Problem 1. A discrete memoryless channel has three input symbols: \{-1; 0; 1\}, and two output symbols: \{1; -1\}. The transition probabilities are:
\[
p(-1|1) = p(1|1) = 1, \quad p(1|0) = p(-1|0) = 0.5.
\]
Find the capacity of this channel with cost constraint \(\beta\), if the cost function is \(b(x) = x^2\).

Problem 2. For given positive numbers \(\sigma_1^2, \ldots, \sigma_K^2\) define the function
\[
f(p_1, \ldots, p_K) = \sum_{i=1}^K \log(1 + p_i/\sigma_i^2)
\]
on the simplex \(\{(p_1, \ldots, p_K) : p_i \geq 0, \sum_i p_i = 1\}\).

(a) Show that \(f\) is concave.

(b) Write the Kuhn-Tucker conditions for the \(p\) that maximizes \(f(p)\); show that they can be equivalently written as “there exists \(\lambda\), such that
\[
p_i = \lambda - \sigma_i^2, \quad \text{for } i \text{ for which } p_i > 0
\]
\[
0 \geq \lambda - \sigma_i^2, \quad \text{for } i \text{ for which } p_i = 0
\]

(c) Show that the maximizing \(p\) can be written in the form
\[
p_i = (\lambda - \sigma_i^2)^+
\]
for some \(\lambda\) where \(a^+ = \max\{0, a\}\).

(d) Given what we have shown so far, the maximization of \(f\) is reduced to finding the right \(\lambda\). Describe a procedure to find this \(\lambda\).

Problem 3. Suppose \(Z\) is uniformly distributed on \([-1, 1]\), and \(X\) is a random variable, independent of \(Z\), constrained to take values in \([-1, 1]\). What distribution for \(X\) maximizes the entropy of \(X + Z\)? What distribution of \(X\) maximizes the entropy of \(XZ\)?

Problem 4. Random variables \(X\) and \(Y\) are correlated Gaussian variables:
\[
\begin{pmatrix}
X \\
Y
\end{pmatrix} \sim \mathcal{N}_2\left(\begin{pmatrix} 0 \\
0
\end{pmatrix}; K = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\
\rho \sigma_x \sigma_y & \sigma_y^2
\end{bmatrix}\right).
\]
Find \(I(X; Y)\).

Problem 5. Consider an additive noise channel with input \(x \in \mathbb{R}\), and output
\[
Y = x + Z
\]
where \(Z\) is any real random variable independent of the input \(x\), has zero mean and variance equal to \(\sigma^2\).

In this problem we prove in two different ways that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance. Let \(\mathcal{N}_{\sigma^2}\) denote the Gaussian density with zero mean and variance \(\sigma^2\).

First Method: Let \(X\) be a random variable with density \(\mathcal{N}_P\).
(a) Show that

\[I(X; Y) = H(X) - H(X - \alpha Y | Y) \]

for any \(\alpha \in \mathbb{R} \).

(b) Observe that

\[H(X - \alpha Y) \leq \frac{1}{2} \log 2\pi e E((X - \alpha Y)^2) \]

for any \(\alpha \in \mathbb{R} \).

(c) Deduce from (a) and (b) that

\[I(X; Y) \geq H(X) - \frac{1}{2} \log 2\pi e E((X - \alpha Y)^2) \]

for any \(\alpha \in \mathbb{R} \).

(d) Show that

\[E((X - \alpha Y)^2) \geq \frac{\sigma^2 P}{\sigma^2 + P} \]

with equality if and only if \(\alpha = \frac{P}{\sigma^2 + P} \).

(e) Deduce from (c) and (d) that

\[I(X; Y) \geq \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right) \]

and conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.

Second Method:

(a) Denote the input probability density by \(p_X \). Verify that

\[I(X; Y) = \int \int p_X(x)p_Z(y - x) \ln \frac{p_Z(y - x)}{p_Y(y)} \, dx \, dy \text{ nats.} \]

where \(p_Y \) is the probability density of the output when the input has density \(p_X \).

(b) Now set \(p_X = \mathcal{N}_P \). Verify that

\[\frac{1}{2} \ln(1 + P/\sigma^2) = \int \int p_X(x)p_Z(y - x) \ln \frac{\mathcal{N}_{\sigma^2}(y - x)}{\mathcal{N}_{P + \sigma^2}(y)} \, dx \, dy. \]

(c) Still with \(p_X = \mathcal{N}_P \), show that

\[\frac{1}{2} \ln(1 + P/\sigma^2) - I(X; Y) \leq 0. \]

[Hint: use (a) and (b) and \(\ln t \leq t - 1 \).]

(d) Show that an additive noise channel with noise variance \(\sigma^2 \) and input power \(P \) has capacity at least \(\frac{1}{2} \log_2 (1 + P/\sigma^2) \) bits per channel use. Conclude that the Gaussian channel has the smallest capacity among all additive noise channels of a given noise variance.