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Extremal Channels

Among all channels, there are two classes for which it is easy to
communicate optimally:

The perfect channels: the output Y determines the input X.
The useless channels: the output Y is independent of the input
X.

Arıkan’s polar coding is a technique to convert any binary-input
channel to a mixture of binary-input extremal channels.

The technique is information lossless, and of low complexity?.
I am not the inventor of this technique.
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Building block

Given two copies of a binary input channel W : F2→Y

Set
X1 =U1⊕U2

X2 =U2

with U1,U2 i.i.d., uniform on F2.

W

WX1

X2

Y1

Y2

This induces two synthetic channels W− : F2→Y 2

and
W+ : F2→Y 2×F2.
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Building block

Note that

W−(y1,y2|u1) =
∑

u2∈F2

1
2 W (y1|u1⊕ u2)W (y2|u2)

W+(y1,y2,u1|u2) =
1
2 W (y1|u1⊕ u2)W (y2|u2)
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Building block

Properties of W 7→ (W−,W+):

I(W−) = I(U1;Y1Y2)

I(W+) = I(U2;Y1Y2U1)
I(W−)+ I(W+) = I(U1U2;Y1Y2)

= I(X1X2;Y1Y2)

W

WU1

U2

+ Y1

Y2

1
2 I(W−)+ 1

2 I(W+) = I(W ).
I(W+)≥ I(W )

≥ I(W−).
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Building block

Properties of W 7→ (W−,W+):
1
2 I(W−)+ 1

2 I(W+) = I(W ).
I(W+)≥ I(W )≥ I(W−).

For every ε> 0 there is a
δ > 0 such that

I(W+)− I(W−)< δ implies

I(W ) 6∈ (ε, 1− ε).
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Polarization construction

What we can do once, we can do many times.

Given W : F2→Y ,

Duplicate W and obtain W−

and W+.
Duplicate W− (and W+),
and obtain W−− and W−+ (and
W+− and W++).
Duplicate W−− (and W−+,
W+−, W++) and obtain W−−−

and W−−+ (and W−+−, W−++,
W+−−, W+−+, W++−, W+++).
. . .
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Polarization construction

` levels into this process, we
have transformed n= 2` uses of
channel W to one use each of 2`

channels

W b1...,b` , bj ∈ {+,−},

these are the channels

Ui→ Y nU i−1, i= 1, . . . ,n.

The quantities
�

I(W b1...b`)
	

are
exactly the n quantities

I(Ui;Y nU i−1), i= 1, . . . ,n

U1 Y1

Un Yn
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Example
W is a binary erasure channel, p= 0.4

1
n #
�

i : I(Ui;Y nU i−1)≤ ζ
	

ζ
0 1

0

1
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Example
W is a binary erasure channel, p= 0.4
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n #
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Example
W is a binary erasure channel, p= 0.4

1
n #
�

i : I(Ui;Y nU i−1)≤ ζ
	

ζ
0 1

0

1

n= 24
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Example
W is a binary erasure channel, p= 0.4

1
n #
�

i : I(Ui;Y nU i−1)≤ ζ
	

ζ
0 1

0

1

n= 28
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Example
W is a binary erasure channel, p= 0.4

1
n #
�

i : I(Ui;Y nU i−1)≤ ζ
	

ζ
0 1

0

1
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Example
W is a binary erasure channel, p= 0.4

1
n #
�

i : I(Ui;Y nU i−1)≤ ζ
	

ζ
0 1

0

1
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Example
W is a binary erasure channel, p= 0.4
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Polarization

Polarization refers to the phenomenon that in the limit, almost
all channels are extremal, i.e.,

1

n
#
�

i : I(Ui;Y nU i−1) ∈ (ε, 1− ε)
	

→ 0

as n= 2` gets large.

If this happens, the good limiting synthetic channels can be used
to transmit uncoded data bits — the inputs to the other
channels can be frozen to fixed values. Since the transformation
is information lossless, the fraction of good channels (i.e., data
rate) must be I(W ).
The decoder can decode U1, U2, . . . , Un successively.
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On successive decoding

The quantities I(Ui;Y nU i−1) are
relevant for a genie-aided decoder:

Û1 = φ1(Y
n)

Û2 = φ2(Y
n,U1)

Û3 = φ3(Y
n,U2)

. . .

