encoding. The next shows that
the last two terms of the formula for in (9) are a convex
function of . The last lemma shows that the formula for is
additive. The first two lemmas use the property of strong sub-
additivity for von Neumann entropy. Originally, we also had a
fairly complicated proof for the third lemma. However, Prof.
Holevo has pointed out that a much simpler proof (also using
strong subadditivity) was already in the literature, and so we
will merely cite it.
For the proofs of the first two lemmas in this section, we need

the strong subadditivity property of von Neumann entropy [25],
[28]. This property says that if , , and are quantum sys-
tems, then

(51)

It turns out to be a surprisingly strong property.
We need to show that if Alice uses nonunitary transformations
, then she can never do better than the upper bound (45) we

derived by assuming that she uses only unitary transformations
. Recall that any nonunitary transformation on a Hilbert

space can be performed by using a unitary transformation
acting on the Hilbert space augmented by an ancilla

space , and then tracing out the ancilla space [28]. We can
assume that .
What we will do is take the channel we were given, that

acts on a Hilbert space and simulate it by a channel
that acts on a Hilbert space where first traces
out and then applies to the residual state on . We
can then perform any transformation by performing a uni-
tary operation on and tracing out . Since
we proved the formula (45) for unitary transformations in the
previous section, we can calculate by applying this formula
to the channel . What we show below is that the same for-
mula applied to gives a quantity at least as large.

Lemma 2: Suppose that and are related as described
above. Let us define

(52)

and

(53)

Then .
Proof: To avoid double subscripts in the following cal-

culations, we now rename our Hilbert spaces as follows. Let
; ; ; and . Let max-

imize in the above formula. We let . Since the
channel was defined by first tracing out and then sending
the resulting state through the channel , is the density ma-
trix of the state input to the channel in the protocol.

Fig. 2. In Lemma 2, is the input space for the original map . is
the input space for the map . The output space for both maps is . The space
is a reference system used to purify states in and .

Clearly, the middle terms in (52) and (53) are equal, since
. We need to show that inequality holds for the

first and last terms in and ; that is, we need to show
(54)

Recall that we have a noisy channel that acts on Hilbert
space , and a channel that acts on Hilbert space by
tracing out and then sending the resulting state through .
We need to give purifications and of and , respec-
tively. Note that we can take , since any purification
of is also a purification of (see footnote 2). Let us take these
purifications over a reference system that we call . Con-
sider the diagram in Fig. 2. In this figure, ,
and . Then maps the space
to the space and maps the space to the space by

tracing out and performing .
We have

and

We also have

and

Thus,

(55)
by strong subadditivity, and we have the desired inequality.

For the next lemma, we need to prove that the function

is concave in .

Lemma 3: Let and be two density matrices, and let
be their weighted average. Then

(56)
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Fig. 3. For Lemma 3, is a Hilbert space we send through the channel ,
and is the output space. This mapping can be made unitary by adding an
environment space .We let be a reference systemwhich purifies the systems
and in , and and be two qubits purifying as described in the

text.

Proof: We again give a diagram; see Fig. 3. Here we let
the states be as follows: , so is in the
state . We let be a reference system with which we purify
the states and . Consider purifications and

of , , respectively. Then we have

(57)

We now let and be qubits which tell whether the system
is in state or , and we will purify the system in the

system in the following way:

(58)

Tracing out , we get that the state of is

(59)

so now can be thought of as a classical bit telling which of
or is the state of the system . Note that we have the

same expression after tracing out .
Now, it is time for our analysis. We want to show (56). Notice

that

since is in a pure state, and

Now, suppose we have a classical bit which tells whether a
quantum system is in state or , with probability and
, respectively. The following formula gives the expectation of

the entropy of [28], [34] (this is analogous to the chain rule
for the entropy of classical systems)

(60)

Using this formula (60), we see that

(61)

and

(62)

Putting everything together, we get

(63)

which is positive by strong subadditivity. To obtain (63), we
used the equality , which holds by sym-
metry. This concludes the proof of Lemma 3.

