Problem 1. Channels with memory have higher capacity. Consider a binary symmetric channel with \(Y_i = X_i \oplus Z_i \), where \(\oplus \) is mod 2 addition, and \(X_i, Y_i \in \{0, 1\} \).

Suppose that \(\{Z_i\} \) has constant marginal probabilities \(\Pr\{Z_i = 1\} = p = 1 - \Pr\{Z_i = 0\} \), but that \(Z_1, Z_2, \ldots, Z_n \) are not independent. Assume that \((Z_1, \ldots, Z_n)\) is independent of the input \((X_1, \ldots, X_n)\). Let \(C = 1 - H(p, 1-p) \). Show that

\[
\max_{p_{X_1, X_2, \ldots, X_n}} I(X_1, X_2, \ldots, X_n; Y_1, Y_2, \ldots, Y_n) > nC.
\]

Problem 2. Consider two discrete memoryless channels. The input alphabet, output alphabet, transition probabilities and capacity of the \(k \)'th channel is given by \(X_k, Y_k, p_k \) and \(C_k \) respectively \((k = 1, 2)\). The channels operate independently. A communication system has access to both channels, that is, the effective channel between the transmitter and receiver has input alphabet \(X_1 \times X_2 \), output alphabet \(Y_1 \times Y_2 \) and transition probabilities \(p_1(y_1|x_1)p_2(y_2|x_2) \). Find the capacity of this channel.

Problem 3. Show that a cascade of \(n \) identical binary symmetric channels,

\[
X_0 \rightarrow \text{BSC} \#1 \rightarrow X_1 \rightarrow \cdots \rightarrow X_{n-1} \rightarrow \text{BSC} \#n \rightarrow X_n
\]

each with raw error probability \(p \), is equivalent to a single BSC with error probability \(\frac{1}{2}(1 - (1 - 2p)^n) \) and hence that \(\lim_{n \to \infty} I(X_0; X_n) = 0 \) if \(p \neq 0, 1 \). Thus, if no processing is allowed at the intermediate terminals, the capacity of the cascade tends to zero.

Problem 4. Consider a memoryless channel with transition probability matrix \(P_{Y|X}(y|x) \), with \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \). For a distribution \(Q \) over \(\mathcal{X} \), let \(I(Q) \) denote the mutual information between the input and the output of the channel when the input distribution is \(Q \). Show that for any two distributions \(Q \) and \(Q' \) over \(\mathcal{X} \),

(a)

\[
I(Q') \leq \sum_{x \in \mathcal{X}} Q'(x) \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right)
\]

(b)

\[
C \leq \max_x \sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) \log \left(\frac{P_{Y|X}(y|x)}{\sum_{x' \in \mathcal{X}} P_{Y|X}(y|x') Q(x')} \right)
\]

where \(C \) is the capacity of the channel. Notice that this upper bound to the capacity is independent of the maximizing distribution.