
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 13 Information Theory and Coding
Solutions to homework 6 October 30th, 2012

Problem 1.

(a) We have ρ(X∞
1) = 0. We show this by showing that ρ(X∞

1) ≤ δ for any δ > 0. To
see the last statement, build an invertible FSM which ”recognizes” a string of type
”ab...ab” for a particular even length, call it L, and outputs lets say ”0” at the end
of this string and returns to the starting state. Hence this machine will output an
infinite string of ”0” when the input is X∞

1 . From each state (including the starting
state) of the chain which recognizes the special string make an edge back to the
starting state in the case the next input is not the correct one. The output for each
such edge is 1 + dlogLe bits long, the first bit is 1 to indicate that it is not the
special path and on the next dlogLe bits we give the index of the state (in binary
representation) from which the return edge is drawn. This machine is clearly lossless
and has a compressibility of 1/L for the desired sequence.

(b) A machine as described above will have ρM(X∞
1) = 1/4. In fact, one cannot do better

than this. Consider a cycle, when from a given state we get back to the same state.
During such a cycle we have to output at least one symbol, because the machine has
to be information lossless. In an L state machine we eventually create such a cycle
within at most L steps. This means that we output at least one symbol for every L
input symbols, so ρM(X∞

1) ≥ 1/L.

(c) We have ρLZ = 0 since compressibility is non-negative and we know that the com-
pressibility of LZ is at least as good as that of any FSM, i.e., we know that ρLZ(X∞

1) ≤
ρ(X∞

1).

(d) The dictionary increases by 1 every time and has size 2 in the beginning. Hence, if
we look at lets say c steps of the algorithm then we need in total

c∑
i=1

dlog(1 + i)e ≤ c log(2(c+ 1))

bits to describe the output.

What are the words which we are using. Note that the parsing is a, b, ab, aba,
ba, bab,... Note that in average at most every second step the length of the used
dictionary word increases by 1, i.e., we have a linear increase in the used dictionary
words. Therefore, if we compute the total length which we have parsed after c steps,
this length increases like the square of c.

It follows that the ratio of the total number of bits used divided by the total length
described behaves like 1/c, i.e., it tends to 0.

Problem 2. Let s(m) = 0 + 1 + · · · + (m− 1) = m(m− 1)/2. Suppose we have a string
of length n = s(m). Then, we can certainly parse it into m words of lengths 0, 1, . . . ,
(m− 1), and since these words have different lengths, we are guaranteed to have a distinct

parsing. Since a parsing with the maximal number of distinct words will have at least as
many words as this particular parsing, we conclude that whenever n = m(m−1)/2, c ≥ m.

Now, given n, we can find m such that s(m − 1) ≤ n < s(m). A string with n letters
can be parsed into m − 1 distinct words by parsing its initial segment of s(m − 1) letters
with the above procedure, and concatenating the leftover letters to the last word. Thus,
if a string can be parsed into m − 1 distinct words, then n < s(m), and in particular,
n < s(c+ 1) = c(c+ 1)/2.

From above, it is clear that no sequence will meet the bound with equality. On the
other hand, an all zero string of length s(m) can be parsed into at most m words: in this
case distinct words must have distinct lengths.

Problem 3.

(a) The intermediate nodes of a tree have the property that if w is an intermediate node,
then so are its ancestors. Conversely, as we remark on the notes on Tunstall coding,
if a set of nodes has this property, it is the intermediate nodes of some tree. Thus,
all we need to show is that w ∈ S implies that its prefixes are also in S.

Suppose v is a prefix of w, and v 6= w. Then pj(v) > pj(w). Thus, p̂(v) > p̂(w).
Since S is constructed by picking nodes with highest possible values of p̂, we see that
if w ∈ S, then v ∈ S.

From class, we know that if a K-ary tree has α intermediate nodes, the tree has
1 + (K − 1)α leaves.

(b) Since S contains the α nodes with the highest value of p̂, no node outside of S can
have strictly larger p̂ than any node in S. Thus, p̂(w) ≤ Q.

(c) From part (b) pj(w) ≤ p̂(w) ≤ Q. Thus, log(1/pj(w)) ≥ log(1/Q). Multiplying both
sides by pj(w) and summing over all W we get

Hj(W) ≥ log(1/Q).

(d) For any leaf w in W we have

p1(w) = p1(parent of w)p1(last letter of w)

≥ p1(parent of w)p1,min

For a leaf w in W1 , p1(parent of w) = p̂(parent of w) ≥ Q. Thus, all leaves in W1

have p1(w) ≥ Qp1,min. Now

1 =
∑
w∈W

p1(w) ≥
∑
w∈W1

p1(w) ≥ |W1|Qp1,min.

(e) The same argument as in (d) establishes that |W2|Qp2,min ≤ 1. Thus

|W | = |W1 ∪W2| ≤ |W1|+ |W2| ≤
1

Q
[1/p1,min + 1/p2,min].

2

(f) By part (e) log(W) ≤ log(1
Q

) + log(1/p1,min + 1/p2,min). By part (c) log(1/Q) ≤
Hj(W), we also know Hj(W) = Hj(U)Ej[length(W)].
Thus using dxe < x+ 1,

ρj =
dlog(|W |)e

Ej[length(W)]

<
1 +Hj(U)Ej[length(W)] + log(1/p1,min + 1/p2,min)

Ej[length(W)]

= Hj(U) +
1 + log(1/p1,min + 1/p2,min)

Ej[length(W)]
. (1)

(g) As α gets larger, since |W | = 1 + (K − 1)α, log(|W |) gets larger. As we saw in part
(f) Hj(W) is lower bounded by log(|W |)− log(1/p1,min + 1/p2,min), so Hj(W) gets
larger too. Furthermore, Ej[length(W)] = Hj(W)/Hj(U), and so as α gets larger
Ej[length(W)] gets larger as well. Thus, as α gets large, we see that the right hand
side of (1) approaches Hj(U).

3