The final lemma we need shows that we can set and
replace by in (49). This follows from the fact that

is additive, that is, if is taken to be defined by (9), then

(64)

The direction is easy. We originally had a rather unwieldy
proof for the direction based on explicitly expanding the for-
mula for and differentiating; however, Prof. Holevo has
pointed out to us that a much simpler proof is given in [12],
so we will spare the readers our proof.

III. EXAMPLES OF FOR SPECIFIC CHANNELS

In this section, we discuss the capacity of two specific chan-
nels: the first is the bosonic channel with attenuation/amplifi-
cation and Gaussian noise, given a bound on the average signal
energy, and the second is the qubit amplitude damping channel.
Strictly speaking, we have not yet shown that (9) holds for the
Gaussian bosonic channel, as we have not proved that it holds ei-
ther given an average energy constraint or for continuous chan-
nels. For channels with a linear constraint on the average density
matrix , our proof applies unchanged, and yields the result that
the density matrix of (9) must be optimized over all density
matrices satisfying this linear constraint. We make no claims as
to having proven (9) for continuous channels. In fact, we suspect
that there may be continuous quantum channels which have a fi-
nite entanglement-assisted capacity, but where each of the terms
of (9) is infinite for the optimal density matrix for signaling. The
theory of entanglement-assisted capacity for continuous chan-
nels is thus currently incomplete.
For the Gaussian channel with an average energy constraint,

all three terms of (9) must be finite, since any bosonic state with
finite energy has a finite entropy. For this channel, (9) can be
proven by approximating the channel with a sequence of finite-
dimensional channels whose capacity we can show converges to
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the capacity of the Gaussian channel. We do this approximation
by first restricting the input to the channel a finite subspace,
and second projecting the output of the channel onto a finite
subspace. (In these cases, the finite subspace can be taken to be
that generated by the first number basis states ,

, , defined later in this section.)

A. Gaussian Channels
The Gaussian channel is one of the most important contin-

uous-alphabet classical channels, and we briefly review it here.
We describe the classical complex Gaussian channel, as this is
most analogous to the quantumGaussian channel. For a detailed
discussion of this channel see an information theory text such as
[13], [14].
A classical complex Gaussian channel of noise is de-

fined by the mapping in the complex plane

(65)

where the noise is a Gaussian of mean and variance ,
i.e.,

(66)

Without any further conditions, the capacity of this channel
would be unlimited, because we could choose an infinite subset
of inputs arbitrarily far apart so that the corresponding outputs
are distinguishable with arbitrarily small probability of error.
We add an additional constraint on average input signal power
or energy, say . That is, we require that the input distribution

satisfy

(67)

This complex Gaussian channel is equivalent to two parallel real
Gaussian channels. It follows that the capacity of the complex
Gaussian channel with average input energy and noise is

(68)

which is twice the capacity of a real Gaussian channel with av-
erage input energy and noise .
Before we proceed to discuss the quantum Gaussian channel,

let us first review some basic results from quantum optics. In
the quantum theory of light, each mode of the electromagnetic
field is treated as a quantum harmonic oscillator whose commu-
tation relations are the same as those of . A detailed
treatment of these concepts is available in the book [33]. The
Hilbert space corresponding to a mode is countably infinite. A
countable orthonormal basis for this space is the number basis
of states , , where the state cor-
responds to photons being present in the mode.
Another useful basis is that of the coherent states of light.

Coherent states are defined for complex numbers as

(69)

(70)

where is the unitary displacement operator and
is the vacuum state containing no photons. The complex

number corresponds to the complex field vector of a mode in
the classical theory of light. If , then is generally
called the position coordinate and the momentum coordinate.
The displacement operator corresponds to displacing the com-
plex number labeling the coherent state, and multiplying by an
associated phase, i.e.,

(71)

where takes the imaginary part of a complex number, i.e.,
.