Ûn = φn(Y
n,Un−1)

vs

unaided decoder:

Û1 = φ1(Y
n)

Û2 = φ2(Y
n, Û1)

Û3 = φ3(Y
n, Û2)

. . .

Ûn = φn(Y
n, Ûn−1).

If the genie-aided decoder makes no errors, then, the unaided
decoder makes no errors.
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Û1 = φ1(Y
n)
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n, Ûn−1).

If the genie-aided decoder makes no errors, then, the unaided
decoder makes no errors.



Setting Brick Mortar Polar Speed Applications

Polarization does happen

Let B1,B2, . . . be i.i.d., equally
likely to be {+,−}, W0 =W ,
W` =W B`

`−1
.

W` is uniformly distributed
among

�

W−···−, . . . ,W+···+	,
and

Pr
�

I(W`) ∈ (ε, 1− ε)
�

=
1

n
#
�

i : I(Ui;Y nU i−1) ∈ (ε, 1− ε))
	

.

W

W−

W+

W−−

W−+

W+−

W++

W−−−

W−−+

W−+−

W−++

W+−−

W+−+

W++−

W+++
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Polarization does happen

To show polarization all we need to study is the process I` := I(W`)
and show that I` ∈ (ε, 1− ε) with small probability.

I0 = I(W ) is a constant.
I` lies in [0,1], so is bounded.
Conditional on B1, . . . ,B`, we know W`, and I`+1 is equally
likely to be I(W−

`
) and I(W+

`
),

so,

E[I`+1|B1, . . . ,B`] =
1
2[I(W

−
`
)+ I(W+

`
)] = I(W`) = I`

and we see that {I`} is a martingale.
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Bounded martingales converge almost surely.

Convergence of {I`} implies |I`+1− I`| → 0.
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2[I(W
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Polarization speed

We have seen that polarization takes place.

But how fast? Fast enough to arrest error propagation?
Introduce the Bhattacharyya parameter

Z(W ) =
∑

y

Æ

W (y|0)W (y|1)

as a companion to I(W ). Note that this is an upper bound on
probability of error for uncoded transmission over W .
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Polarization speed

Properties of Z(W ):

Z(W ) ∈ [0,1].

Z(W )≈ 0 iff I(W )≈ 1.
Z(W )≈ 1 iff I(W )≈ 0.
Z(W+) = Z(W )2.
Z(W−)≤ 2Z(W ).

Since Z(W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis of
the Z’s of the synthetic channels. The sum of the Z’s of the chosen
channels will upper bound the block error probability. This suggests
studying the polarization speed of Z.



Setting Brick Mortar Polar Speed Applications

Polarization speed

Properties of Z(W ):

Z(W ) ∈ [0,1].
Z(W )≈ 0 iff I(W )≈ 1.

Z(W )≈ 1 iff I(W )≈ 0.
Z(W+) = Z(W )2.
Z(W−)≤ 2Z(W ).

Z(W )

I(W )

1

1
0

0

Since Z(W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis of
the Z’s of the synthetic channels. The sum of the Z’s of the chosen
channels will upper bound the block error probability. This suggests
studying the polarization speed of Z.



Setting Brick Mortar Polar Speed Applications

Polarization speed

Properties of Z(W ):

Z(W ) ∈ [0,1].
Z(W )≈ 0 iff I(W )≈ 1.
Z(W )≈ 1 iff I(W )≈ 0.

Z(W+) = Z(W )2.
Z(W−)≤ 2Z(W ).

Z(W )

I(W )

1

1
0

0

Since Z(W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis of
the Z’s of the synthetic channels. The sum of the Z’s of the chosen
channels will upper bound the block error probability. This suggests
studying the polarization speed of Z.



