3 problems, 110 points
3 hours
2 sheets of notes allowed

Good Luck!

Please write your name on each sheet of your answers
Please use a separate sheet for answering each question
Problem 1. (30 points)

(a) (5 pts) [A useful lemma.] Suppose E_1, \ldots, E_M are independent events, each with probability $1 - p$. Show that $\Pr(\bigcap_i E_i) \leq \exp(-pM)$. [Hint: $\ln(1 - p) \leq -p$.]

We will analyze a random code construction for source coding.

A source produces i.i.d. letters from an alphabet \mathcal{U} according to a distribution p_U. A block source coding scheme is constructed as follows:

1. Pick a blocklength n and rate R.
2. Randomly pick $M = 2^{nR}$ sequences of length n,

$$\mathbf{U}(1), \ldots, \mathbf{U}(M),$$

choosing each letter of each sequence independently according to the distribution p_U. Reveal these choices to the encoder and decoder.

3. The encoder operates as follows: When asked to encode a sequence $\mathbf{u} \in \mathcal{U}^n$, the encoder searches for an $m = 1, \ldots, 2^{nR}$ for which $\mathbf{u} = \mathbf{U}(m)$. If such an m is found, the encoder outputs m (as an nR bit integer). If no such m is found the encoder uses $m = 1$.

4. The decoder, when asked to decode an nR bit integer m, outputs $\mathbf{U}(m)$.

We will now analyze the probability that this randomly constructed encoder/decoder pair makes an error, i.e., $\Pr\{\text{Dec(Enc(\mathbf{u}))} \neq \mathbf{u}\}$.

(b) (5 pts) Suppose the sequence to be encoded is \mathbf{u}. Show that

$$\Pr\{\text{Dec(Enc(\mathbf{u}))} \neq \mathbf{u}\} \leq \exp(-p_U^n(\mathbf{u})M).$$

(c) (10 pts) Suppose that the sequence $\mathbf{u} = (u_1, \ldots, u_n)$ is ϵ-typical (in the sense that

$$\frac{1}{n} \#\{i : u_i = a\} = (1 \pm \epsilon)p_U(a) \text{ for each } a \in \mathcal{U}$$

Show that

$$\Pr(\text{Dec(Enc(\mathbf{u}))} \neq \mathbf{u}) \leq \exp(-2^n(R - (1+\epsilon)H(\mathcal{U}))).$$

(d) (10 pts) Show that if $R > H(\mathcal{U})$ the encoding method described above will have an error probability that approaches zero as n gets large.
Problem 2. (40 points)

(a) (5 pts) Suppose $f(\beta)$ is a concave-\cap function defined on $[0, \infty)$ with $f(0) = 0$. Show that $\frac{f(\beta)}{\beta}$ is a decreasing function on $(0, \infty)$.

[Hint: if $0 < \beta_1 < \beta_2$, then $\beta_1 = (1 - \lambda)0 + \lambda\beta_2$ with $\lambda \in [0, 1]$.

Suppose we have a discrete memoryless channel with a binary input alphabet $\mathcal{X} = \{0, 1\}$. Let $p(y|x)$ denote the channel transition probabilities. The inputs to the channel carry a cost, the cost of the symbol x is x (i.e., the symbol 0 is free, the symbol 1 has a unit cost).

(b) (10 pts) Let $I(\beta)$ denote the mutual information between the input and output of the channel when $\Pr(X = 1) = \beta$, and $C(\beta)$ the capacity under cost constraint β. Express $C(\beta)$ in terms of $I(\beta)$.

(c) (10 pts) The quantity $\sup_{\beta > 0} \frac{C(\beta)}{\beta}$ is the largest number of bits per cost we can reliably transmit across a channel and is called the capacity per cost. Show that

$$\sup_{\beta > 0} \frac{C(\beta)}{\beta} = \lim_{\beta \downarrow 0} \frac{I(\beta)}{\beta}.$$

[Hint: use what you showed in part (a)]

(d) (10 pts) Show that $\lim_{\beta \downarrow 0} \frac{I(\beta)}{\beta} = \sum_y p(y|1) \log \frac{p(y|1)}{p(y|0)}$.

(e) (5 pts) What is the capacity per cost of the binary symmetric channel with cross-over probability p?
Problem 3. (40 points) Consider a linear code defined over the ternary alphabet $\mathbb{F}_3 = \{0, 1, 2\}$ (equipped with modulo-3 addition and multiplication) as follows: x is a codeword if and only if $Hx = 0$ where

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

(and all operations are done in modulo-3 arithmetic).

(a) (5 pts) What is the blocklength, the number of codewords, and the rate of this code?

A codeword x is sent over a channel. It is known that during the transmission either all letters are received correctly, or, one of the letters is changed (to some other element of \mathbb{F}_3).

(b) (10 pts) Show that the receiver can detect if a change has happened and correct it if so.

(c) (5 pts) Suppose we are allowed to augment the matrix H by appending to it a fifth column. How will this change the rate of the code?

(d) (10 pts) Which of the following candidate columns (if any) can be appended to H and still preserve the property in (b): $[0], [1], [2]$?

(e) (10 pts) Suppose it is known that during the transmission all letters are received correctly, or one of the letters is changed in the following restricted way: 0 can be replaced by 1 (but not by 2); 1 can be replaced by 2 (not by 0); 2 can be replaced by 0 (not by 1). Redo part (d) for this channel.