We also need thermal states, which are the equilibrium dis-
tribution of the harmonic oscillator for a fixed temperature. The
thermal state with average energy is the state

(72)

The entropy of the thermal state is

(73)

We are now ready to define the quantum analog of the clas-
sical Gaussian channel. (See [18] for a much more detailed
treatment of quantum Gaussian channels.) Coherent states are
an overcomplete basis, and a quantum channel may be defined
by its action on coherent states. We restrict our discussion to
quantum Gaussian channels with one mode and no squeezing,
which are those most analogous to classical Gaussian channels.
These channels have an attenuation/amplification parameter ,
and a noise parameter . The channel amplifies the signal (nec-
essarily introducing noise) if , and attenuates the signal
if . Amplification/attenuation of the quantum state intu-
itively corresponds to multiplying the average position and mo-
mentum coordinates by the number . If this were possible for

without introducing any extra noise, it would enable one
to violate the Heisenberg uncertainty principle and measure the
position and momentum coordinates simultaneously to any de-
gree of accuracy by first amplifying the signal and then simul-
taneously measuring these coordinates with optimal quantum
uncertainty. To ensure that the channel is a completely posi-
tive map, amplification thus must necessarily entail introducing
extra quantum noise. The channel , with noise and attenu-
ation/amplification parameter , acts on coherent states as

for

for (74)

The entanglement-assisted capacity of Gaussian channels
was calculated in [18]. The density matrix maximizing is
a thermal state of average energy , and the entanglement-as-
sisted capacity is given by

(75)
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Fig. 4. This figure shows the curves given by the ratio of capacities
for the quantum Gaussian channel with noise and the nine combinations
of values: amplification/attenuation parameter or ; and signal
strength or . The dotted curves have ; the solid curves
have ; and the dashed curves have . Within each set, the curves
have the values , , and from bottom to top.

Fig. 5. The solid curves show the ratio of capacities for the
quantum Gaussian channel with signal strength , amplification/attenuation
parameter and noise , and (from bottom to top).
The dashed curve is the limit of the solid curves as goes to ; namely,

. These curves approach as goes
to , and approach as goes to .

Here, is the average input energy; is the average output
energy

for
for (76)

and
(77)

The first term of (75), , is the entropy of the input; the
second term, , is the entropy of the output; and the re-
maining two terms of (75) are the entropy of a purification of the
thermal state after half of it has passed through the channel.
The asymptotics of this formula are interesting. Let us hold

the signal strength fixed, and let the noise go to infinity.
Then

(78)

which is independent of the attenuation/amplification parameter
. This ratio shows that the entanglement-assisted capacity can
exceed the Shannon formula by an arbitrarily large factor, al-
beit when the signal strength is very small. We have plotted

for some parameters in Figs. 4 and 5.
Possibly, a better comparison than that of to

would be that of to , as is the best rate known
for sending classical information over a quantum channel
without use of shared entanglement, However, the optimal set

Fig. 6. The values of the capacities , , and the conjectured (in
units of bits) are plotted for the Gaussian channel with signal strength , noise

, and no amplification or attenuation . As the curves approach
, their leading-order behavior is as follows: , ,
and , so the ratios and approach
as goes to .

of signal states to maximize for Gaussian channels is not
known. For one-mode Gaussian channels with no squeezing,
it is conjectured to be a thermal distribution of coherent states
[18]; if this conjecture is correct, then for these
channels, so the ratio underestimates ; see
Fig. 6.
Some simple bounds on for the quantum Gaussian

channel can be obtained using the techniques of [7]. Suppose
that Alice takes a complex number , encodes it as the state ,
and sends this through a quantum Gaussian channel. Bob then
measures it in the coherent state basis. Here, the measurement
step adds to the noise, and this channel is thus equivalent
to a classical Gaussian channel with average received signal
strength , and average noise if , if