Setting Brick Mortar Polar Speed Applications

Polarization speed

Properties of Z(W ):

Z(W ) ∈ [0,1].
Z(W )≈ 0 iff I(W )≈ 1.
Z(W )≈ 1 iff I(W )≈ 0.
Z(W+) = Z(W )2.

Z(W−)≤ 2Z(W ).

Z(W )

I(W )

1

1
0

0

Since Z(W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis of
the Z’s of the synthetic channels. The sum of the Z’s of the chosen
channels will upper bound the block error probability. This suggests
studying the polarization speed of Z.



Setting Brick Mortar Polar Speed Applications

Polarization speed

Properties of Z(W ):

Z(W ) ∈ [0,1].
Z(W )≈ 0 iff I(W )≈ 1.
Z(W )≈ 1 iff I(W )≈ 0.
Z(W+) = Z(W )2.
Z(W−)≤ 2Z(W ).

Z(W )

I(W )

1

1
0

0

Since Z(W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis of
the Z’s of the synthetic channels. The sum of the Z’s of the chosen
channels will upper bound the block error probability. This suggests
studying the polarization speed of Z.



Setting Brick Mortar Polar Speed Applications

Polarization speed

Properties of Z(W ):

Z(W ) ∈ [0,1].
Z(W )≈ 0 iff I(W )≈ 1.
Z(W )≈ 1 iff I(W )≈ 0.
Z(W+) = Z(W )2.
Z(W−)≤ 2Z(W ).

Z(W )

I(W )

1

1
0

0

Since Z(W ) upper bounds on probability of error for uncoded
transmission over W , we can choose the good indices on the basis of
the Z’s of the synthetic channels. The sum of the Z’s of the chosen
channels will upper bound the block error probability. This suggests
studying the polarization speed of Z.



Setting Brick Mortar Polar Speed Applications

Polarization speed

Given a binary input channel W ,

just as for I`, define Z` = Z(W B1,...,B`).
We know that Pr(Z`→ 0) = I(W ).
It turns out that when Z`→ 0, it does so fast:

Theorem

For any β < 1/2, lim
`→∞

Pr(Z` < 2−2β`
) = I(W ).

This means that for any β < 1/2, as long as R< I(W ) the error
probability of polarization codes decays to 0 faster than 2−nβ

.
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with successive decoding, the decoding complexity is n logn,

probability of error decays like 2−
p
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Moreover

For symmetric channels the construction is deterministic.
There is no “choose from this ensemble and verify” step.
The error probability guarantees are not based on simulations
— interesting for very low error probability applications.
Generalizes to channels with arbitrary discrete input alphabets:
a similar ‘two-by-two’ construction, with same complexity and
error probability bounds. This allows one to achieve true
capacity C(W ) rather than I(W ).
With ‘k-by-k’ constructions the error probability can be made
to decay almost exponentially in blocklength.
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Extensions

Dual constructions yield vector quantizers that achieve the rate
distortion bound.
Yields codes that achieve the secrecy capacity of the Wyner’s
wiretap channel.
Polarizing each user of a MAC yield sum rate bound achieving
codes.
. . . .
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However

Exactly deciding which ones of the n synthetic channels are
good and which ones are bad is difficult.

But there are methods
of low complexity that identify almost all the good channels
and never misidentify a bad channel. (A vanishing fraction of
good channels may be misidenfied as bad.)

For asymptotic results to kick in one needs ` to be large (n= 2`

is really large).
For channel coding applications, the usual suspects (LDPC,
Turbo, . . . ) easily beat the pure polar codes at meaningful block
lengths.

For quantization they are a lot more competitive.
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Remarks

Polar codes are close cousins of Reed–Muller codes. Differ only
in the choice of which indices are good.

One transform
�

1 1
0 1
�⊗` works for all channels.

The technique treats noise not by eliminating it, but by shifting
it to a subspace.
Successive decoding is cheap (n logn) but too naive. More clever
decoding methods should improve error probability at
moderate n.
While the original motivation was for channel coding, polar
codes are good at many settings. [“Polar codes are good for
everything — S. Korada”]
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