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Problem 1. Since the class of instantaneous codewords is a subset of the class of uniquely
decodable codewords, it follows that M̄2 ≤ M̄1. On the other hand, let {li} be the code-
word lengths of the uniquely decodable code for which M̄ = M̄2. Since {li} satisfies the
Kraft’s inequality, there exists an instantaneous code with these codeword lengths. For
this instantaneous code M̄ = M2 and we see that M̄1 ≤ M̄ = M2, and we conclude that
M̄1 = M̄2.

Problem 2. (a) 1/3

(b) The probability is 2/3. One easy way to see this is the following. If the easy question
was picked initially, then it is in the student’s box and this happens with probability
1/3. Otherwise, if a very hard question was picked initially, then the easy question
is in the remaining box, and this happens with probability 2/3. The reason why
the probabilities change is that revealing a box with a very hard question gives the
student some information about the other boxes: the choice of the box being opened
is not independent from the content of the box.

Problem 3.

(a) {00, 01, 100, 101, 1100, 1101, 1110, 1111}.

(b) First note that if any two number differ by 2−k, their binary expansion will differ
somewhere in the first k bits after the ‘point’. (Think of the decimal case: if a =
0.375 . . . and b differs by more than 10−3 by it, then b’s expansion cannot start with
0.375.)

Next observe that that for i > j

Qi −Qj =
i−1∑
k=j

P (ak) ≥ P (aj) ≥ 2−lj .

So, the binary expansion of Qi and Qj must differ somewhere in the first lj bits. Since
codewords for i and j are at least lj bits long, neither codeword can be a prefix of
the other.

The bound on the average codeword length follows from

− log2 P (ai) ≤ li < − log2 P (ai) + 1.

This method of coding is also known as Shannon coding and predates Huffman coding.

Problem 4.

(a) Consider the longest and the shortest codewords. We know that there are at least
two longest codewords, suppose their length is l. Suppose the shortest codewords has
length s. Suppose that s and l differ by 2 or more. To show that this cannot be the
case for an optimal code, consider the transformation shown below:
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We see that the transformation decreases the length of two codewords (for letters β
and γ) by l − (s + 1) = l − s − 1, whereas it increases the length of one codeword
(for the letter α) by (l− 1)− s = l− s− 1. But since l− s− 1 > 0, and since all the
codewords are equally likely, this would have decreased the average codeword length,
contradicting the optimality of the Huffman code. Thus, the longest and shortest
codeword lengths can differ by at most 1, and these lengths must be j and j + 1.
(If some other two consecutive depths were used we would either not have enough
leaves, or have too many leaves).

(b) Let the number of codewords of length k be mk, k = j, j + 1. Since the Huffman
procedure yields a complete tree (no leaf is unoccupied) all intermediate nodes have
two children. Thus, the 2j nodes at level j of the tree are either codewords (mj of
them) or each of their two children are codewords (mj+1/2 of them). Thus

mj +mj+1/2 = 2j,

and also mj +mj+1 = x2j. From these two equations we find

mj = (2− x)2j and mj+1 = (x− 1)2j+1.

(c) By the result of (b) the average codeword length is

[jmj + (j + 1)mj+1]/(x2j) = j + 2(x− 1)/x.

Problem 5.

(a) H(X) = 2
3

log 3
2

+ 1
3

log 3 = 0.918 bits = H(Y ).

(b) H(X|Y ) = 1
3
H(X|Y = 0) + 2

3
H(X|Y = 1) = 0.667 bits = H(Y |X).

(c) H(X, Y ) = 3× 1
3

log 3 = 1.585 bits.

(d) H(Y )−H(Y |X) = 0.251 bits.

(d) I(X;Y ) = H(Y )−H(Y |X) = 0.251 bits.

(f)
H(X) H(Y )

H(X|Y ) H(Y |X)I(X;Y )

H(X,Y )
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Problem 6.

H(X) = −
M∑
k=1

PX(ak) logPX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α logα

= (1− α)H(Y )− (1− α) log(1− α)− α logα

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.

Problem 7.

(a) Using the chain rule for mutual information,

I(X, Y ;Z) = I(X;Z) + I(Y ;Z | X) ≥ I(X;Z),

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(b) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) +H(Y | X,Z) ≥ H(X | Z),

with equality iff H(Y | X,Z) = 0, that is, when Y is a function of X and Z.

(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ;Z | X)

≤ H(Z | X) = H(X,Z)−H(X) ,

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,

I(X;Z | Y ) + I(Z;Y ) = I(X, Y ;Z) = I(Z;Y | X) + I(X;Z) ,

and therefore
I(X;Z | Y ) = I(Z;Y | X)− I(Z;Y ) + I(X;Z) .

We see that this inequality is actually an equality in all cases.
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