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Problem 1.

(a) Since Y is a function of (X,K), H(Y |X,K) = 0. Similarly, H(X|Y,K) = 0.

(b) Since Y = f(X,K), H(Y |K) ≤ H(X,K|K) = H(X|K). Similarly H(X|K) ≤
H(Y |K). Consequently the two conditional entropies are the same.

(c) We have H(Y ) ≥ H(Y |K) = H(X|K) = H(X), the inequality is due to (b) and the
last equality due to the independence of X and K.

(d) As Y is a function of (X,K), H(Y |X) ≤ H(X,K|X) = H(K|X) ≤ H(K). Indeed,
this is true even if X and K were dependent.

(e) From (c) we have H(Y ) ≥ H(X), and from (d) we have H(K) ≥ H(Y |X). By
independence of X and Y we have H(Y |X) = H(Y ), Consequently H(K) ≥ H(Y ) ≥
H(X).

(f) By assumption the system is secure for any distribution of X, so the inequality
in (e) holds for any choice of pX . Choosing pX as the uniform distribution gives
H(K) ≥ log |X |.

(g) It is clear that g recovers X from Y = f(X,K) and K. All that is needed to prove is
that the system is secure. To that end, note that H(Y |X) = H((X+K) mod m|X) =
H(K|X) = H(K), where the last inequality is by the independence of X and K.
Thus,

0 ≤ I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(K) = H(Y )−logm ≤ logm−logm = 0.

(Note that we additionally obtain H(Y ) = logm.)

Moral of the story: information theoretically secure cryptosystems require a key with high
entropy. This puts into doubt their practical feasibility: As an information theoretically
secure system needs to have a mechanism to secretly communicate a key which has more
entropy than the message itself, why not use this secure key-distribution mechanism to
communicate the message?



Problem 2.

(a) When x is sent it is impossible to receive a y for which P (y|x) = 0, consequently
X and Y are compatible with probability 1. On the other hand, X̃ and Y will be
incompatible whenever Y ∈ {0, 1} and X̃ 6= Y . The first event has probability 1− p
the second has probability 1/2 and the two are independent. Thus, X̃ and Y are
compatible with probability 1− (1− p)/2 = (1 + p)/2.

(b) As in (a) Xn and Y n are always compatible. For X̃n, we need compatibility for each
of the n indices, by independence this has probability [(1 + p)/2]n.

(c) For the indices for which Yi = e, the symbols X̃i and Yi are always compatible. For
the remaining indices Yi ∈ {0, 1}, and X̃i and Yi will be compatible with probability
1/2. It follows that X̃n and Y n are compatible with probability (1/2)n−k conditional
on k erasures in Y n.

(d) Since the transmitted message m and Y n always satisfies the compatibility condition,
the only way an error happens is when some other codeword also satisfies the com-
patibility condition (in which case the receiver declares 0.) By (b), for any m′ 6= m,
the probability that Xn(m′) and Y n are compatible is [(1 + p)/2]n. Since there are
M − 1 choices of m′, the union bound gives Pe ≤ (M − 1)[(1 + p)/2]n.

(e) The bound on the error probability above can we written as

Pe ≤ 2n[R+log[(1+p)/2]].

We thus conclude that as long as R < log(2/(1 + p)) =: R0, reliable communication
is possible. (The quantity R0 is known in the literature as the cut-off rate, and is also
defined for arbitrary channels.)

(f) Let A denote the event that Y n contains more than k erasures, and let B denote the
complementary event, that Y n contains k or fewer erasures. First write

Pe = Pr{Error|A}Pr{A}+ Pr{Error|B}Pr{B}

Upper bound the Pr{Error|A} by 1, also upper bound Pr{B} by 1. We thus find

Pe ≤ Pr{A}+ Pr(Error|B}.

By part (c), for any m′ 6= m, the probability that Xn(m′) and Y n will be compatible
conditional on B is upper bounded by (1/2)n−k. Union bound thus gives

Pr(Error|B} ≤ (M − 1)
(

1
2

)n−k

and we obtain

Pe ≤ Pr(Y n contains more than k erasures) + (M − 1)
(

1
2

)n−k
.

(g) Fix q > p and choose k = nq. By the law of large numbers the first term in the
bound above approaches zero as n gets large. The second term also approaches zero
if R < 1 − q. Thus, we conclude that for any q > p, it is possible to communicate
reliably for all rates up to 1 − q. Since q may be chosen as close to p as desired, we
get R1 = 1−p. (Note that this is in fact the capacity of the BEC, and the conclusion
on the rates we obtain is the best possible.)
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Problem 3.

(a) Since the input of the channel is (X1, X2) and the output if (A, Y ), the mutual
information between them is

I(X1, X2;A, Y ) = I(X1, X2;A) + I(X1, X2;Y |A) = I(X1, X2;Y |A)

where the first equality is by the chain rule, second by the independence of A and
the channel input.