. The quantum Gaussian channel must then have capacity
greater than the capacity of this classical Gaussian channel.
Conversely, Alice and Bob can simulate a quantum Gaussian
channel by using a classical complex Gaussian channel: Alice
measures her state (in the coherent state basis), sends the result
through the classical channel, and Bob prepares a coherent state
that depends on the signal he receives. If Alice starts with a
state , when she measures it, she obtains a complex number

where is a Gaussian with mean and variance . She can
then multiply by to get . To simulate the quantum
Gaussian channel, she must send this state through a classical
channel with noise if , and if . This
classical channel must then have classical capacity greater than

for the quantum Gaussian channel it is simulating. The
arguments in this paragraph thus give bounds of

(79)

for , and of

(80)

for . If we hold fixed, and let both these variables go
to infinity, we find that these bounds all go to ,
which corresponds to the classical Shannon bound (since the
signal strength at the receiver is ).
If , we can compute better bounds than these based

on continuous-variable quantum teleportation and superdense
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coding. Alice and Bob can use a shared entangled squeezed
state to teleport a continuous quantum variable [10], and can
also use such a state for a superdense coding protocol involving
one channel use per shared state that increases the classical ca-
pacity of a quantum channel [11]. The squeezed state used, with
squeezing parameter , is expressed in the number basis as

(81)

where and are the photon numbers in Alice’s and Bob’s
modes, respectively. This state is squeezed, which means that it
cannot be represented as a mixture of coherent states with pos-
itive coefficients. In this state, the uncertainty in the difference
of Alice and Bob’s position coordinates is reduced,
as is the uncertainty in the sum of their momentum coordinates

. The conjugate variables, and , have in-
creased uncertainty. If Alice and Bob measure their position co-
ordinates, the difference of these coordinates is a Gaussian vari-
able with mean and variance , while the sum is a Gaussian
with mean and variance . Similarly, if they measure their
momentum coordinates, the sum has variance while the
difference has variance . Further, if either Alice’s or Bob’s
state is considered separately, it is a thermal state with average
energy .
In continuous-variable teleportation [10], Alice holds a state
she wishes to send to Bob, and one half of the shared state
. She measures the difference of position coordinates of

these states, , and the sum of momentum co-
ordinates, . These are commuting observables,
and so can be simultaneously determined. She sends these mea-
surement outcomes to Bob, who then displaces his half of the
shared state using .
Using continuous-variable teleportation, Alice can simulate a

quantum Gaussian channel with , average input energy ,
and noise by sending the value over a classical com-
plex Gaussian channel with average input energy
and noise . This gives a bound equal to the classical
capacity of this channel

(82)

Finding the which minimizes this expression gives

(83)

where

(84)

is the value of the variable defined in (77) when we set .
This gives the bound

(85)

Similarly, if Alice uses superdense coding [11] to send a
continuous variable to Bob, her protocol simulates a classical

Gaussian channel. The average energy input to this channel is
and the noise is , so we obtain the bound

(86)

Maximizing this expression, we find the maximum is at
, and the bound obtained is

(87)

Note that the bounds (82) and (86) reduce to the bounds of (79)
and (80) when there is no entanglement in the squeezed state,
i.e., when .

B. The Amplitude-Damping Channel
The amplitude-damping channel describes a qubit channel

which sends states which decay by attenuation from to ,
but which do not undergo any other noise. This channel can be
described by two Krauss operators

and

where

The maximization over to find can be reduced to an
optimization over one parameter, as symmetry considerations
show that is of the form

This makes the optimization numerically tractable, and the de-
pendence of on is shown in Fig. 7. As the damping proba-
bility goes to , we can analytically find the highest order term
in the expression for , giving

(88)

for . Here we use “ ” to mean that the ratio of the
two sides approaches as goes to .
For the same channel, can also be obtained by optimizing

over a one-parameter family which uses two signal states
and with equal probability [16]. These signal states are

(89)

As goes to , again we can analytically find the highest order
term for , which is

(90)

Thus, as goes to , the values of maximizing and ,
respectively, approach and , and the ratio ap-
proaches . These functions are shown graphically in Fig. 7. In
our previous paper [7], we showed that for the qubit depolar-
izing channel, the ratio approached as the depolar-
izing probability approached , and for the -dimensional de-
polarizing channel, the ratio approached . We do not know
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(a)

(b)

Fig. 7. (a) The capacity functions and for the amplitude-damping
channel are plotted against the damping probability . (b) The ratio is
plotted. This curve is so steep near that for , the computed
value of the ratio was only ; the limiting value of for was
derived analytically.

whether this ratio is bounded for finite-dimensional channels,
although we suspect it to be. If so, then the interesting question
arises of how this bound depends on the dimensions
and .4

IV. CLASSICAL REVERSE SHANNON THEOREM

Shannon’s celebrated noisy channel coding theorem estab-
lished the ability of noisy channels to simulate noiseless ones,
and allowed a noisy channel’s capacity to be defined as the
asymptotic efficiency of this simulation. The reverse problem,
of using a noiseless channel to simulate a noisy one, has re-
ceived far less attention, perhaps because noisy channels are
not thought to be a useful resource in themselves (for the same
reason, there has been little interest in the reverse technology of
water desalination—efficiently making salty water from fresh
water and salt). We show, perhaps unsurprisingly, that any noisy
DMC of capacity can be asymptotically simulated by bits
of noiseless forward communication from sender to receiver,
given a source of random information shared beforehand be-
tween sender and receiver. If this were not the case, characteri-
zation of the asymptotic properties of classical channels would
require more than one parameter, because there would be cases
where two channels of equal capacity could not simulate one
4Holevo [20] has found a qubit channel where this ratio is .

another with unit asymptotic efficiency. In terms of the desali-
nation analogy, water from two different oceans might produce
equal yields of fresh drinking water, yet still not be equivalent
because they produced unequal yields of partly salinewater suit-
able, say, for car washing.
Although it is of some intrinsic interest as a result in clas-

sical information theory, we view the classical reverse Shannon
theorem mainly as a heuristic aid in developing techniques that
may eventually establish its quantum analog, namely, the con-
jectured ability of all quantum channels of equal to simulate
one another with unit asymptotic efficiency in the presence of
shared entanglement.
Here we show that any classical DMC , of capacity , can

be asymptotically simulated by uses of a noiseless binary
channel, together with a supply of prior random information
shared between sender and receiver.
The channel is defined by its stochastic transition matrix
between inputs and outputs .

Let denote the extended channel consisting of parallel ap-
plications of , and mapping to .

Theorem 2 (Classical Reverse Shannon Theorem): Let be
a DMCwith Shannon capacity and a positive constant. Then
for each block size there is a deterministic simulation protocol

for which makes use of a noiseless forward classical
channel and prior random information (without loss of gener-
ality a Bernoulli sequence ) shared between sender and re-
ceiver. When is chosen randomly, the number of bits of for-
ward communication used by the protocol on channel input

is a random variable; let it be denoted .
The simulation is exactly faithful in the sense that for all the
stochastic matrix for , when is chosen randomly, is iden-
tical to that for

(91)

and it is asymptotically efficient in the sense that the probability
that the protocol uses more than bits of forward com-
munication approaches zero in the limit of large

(92)

Note that the notion of simulation used here is stronger than
the conventional one used in the forward version of Shannon’s
noisy channel coding theorem, and in (4) defining the gener-
alized capacity of one quantum channel to simulate another.
There, the simulations are required only to be asymptotically
faithful and their cost is deterministically upper-bounded by

. By contrast, our simulations are exactly faithful for
all and their cost is upper-bounded by only with
probability approaching in the limit of large , for all .
To convert one of our simulations into a standard one, it suffices
to discontinue the simulation and substitute an arbitrary output
whenever is about to exceed .
To illustrate the central idea of the simulation, we prove the

theorem first for a binary-symmetric channel (BSC), then ex-
tend the proof to a general DMC. Let be a BSC of crossover
probability . Its capacity is
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To prove the theorem in this case it suffices to show that for any
rate , there is a sequence of simulation protocols such
that

(93)

and

(94)

The simulation protocol is as follows.