(b) Given X1, X2, A, we know XA. Thus h(Y |X1, X2, A) = h(XA + Z|X1, X2, A) =
h(Z|X1, X2, A) = h(Z) = 1

2
log(2πe). Note that we have used the independence of Z

and X1, X2, A

(c) Conditional on A = 1, Y = X1 + Z. Thus conditional on A = 1, the variance of
Y is equal to Var(X1) + Var(Z) = Var(X1) + 1. Recalling the bound on differential
entropy in terms of variance, we have

h(Y |A = 1) ≤ 1
2

log(2πe(Var(X1) + 1)) ≤ 1
2

log(2πe(E[X2
1 ] + 1)),

with equality if and only if X1 is Gaussian and has zero mean.

(d) As h(Y |A) = h(Y |A = 1)p + h(Y |A = 2)(1 − p), by (c) we see that h(Y |A) is
maximized with X1 and X2 are zero mean and Gaussian. It is neither necessary for
them to be independent, not jointly Gaussian.

(e) By the previous parts, the mutual information between the input and the output is
given by

p1
2

log(1 + P1) + (1− p)1
2

log(1 + P2).

where P1 = E[X2
1 ] and P2 = E[X2

2 ]. To find the capacity, we need to maximize
the above over the choice of non-negative P1, P2 for which P1 + P2 = 1. Assuming
optimizing (P1, P2) are both positive, the Kuhn-Tucker conditions give that for the
optimal choice there is a λ for which

p = λ(1 + P1) and 1− p = λ(1 + P2).

Summing the two equations give 1 = 3λ, from which we obtain P1 = p − 1/3,
P2 = 2/3− p. For p ∈ (1/3, 2/3) this gives the optimal choice. For p ≤ 1/3 we need
to choose (P1, P2) = (0, 1), for p ≥ 2/3 we need to choose (P1, P2) = (1, 0).

What we studied here is a simplified case of ‘diversity’: the receiver receives one of two sent
objects, but the transmitter does not know which it will be. It is intuitively clear that one
should put more energy to the object that has a higher chance of reception; part (e) tells
exactly how much. The “correlations don’t matter” observation of (d) makes it possible to
simplify design: X1 and X2 can be chosen as scaled versions of a common quantity X.
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Problem 4.

(a) Any codeword of C is of the from 〈a, a ⊕ b〉 with a ∈ C1 and b ∈ C2. Given two
codewords 〈u′,u′⊕v′〉 and 〈u′′,u′′⊕v′′〉 of C, their sum is 〈u,u+v〉 with u = u′⊕u′′

and v = v′ ⊕ v′′. Since C1 and C2 are linear codes u ∈ C1 and v ∈ C2. Thus the sum
of any two codewords of C is a codeword of C and we conclude that C is linear.

(b) If (u,v) 6= (u′,v′), then either u 6= u′, or, u = u′ and v 6= v′. In either case
〈u|u⊕v〉 6= 〈u′|u′⊕v′〉: in the first case the first halves differ, in the second case the
second halves differ. Thus no two of the (u,v) pairs are mapped to the same element
of C, and the code has exactly M1M2 elements. Its rate is 1

2n
log(M1M2) = 1

2
R1+ 1

2
R2.

(c) As v = u⊕ u⊕ v,

wH(v) = wH(u⊕ u⊕ v) ≤ wH(u) + wH(u⊕ v)

by the triangle inequality. Noting that the right hand side is wH(〈u|u⊕v〉) completes
the proof.

(d) If v = 0 we have 〈u|u ⊕ v〉 = 〈u|u〉 which has twice the Hamming weight of u.
Otherwise (c) gives wH(〈u|u⊕ v〉) ≥ wH(v).

(e) Since C is linear its minimum distance equals the minimum weight of its non-zero
codewords. If 〈u|u ⊕ v〉 is non-zero either v 6= 0, or, v = 0 and u 6= 0. By (d),
in the first case wH(〈u|u ⊕ v〉) ≥ wH(v) ≥ d1, in the second case wH(〈u|u ⊕ v〉) ≥
2wH(u) ≥ 2d2. Thus d ≥ min{2d1, d2}.

(f) Let u0 be the minimum weight non-zero codeword of C1 and let v0 be the minimum
weight non-zero codeword of C2. Note that 〈u0|u0〉 is a non-zero codeword of C
(corresponding to the choice u = u0, v = 0). It has weight 2d1. Similarly, 〈0|v0〉 is
also a non-zero codeword of C (corresponding to the choice u = 0, v = v0). It has
weight d2. Consequently d ≤ min{2d1, d2}. In light of (e) we find d = min{2d1, d2}.

This method of constructing a longer code from two shorter ones is known under several
names: ‘Plotkin construction’, ‘bar product’, ‘(u|u + v) construction’ appear regularly in
the literature. Compare this method to the ‘obvious’ method of letting the codewords to
be 〈u|v〉. The simple method has the same blocklength and rate as we have here, but its
minimum distance is only min{d1, d2}. The factor two gained in d1 by the bar product
is significant, and many practical code families can be built from very simple base codes
by a recursive application of the bar product. Notable among them are the family of
Reed–Muller codes.
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