1) Before receiving the input , Alice and Bob use
the random information to choose a random set of

-bit strings. [We use , rather than , to keep the
total overhead, including other costs, below ].

2) Alice receives the -bit input .

3) Alice simulates the true channel within her laboratory,
obtaining an -bit “provisional output” . Although this is
distributed with the correct probability for the channel output,
she tries to avoid transmitting to Bob, because doing so would
require bits of forward communication, and she wishes to sim-
ulate the channel accurately while using less forward communi-
cation. Instead, where possible, she substitutes a member of the
preagreed set , as we shall now describe.

4) Alice computes theHamming distance between
and .

5) Alice determines whether there are any strings in the pre-
agreed set having the same Hamming distance from
as does. If so, she selects a random one of them, call it , and

sends Bob , where is the approximately -bit index
of within the set . If not, she sends Bob the string ,
the original unmodified -bit string , prefixed by a .

6) Bob emits or , whichever he has received, as the final
output of the simulation.

It can readily be seen that the probability of failure in step
5)—i.e., of there being no string of the correct Hamming dis-
tance in the preagreed set —decreases exponentially
with as long as . Thus, the probability of needing to
use more than bits of forward communication ap-
proaches zero as required by (94). On the other hand, regardless
of whether step 5) succeeds or fails, the final output is correctly
distributed (satisfying (94)) since it has the correct distribution
of Hamming distances from the input , and, for each Hamming
distance, is equidistributed among all strings at that Hamming
distance from . The theorem follows.
For a general DMC, the protocol must be modified to take

account of the nonbinary input and output alphabets, and the
fact that the output entropy may be different for different in-
puts, unlike the BSC case. The notion of Hamming distance
also needs to be generalized. The new protocol uses the notion
of type class [13], [14]. Two -character strings belong to the
same type class if they have equal letter frequencies (for ex-
ample, four a’s, three b’s, twelve c’s, etc.), and are therefore
equivalent under some permutation of letter positions. We will

consider input-type classes (ITCs) and joint input/output-type
classes (JTC), the latter being defined as a set of input/output
pairs equivalent under some common permutation of the
input and output letter positions. In other words, and

belong to the same JTC if and only if there exists
a permutation of letter positions, , such that
and . Evidently, for any given input and output al-
phabet size, the number of ITCs, and the number of JTC are
each polynomial in . Let index the ITCs, and

the JTC for inputs of length . The JTC will be
our generalization of the Hamming distance, since the transition
probability is equal for all pairs in a given JTC.
The new protocol follows.

1) Before receiving the input , Alice and Bob use
the common random information to pre-agree on random
sets : of -letter output strings, one
for each ITC. The set has cardinality ,
where is the channel’s capacity for inputs in the th
ITC (in other words, times the channel’s input : output mu-
tual information on -letter inputs uniformly distributed over
the th ITC). In contrast to the BSC case, where the members
of were chosen randomly from a uniform distribution
on the output space, the elements of are chosen ran-
domly from the (in general nonuniform) output distribution in-
duced by a uniform distribution of channel inputs over the th
ITC.

2) Alice receives the -letter input , determines which ITC,
, it belongs to, and sends to Bob, using bits to do so.

3) Alice simulates the true channel in her laboratory, ob-
taining an -letter provisional output string . Although this is
distributed with the correct probability for the channel input ,
she tries to avoid transmitting to Bob, because to do so would
require toomuch forward communication. Instead, she proceeds
as described below.

4) Alice computes the index of the JTC to which the
input/output pair belongs. As noted above, this JTC
index is the generalization of the Hamming distance, which we
used in the BSC case.

5) Alice determineswhether there are any output strings in the
preagreed set having the same JTC index relative
to as does. If so, she selects a random one of them, call
it , and sends Bob the string where is the approximately

-bit index of within the set . If not, she
sends Bob the string .

6) Bob emits or , whichever he has received, as the final
output of the simulation.

This protocol deals with the problem of dependence of
output entropy on input by encoding each ITC separately.
Within any one ITC, the output entropy is independent of the
input. The communication cost of telling Bob in which ITC
the input lies is polylogarithmic in , and so asymptotically
negligible compared to . Because one cannot increase the
capacity of a channel by restricting its input, is an upper
bound the input : output mutual information for inputs
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restricted to a particular ITC. Moreover, for any ITC and any
input in that ITC, the input : output pairs generated by the true
channel will be narrowly concentrated, for large , on JTC
whose transition frequencies approximate (to within )
their asymptotic values. Therefore, as before, for any ,
the probability of failure in step 5) will decrease exponentially
with . And, as before, the simulated transition probability

on each ITC is exactly correct even for finite . The
reverse Shannon theorem for a general DMC follows, as does
the following corollary.

Corollary 1 (Efficient Simulation of One Noisy Channel by
Another): In the presence of shared random information be-
tween sender and receiver, any two classical channels of equal
capacity can simulate one another, in the sense of (4), with unit
asymptotic efficiency.

From the proof of the main theorem it can also be seen that
when inputs to the noisy channel being simulated come from a
source having a frequency distribution differing from the op-
timal one for which capacity is attained, then the asymptotic
cost of simulating the channel on that source is correspondingly
less.

Corollary 2 (Efficient Simulation of Noisy Channels on
Constrained Sources): Let be a DMC, be a probability
distribution over the source alphabet, and be the
channel’s constrained capacity, equal to the single-letter
input : output mutual information on source . Then, in the
presence of shared random information between sender
and receiver, the action of on any extended source having
for each of its marginal distributions can be simulated in

the manner of Theorem 2 with perfect fidelity and a forward
noiseless communication cost asymptotically approaching

: viz. . Here
denotes the number of bits of forward communication used

by the protocol when is chosen randomly with a uniform
distribution and inputs are chosen randomly according to the
constrained extended source.

V. DISCUSSION—QUANTUM REVERSE SHANNON
CONJECTURE (QRSC)

We conjecture (QRSC) that in the presence of unlimited
shared entanglement between sender and receiver, all quantum
channels of equal can simulate one another with unit
asymptotic efficiency, in the sense of (4). By the results of
the previous section, the conjecture holds for classical chan-
nels (where the shared random information required for the
classical reverse Shannon theorem is obtained from shared
entanglement). In our previous paper [7], we showed that the
QRSC also holds for another class of channels, the so-called
Bell-diagonal channels, which commute with teleportation and
superdense coding. For these channels, the single-use entangle-
ment-assisted classical capacity of the channel via superdense
coding is equal to the forward classical communication cost of
simulating it via teleportation. The QRSC asserts this equality
holds asymptotically for all quantum channels, even when
(as for the amplitude-damping channel) it does not hold for

single uses of the channel. We hope that the arguments used to
prove the classical reverse Shannon theorem can be extended
to demonstrate its quantum analog.
If the QRSC is true, one useful corollary would be the in-

ability of a classical feedback channel from Bob to Alice to in-
crease . A causality argument shows that a feedback channel
cannot increase for noiseless quantum channels. If we could
simulate noisy quantum channels by noiseless ones, this would
imply that if a feedback channel increased for any noisy
channel, it would have to increase for noiseless ones as well,
violating causality.
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